so

'Super Shy' Listed on Pitchfork's List of Best Songs of the Decade


NewJeans’ hit “Super Shy’ has earned a spot in Pitchfork’s list of the best songs of the decade. It was the only K-pop track to be featured on Pitchfork’s list of...

[more...]




so

Jin to Release First Solo Album


Jin of BTS will release his first solo album next month. Titled “Happy” the album will drop on Nov. 15. His label, BigHit Music, said “Happy” is about finding happiness...

[more...]




so

Jirisan Soul Visits Yeouido! (with his boss)


In this week's episode of 'Good Vibes Only,' we're doubling up on the positive energy with two special guests: singer Kim Younggeun and singer-songwriter/producer NIve! Younggeun...

[more...]




so

How to End an E-Mail: 21 Professional and Personal Sign-Offs

The perfect email deserves the perfect ending. But what is the right way to close an email? Well, that depends on who will be reading it.




so

When Was Soccer Invented? Roots Trace Back Over 2,000 Years

Soccer, football — no matter what you call it, the world's most popular sport has a long and colorful history, from its ancient origins to its modern-day status as a global phenomenon. But when was soccer invented? How did it become the "beautiful game" that captivates millions today?




so

What Makes Virgo Men So Unique? Zodiac Insights

Explore Virgo men's traits, compatibility, and relationship dynamics. Learn what makes a Virgo man unique in love and if he's the right zodiac match for you.




so

Is Virgo and Capricorn Compatibility Solid? Discover the Strengths and Challenges

s Virgo and Capricorn compatibility strong? Discover how these earth signs connect in love, friendship, and marriage with shared values, loyalty, and mutual support.




so

What Happens in Aquarius Season? A Deep Dive Into Its Cosmic Influence

Explore Aquarius Season's unique energy, from innovation to social connection. Learn how this zodiac period influences creativity, relationships, and self-expression.




so

Bitcoin Soars Past $88,000 to New High

[Economy] :
The price of Bitcoin has crossed the 80-thousand-dollar mark for the first time, just days after Donald Trump’s reelection to the U.S. presidency.    According to the U.S. cryptocurrency exchange platform Coinbase, the world’s most popular cryptocurrency was trading at 88-thousand-413 U.S. dollars at ...

[more...]




so

Science Advisory Committee - British Geological Survey

Science Advisory Committee  British Geological Survey




so

Groundwater resources - British Geological Survey

Groundwater resources  British Geological Survey














so

Synthesis and structural study of the partially disordered complex hexagonal phase δ1-MnZn9.7

A detailed structural characterization of the δ1-MnZn9.7 phase is presented.




so

Coordination geometry flexibility driving supramolecular isomerism of Cu/Mo pillared-layer hybrid networks

The hydro­thermal synthesis and structural characterization of four novel 3D pillared-layer metal–organic frameworks are studied, revealing how the malleability of copper coordination geometries drives diverse supramolecular isomerism. The findings provide new insights into designing advanced hybrid materials with tailored properties, emphasizing the significant role of reaction conditions and metal ion flexibility in determining network topologies.




so

Crystal structure predictions for molecules with soft degrees of freedom using intermonomer force fields derived from first principles




so

Synthesis and structural study of the partially disordered complex hexagonal phase δ1-MnZn9.7

A detailed structural analysis of the Zn-rich δ1-MnZn9.7 phase using single-crystal X-ray diffraction is presented. The δ1 phase has been synthesized by the high-temperature synthetic route. The structure crystallizes in space group P63/mmc (Pearson symbol hP556) with unit-cell parameters: a = b = 12.9051 (2) Å and c = 57.640 (1) Å. The 556 atoms are distributed over 52 Wyckoff positions in the hexagonal unit cell: seven ordered Mn sites, 37 ordered Zn sites and eight positionally disordered Zn sites. The structure predominantly consists of Frank–Kasper polyhedra (endohedral icosahedra Zn12 and icosioctahedron Zn16) and four distinct types of glue Zn atoms. The structure comprises a 127-atom supercluster (Mn13Zn114), a 38-atom extended Pearce cluster (Mn3Zn35), a 46-atom L-tetrahedron (Mn4Zn42), a Friauf polyhedron (Zn17), a disordered icosahedral cluster (MnZn12) and four glue Zn atoms. Positionally disordered Zn sites around an Mn site can be visualized as the superimposition of three differently oriented Zn12 icosahedra.




so

X-ray crystallographic structure of a novel enantiopure chiral isothiourea with potential applications in enantioselective synthesis

The synthesis of a chiral isothiourea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide, C15H17N2S+·Br−, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of interest was carried out in two high-yielding steps. The hydrobromide salt of the isothiourea of interest provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S...Br− halogen bond.




so

Parameterized absorptive electron scattering factors

In electron diffraction, thermal atomic motion produces incoherent scattering over a relatively wide angular range, which appears as a diffuse background that is usually subtracted from measurements of Bragg spot intensities in structure solution methods. The transfer of electron flux from Bragg spots to diffuse scatter is modelled using complex scattering factors f + if' in the Bloch wave methodology. In a two-beam Einstein model the imaginary `absorptive' scattering factor f' can be obtained by the evaluation of an integral containing f over all possible scattering angles. While more sophisticated models of diffuse scatter are widely used in the electron microscopy community, it is argued in this paper that this simple model is appropriate for current structure solution and refinement methods. The two-beam model is a straightforward numerical calculation, but even this simplistic approach can become time consuming for simulations of materials with large numbers of atoms in the unit cell and/or many incident beam orientations. Here, a parameterized form of f' is provided for 103 elements as neutral, spherical atoms that reduces calculation time considerably.




so

Universal parameters of bulk-solvent masks

The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.




so

The single-atom R1: a new optimization method to solve crystal structures

A crystal structure with N atoms in its unit cell can be solved starting from a model with atoms 1 to j − 1 being located. To locate the next atom j, the method uses a modified definition of the traditional R1 factor where its dependencies on the locations of atoms j + 1 to N are removed. This modified R1 is called the single-atom R1 (sR1), because the locations of atoms 1 to j − 1 in sR1 are the known parameters, and only the location of atom j is unknown. Finding the correct position of atom j translates thus into the optimization of the sR1 function, with respect to its fractional coordinates, xj, yj, zj. Using experimental data, it has been verified that an sR1 has a hole near each missing atom. Further, it has been verified that an algorithm based on sR1, hereby called the sR1 method, can solve crystal structures (with up to 156 non-hydrogen atoms in the unit cell). The strategy to carry out this calculation has also been optimized. The main feature of the sR1 method is that, starting from a single arbitrarily positioned atom, the structure is gradually revealed. With the user's help to delete poorly determined parts of the structure, the sR1 method can build the model to a high final quality. Thus, sR1 is a viable and useful tool for solving crystal structures.




so

Universal simulation of absorption effects for X-ray diffraction in reflection geometry

Analytical calculations of absorption corrections for X-ray powder diffraction experiments on non-ideal samples with surface roughness, porosity or absorption contrasts from multiple phases require complex mathematical models to represent their material distribution. In a computational approach to this problem, a practicable ray-tracing algorithm is formulated which is capable of simulating angle-dependent absorption corrections in reflection geometry for any given rasterized sample model. Single or multiphase systems with arbitrary surface roughness, porosity and spatial distribution of the phases in any combination can be modeled on a voxel grid by assigning respective values to each voxel. The absorption corrections are calculated by tracing the attenuation of X-rays along their individual paths via a modified shear-warp algorithm. The algorithm is presented in detail and the results of simulated absorption corrections on samples with various surface modulations are discussed in the context of published experimental results.




so

High-resolution double vision of the allosteric phosphatase PTP1B

Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.




so

Crystal structure of the RNA-recognition motif of Drosophila melanogaster tRNA (uracil-5-)-methyltransferase homolog A

Human tRNA (uracil-5-)-methyltransferase 2 homolog A (TRMT2A) is the dedicated enzyme for the methylation of uridine 54 in transfer RNA (tRNA). Human TRMT2A has also been described as a modifier of polyglutamine (polyQ)-derived neuronal toxicity. The corresponding human polyQ pathologies include Huntington's disease and constitute a family of devastating neuro­degenerative diseases. A polyQ tract in the corresponding disease-linked protein causes neuronal death and symptoms such as impaired motor function, as well as cognitive impairment. In polyQ disease models, silencing of TRMT2A reduced polyQ-associated cell death and polyQ protein aggregation, suggesting this protein as a valid drug target against this class of disorders. In this paper, the 1.6 Å resolution crystal structure of the RNA-recognition motif (RRM) from Drosophila melanogaster, which is a homolog of human TRMT2A, is described and analysed.




so

Expression, purification and crystallization of the photosensory module of phytochrome B (phyB) from Sorghum bicolor

Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1–Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1–655, 114–655 and 114–458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Å resolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Å resolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands.




so

Structures of Brucella ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein reveal a conformationally flexible peptide-binding cavity

Brucella ovis is an etiologic agent of ovine epididymitis and brucellosis that causes global devastation in sheep, rams, goats, small ruminants and deer. There are no cost-effective methods for the worldwide eradication of ovine brucellosis. B. ovis and other protein targets from various Brucella species are currently in the pipeline for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), with the aim of identifying new therapeutic targets. Furthermore, the wealth of structures generated are effective tools for teaching scientific communication, structural science and biochemistry. One of these structures, B. ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein (BoLBP), is a putative periplasmic amino acid-binding protein. BoLBP shares less than 29% sequence identity with any other structure in the Protein Data Bank. The production, crystallization and high-resolution structures of BoLBP are reported. BoLBP is a prototypical bacterial periplasmic amino acid-binding protein with the characteristic Venus flytrap topology of two globular domains encapsulating a large central cavity containing the peptide-binding region. The central cavity contains small molecules usurped from the crystallization milieu. The reported structures reveal the conformational flexibility of the central cavity in the absence of bound peptides. The structural similarity to other LBPs can be exploited to accelerate drug repurposing.




so

Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources

Fixed targets (`chips') offer efficient, high-throughput microcrystal delivery for serial crystallography at synchrotrons and X-ray free-electron lasers (XFELs). Within this family, sheet-on-sheet (SOS) chips offer noteworthy advantages in cost, adaptability, universality and ease of crystal loading. We describe our latest generation of SOS devices, which are now in active use at both synchrotrons and XFELs.




so

Grazing-incidence small-angle neutron scattering at high pressure (HP-GISANS): a soft matter feasibility study on grafted brush films

We present a demonstration of high-pressure grazing-incidence small-angle neutron scattering for soft matter thin films. The results suggest changes in water reorganization at different pressures.




so

Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation

Rotations of small- and wide-angle X-ray scattering samples during acquisition are shown to give a drastic improvement in the reliability of the characterization of anisotropic precipitates in metallic alloys.




so

Multi-scale and time-resolved structure analysis of relaxor ferroelectric crystals under an electric field

The electric field responses of the average and local lattice strains and polar nanoregions of relaxor ferroelectric PMN-30PT single crystals were revealed by multi-scale and time-resolved X-ray diffraction under DC and AC electric fields.




so

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

AnACor2.0 significantly accelerates the calculation of analytical absorption corrections in long-wavelength crystallography, achieving up to 175× speed improvements. This enhancement is achieved through innovative sampling techniques, bisection and gridding methods, and optimized CUDA implementations, ensuring efficient and accurate results.




so

Modulating phase segregation during spin-casting of fullerene-based polymer solar-cell thin films upon minor addition of a high-boiling co-solvent

Combined 100 ms resolved grazing-incidence small/wide-angle X-ray scattering and optical interferometry reveal that the additive diiodooctane can significantly double the solvent evaporation rate, thereby effectively suppressing the rapid spinodal decomposition process in the early stage of spin-coasting, favouring slow phase segregation kinetics with nucleation and growth.




so

Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction

The position- and time-resolved monitoring of a mechanochemical reaction using synchrotron powder X-ray diffraction revealed a position-independent increase rate of product in the jar of a shaker mill.




so

Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier

This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications.




so

TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing

Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival.




so

High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection

We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD.




so

Effect of thickness and noise on angular correlation analysis from scanning electron nanobeam diffraction of disordered carbon

The impact of sample thickness and experimental noise on angular correlation analysis from scanning electron nanobeam diffraction patterns of disordered carbon are investigated and analyzed regarding the interpretability of the analysis results.




so

Crystal structures and circular dichroism of {2,2'-[(1S,2S)-1,2-di­phenyl­ethane-1,2-diylbis(nitrilophenyl­methanylyl­idene)]diphenolato}nickel(II) and its ethanol solvate

A chiral nickel(II) Schiff base complex derived from 2-hy­droxy­benzo­phenone and (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine shows a λ conformation of the central di­amine chelate ring. The substituents on the C&z-dbnd;N carbon atoms significantly affect the circular dichroism spectra.




so

Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of ethyl 5-amino-2-bromo­isonicotinate

Theoretical and experimental structural studies of the title compound were undertaken using X-ray and DFT methods. The inter­actions present in the crystal were analyzed using Hirshfeld surface and MEP surface analysis. Docking studies with a covid-19 main protease (PDB ID: 6LU7) as the target receptor indicate that the synthesized compound may be a potential candidate for pharmaceutical applications.




so

Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea)

In the title compound, [Cu2(L)2]·2CH2Cl2, the CuII ions coordinate two (S,O)-chelating aroyl­thio­urea moieties of doubly deprotonated furan-2,5-di­carbonyl­bis­(N,N-di­ethyl­thio­urea) (H2L) ligands. The coordination geometry of the metal centers is best described as a flat isosceles trapezoid with a cis arrangement of the donor atoms.




so

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

Analytical absorption corrections are employed in scaling diffraction data for highly absorbing samples, such as those used in long-wavelength crystallography, where empirical corrections pose a challenge. AnACor2.0 is an accelerated software package developed to calculate analytical absorption corrections. It accomplishes this by ray-tracing the paths of diffracted X-rays through a voxelized 3D model of the sample. Due to the computationally intensive nature of ray-tracing, the calculation of analytical absorption corrections for a given sample can be time consuming. Three experimental datasets (insulin at λ = 3.10 Å, thermolysin at λ = 3.53 Å and thaumatin at λ = 4.13 Å) were processed to investigate the effectiveness of the accelerated methods in AnACor2.0. These methods demonstrated a maximum reduction in execution time of up to 175× compared with previous methods. As a result, the absorption factor calculation for the insulin dataset can now be completed in less than 10 s. These acceleration methods combine sampling, which evaluates subsets of crystal voxels, with modifications to standard ray-tracing. The bisection method is used to find path lengths, reducing the complexity from O(n) to O(log2 n). The gridding method involves calculating a regular grid of diffraction paths and using interpolation to find an absorption correction for a specific reflection. Additionally, optimized and specifically designed CUDA implementations for NVIDIA GPUs are utilized to enhance performance. Evaluation of these methods using simulated and real datasets demonstrates that systematic sampling of the 3D model provides consistently accurate results with minimal variance across different sampling ratios. The mean difference of absorption factors from the full calculation (without sampling) is at most 2%. Additionally, the anomalous peak heights of sulfur atoms in the Fourier map show a mean difference of only 1% compared with the full calculation. This research refines and accelerates the process of analytical absorption corrections, introducing innovative sampling and computational techniques that significantly enhance efficiency while maintaining accurate results.




so

Grazing-incidence small-angle neutron scattering at high pressure (HP-GISANS): a soft matter feasibility study on grafted brush films

Grazing-incidence small-angle neutron scattering (GISANS) under pressure (HP-GISANS) at the solid (Si)–liquid (D2O) interface is demonstrated for the pressure-induced lateral morphological characterization of the nanostructure in thin (<100 nm) soft matter films. We demonstrate feasibility by investigating a hydrophobic {poly[(2,2,3,3,4,4,5,5-octafluoro)pentyl methacrylate]} (POFPMA)–hydrophilic {poly[2-(dimethylamino)ethyl methacrylate]} (PDMAEMA) brush mixture of strong incompatibility between the homopolymers, anchored on Si, at T = 45°C for two pressures, P = 1 bar and P = 800 bar. Our GISANS results reveal nanostructural rearrangements with increasing P, underlining P-induced effects in tethered polymer brush layers swollen with bulk solvent.