ath

Generalized log-sum inequalities. (arXiv:2005.03272v1 [math.FA])

In information theory, the so-called log-sum inequality is fundamental and a kind of generalization of the non-nagativity for the relative entropy. In this paper, we show the generalized log-sum inequality for two functions defined for scalars. We also give a new result for commutative matrices. In addition, we demonstrate further results for general non-commutative positive semi-definite matrices.




ath

Pointwise densities of homogeneous Cantor measure and critical values. (arXiv:2005.03269v1 [math.DS])

Let $Nge 2$ and $ hoin(0,1/N^2]$. The homogenous Cantor set $E$ is the self-similar set generated by the iterated function system

[

left{f_i(x)= ho x+frac{i(1- ho)}{N-1}: i=0,1,ldots, N-1 ight}.

]

Let $s=dim_H E$ be the Hausdorff dimension of $E$, and let $mu=mathcal H^s|_E$ be the $s$-dimensional Hausdorff measure restricted to $E$. In this paper we describe, for each $xin E$, the pointwise lower $s$-density $Theta_*^s(mu,x)$ and upper $s$-density $Theta^{*s}(mu, x)$ of $mu$ at $x$. This extends some early results of Feng et al. (2000). Furthermore, we determine two critical values $a_c$ and $b_c$ for the sets

[

E_*(a)=left{xin E: Theta_*^s(mu, x)ge a ight}quad extrm{and}quad E^*(b)=left{xin E: Theta^{*s}(mu, x)le b ight}

] respectively, such that $dim_H E_*(a)>0$ if and only if $a<a_c$, and that $dim_H E^*(b)>0$ if and only if $b>b_c$. We emphasize that both values $a_c$ and $b_c$ are related to the Thue-Morse type sequences, and our strategy to find them relies on ideas from open dynamics and techniques from combinatorics on words.




ath

The Quantum Twistor Bundle. (arXiv:2005.03268v1 [math.QA])

We investigate the quantum twistor bundle constructed as a $U(1)$-quotient of the quantum instanton bundle of Bonechi, Ciccoli and Tarlini. It is an example of a locally trivial noncommutative bundle fulfilling conditions of the framework recently proposed by Brzezi'nski and Szyma'nski. In particular, we give a detailed description of the corresponding $C^*$-algebra of 'continuous functions' on its noncommutative total space. Furthermore, we analyse a different construction of a quantum instanton bundle due to Landi, Pagani and Reina, find a basis of its polynomial algebra and discover an intriguing and unexpected feature of its enveloping $C^*$-algebra.




ath

A Note on Cores and Quasi Relative Interiors in Partially Finite Convex Programming. (arXiv:2005.03265v1 [math.FA])

The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis' framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive.




ath

The Congruence Subgroup Problem for finitely generated Nilpotent Groups. (arXiv:2005.03263v1 [math.GR])

The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G} o Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gamma ight)$? Here $hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gamma ight)=Cleft(Aut(Gamma),Gamma ight)$.

Let $Gamma$ be a finitely generated group, $ar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=ar{Gamma}/tor(ar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)= extrm{Im}(Aut(Gamma) o Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gamma ight)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gamma ight)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$.

In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.




ath

On the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph. (arXiv:2005.03259v1 [math.CO])

In this paper, we give a criterion of the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ is Gorenstein if and only if (1) sizes of maximal cliques are constant (say $n$) and (2) (a) $n=1$, (b) $n=2$ and there is no odd cycle without chord and length at least 7 or (c) $ngeq 3$ and there is no odd cycle without chord and length at least 5.




ath

An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO])

In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$.




ath

Cohomological dimension of ideals defining Veronese subrings. (arXiv:2005.03250v1 [math.AC])

Given a standard graded polynomial ring over a commutative Noetherian ring $A$, we prove that the cohomological dimension and the height of the ideals defining any of its Veronese subrings are equal. This result is due to Ogus when $A$ is a field of characteristic zero, and follows from a result of Peskine and Szpiro when $A$ is a field of positive characteristic; our result applies, for example, when $A$ is the ring of integers.




ath

A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC])

Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories.




ath

Approximate Performance Measures for a Two-Stage Reneging Queue. (arXiv:2005.03239v1 [math.PR])

We study a two-stage reneging queue with Poisson arrivals, exponential services, and two levels of exponential reneging behaviors, extending the popular Erlang A model that assumes a constant reneging rate. We derive approximate analytical formulas representing performance measures for the two-stage queue following the Markov chain decomposition approach. Our formulas not only give accurate results spanning the heavy-traffic to the light-traffic regimes, but also provide insight into capacity decisions.




ath

Packing of spanning mixed arborescences. (arXiv:2005.03218v1 [math.CO])

In this paper, we characterize a mixed graph $F$ which contains $k$ edge and arc disjoint spanning mixed arborescences $F_{1}, ldots, F_{k}$, such that for each $v in V(F)$, the cardinality of ${i in [k]: v ext{ is the root of } F_{i}}$ lies in some prescribed interval. This generalizes both Nash-Williams and Tutte's theorem on spanning tree packing for undirected graphs and the previous characterization on digraphs which was given by Cai [in: Arc-disjoint arborescences of digraphs, J. Graph Theory 7(2) (1983), 235-240] and Frank [in: On disjoint trees and arborescences, Algebraic Methods in Graph Theory, Colloquia Mathematica Soc. J. Bolyai, Vol. 25 (North-Holland, Amsterdam) (1978), 159-169].




ath

Non-relativity of K"ahler manifold and complex space forms. (arXiv:2005.03208v1 [math.CV])

We study the non-relativity for two real analytic K"ahler manifolds and complex space forms of three types. The first one is a K"ahler manifold whose polarization of local K"ahler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the K"ahler potentials are the diastatic functions.




ath

Some local Maximum principles along Ricci Flow. (arXiv:2005.03189v1 [math.DG])

In this note, we establish a local maximum principle along Ricci flow under scaling invariant curvature condition. This unifies the known preservation of nonnegativity results along Ricci flow with unbounded curvature. By combining with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard's localized version of a maximum principle given by R. Bamler, E. Cabezas-Rivas, and B. Wilking on the lower bound of curvature conditions.




ath

The UCT problem for nuclear $C^ast$-algebras. (arXiv:2005.03184v1 [math.OA])

In recent years, a large class of nuclear $C^ast$-algebras have been classified, modulo an assumption on the Universal Coefficient Theorem (UCT). We think this assumption is redundant and propose a strategy for proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap between reduction theorems and examples. While many such bridges are possible, various approximate ideal structures appear quite promising.




ath

New constructions of strongly regular Cayley graphs on abelian groups. (arXiv:2005.03183v1 [math.CO])

In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups as generalizations of a series of known constructions: the construction of covering extended building sets in finite fields by Xia (1992), the product construction of Menon-Hadamard difference sets by Turyn (1984), and the construction of Paley type partial difference sets by Polhill (2010). Then, we obtain new large families of strongly regular Cayley graphs of Latin square type or negative Latin square type.




ath

Solid hulls and cores of classes of weighted entire functions defined in terms of associated weight functions. (arXiv:2005.03167v1 [math.FA])

In the spirit of very recent articles by J. Bonet, W. Lusky and J. Taskinen we are studying the so-called solid hulls and cores of spaces of weighted entire functions when the weights are given in terms of associated weight functions coming from weight sequences. These sequences are required to satisfy certain (standard) growth and regularity properties which are frequently arising and used in the theory of ultradifferentiable and ultraholomorphic function classes (where also the associated weight function plays a prominent role). Thanks to this additional information we are able to see which growth behavior the so-called "Lusky-numbers", arising in the representations of the solid hulls and cores, have to satisfy resp. if such numbers can exist.




ath

Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT])

We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly.




ath

Generalized Cauchy-Kovalevskaya extension and plane wave decompositions in superspace. (arXiv:2005.03160v1 [math-ph])

The aim of this paper is to obtain a generalized CK-extension theorem in superspace for the bi-axial Dirac operator. In the classical commuting case, this result can be written as a power series of Bessel type of certain differential operators acting on a single initial function. In the superspace setting, novel structures appear in the cases of negative even superdimensions. In these cases, the CK-extension depends on two initial functions on which two power series of differential operators act. These series are not only of Bessel type but they give rise to an additional structure in terms of Appell polynomials. This pattern also is present in the structure of the Pizzetti formula, which describes integration over the supersphere in terms of differential operators. We make this relation explicit by studying the decomposition of the generalized CK-extension into plane waves integrated over the supersphere. Moreover, these results are applied to obtain a decomposition of the Cauchy kernel in superspace into monogenic plane waves, which shall be useful for inverting the super Radon transform.




ath

Functional convex order for the scaled McKean-Vlasov processes. (arXiv:2005.03154v1 [math.PR])

We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{tin[0, T]}$ and $Y=(Y_{t})_{tin[0, T]}$ defined by

[egin{cases} dX_{t}=(alpha X_{t}+eta)dt+sigma(t, X_{t}, mu_{t})dB_{t}, quad X_{0}in L^{p}(mathbb{P}),\ dY_{t}=(alpha Y_{t},+eta)dt+ heta(t, Y_{t}, u_{t})dB_{t}, quad Y_{0}in L^{p}(mathbb{P}). end{cases}] If we make the convexity and monotony assumption (only) on $sigma$ and if $sigmaleq heta$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 leq Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ with polynomial growth defined on the path space, we have $mathbb{E}F(X)leqmathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $mathbb{E},Gig(X, (mu_t)_{tin[0, T]}ig)leq mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)$ under appropriate conditions. The symmetric setting is also valid, that is, if $ heta leq sigma$ and $Y_0 leq X_0$ with respect to the convex order, then $mathbb{E},F(Y) leq mathbb{E},F(X)$ and $mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)leq mathbb{E},G(X, (mu_t)_{tin[0, T]})$. The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation.




ath

Quasi-Sure Stochastic Analysis through Aggregation and SLE$_kappa$ Theory. (arXiv:2005.03152v1 [math.PR])

We study SLE$_{kappa}$ theory with elements of Quasi-Sure Stochastic Analysis through Aggregation. Specifically, we show how the latter can be used to construct the SLE$_{kappa}$ traces quasi-surely (i.e. simultaneously for a family of probability measures with certain properties) for $kappa in mathcal{K}cap mathbb{R}_+ setminus ([0, epsilon) cup {8})$, for any $epsilon>0$ with $mathcal{K} subset mathbb{R}_{+}$ a nontrivial compact interval, i.e. for all $kappa$ that are not in a neighborhood of zero and are different from $8$. As a by-product of the analysis, we show in this language a version of the continuity in $kappa$ of the SLE$_{kappa}$ traces for all $kappa$ in compact intervals as above.




ath

Hydrodynamic limit of Robinson-Schensted-Knuth algorithm. (arXiv:2005.03147v1 [math.CO])

We investigate the evolution in time of the position of a fixed number inthe insertion tableau when the Robinson-Schensted-Knuth algorithm is applied to asequence of random numbers. When the length of the sequence tends to infinity, a typical trajectory after scaling converges uniformly in probability to some deterministiccurve.




ath

Sharp p-bounds for maximal operators on finite graphs. (arXiv:2005.03146v1 [math.CA])

Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We found the optimal value $C_{G,p}$ such that the inequality $$Var_{p}(M_{G}f)le C_{G,p}Var_{p}(f)$$ holds for every every $f:V o mathbb{R},$ where $Var_p$ stands for the $p$-variation, when: (i)$G=K_n$ (complete graph) and $pin [frac{ln(4)}{ln(6)},infty)$ or $G=K_4$ and $pin (0,infty)$;(ii) $G=S_n$(star graph) and $1ge pge frac{1}{2}$; $pin (0,frac{1}{2})$ and $nge C(p)<infty$ or $G=S_3$ and $pin (1,infty).$ We also found the optimal value $L_{G,2}$ such that the inequality $$|M_{G}f|_2le L_{G,2}|f|_2$$ holds for every $f:V o mathbb{R}$, when: (i)$G=K_n$ and $nge 3$;(ii)$G=S_n$ and $nge 3.$




ath

Anti-symplectic involutions on rational symplectic 4-manifolds. (arXiv:2005.03142v1 [math.SG])

This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere.




ath

On planar graphs of uniform polynomial growth. (arXiv:2005.03139v1 [math.PR])

Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many examples of such graphs exhibit similar geometric and spectral properties, and it has been conjectured that this is necessary. We present a family of counterexamples. In particular, we show that for every rational d > 2, there is a planar graph with uniform polynomial growth of degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011).

By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular random graph. We also give examples of unimodular random planar graphs of uniform polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform polynomial growth of every rational degree d > 2 for which the speed exponent of the walk is larger than 1/d, and in which the complements of all balls are connected. This resolves negatively two questions of Benjamini and Papasoglou (2011).




ath

Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS])

We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions.




ath

On solving quadratic congruences. (arXiv:2005.03129v1 [math.NT])

The paper proposes a polynomial formula for solution quadratic congruences in $mathbb{Z}_p$. This formula gives the correct answer for quadratic residue and zeroes for quadratic nonresidue. The general form of the formula for $p=3 ; m{mod},4$, $p=5 ; m{mod},8$ and for $p=9 ; m{mod},16$ are suggested.




ath

Categorifying Hecke algebras at prime roots of unity, part I. (arXiv:2005.03128v1 [math.RT])

We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel.

Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable.




ath

Continuation of relative equilibria in the $n$--body problem to spaces of constant curvature. (arXiv:2005.03114v1 [math.DS])

We prove that all non-degenerate relative equilibria of the planar Newtonian $n$--body problem can be continued to spaces of constant curvature $kappa$, positive or negative, for small enough values of this parameter. We also compute the extension of some classical relative equilibria to curved spaces using numerical continuation. In particular, we extend Lagrange's triangle configuration with different masses to both positive and negative curvature spaces.




ath

On the notion of weak isometry for finite metric spaces. (arXiv:2005.03109v1 [math.MG])

Finite metric spaces are the object of study in many data analysis problems. We examine the concept of weak isometry between finite metric spaces, in order to analyse properties of the spaces that are invariant under strictly increasing rescaling of the distance functions. In this paper, we analyse some of the possible complete and incomplete invariants for weak isometry and we introduce a dissimilarity measure that asses how far two spaces are from being weakly isometric. Furthermore, we compare these ideas with the theory of persistent homology, to study how the two are related.




ath

A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level. (arXiv:2005.03108v1 [math.DS])

In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mather's Theory.




ath

On the Brown-Peterson cohomology of $BPU_n$ in lower dimensions and the Thom map. (arXiv:2005.03107v1 [math.AT])

For an odd prime $p$, we determined the Brown-Peterson cohomology of $BPU_n$ in dimensions $-(2p-2)leq ileq 2p+2$, where $BPU_n$ is the classifying space of the projective unitary group $PU_n$. We construct a family of $p$-torsion classes $eta_{p,k}in BP^{2p^{k+1}+2}(BPU_n)$ for $p|n$ and $kgeq 0$ and identify their images under the Thom map with well understood cohomology classes in $H^*(BPU_n;mathbb{Z}_{(p)})$.




ath

Irreducible representations of Braid Group $B_n$ of dimension $n+1$. (arXiv:2005.03105v1 [math.GR])

We prove that there are no irreducible representations of $B_n$ of dimension $n+1$ for $ngeq 10.$




ath

On the Boundary Harnack Principle in Holder domains. (arXiv:2005.03079v1 [math.AP])

We investigate the Boundary Harnack Principle in H"older domains of exponent $alpha>0$ by the analytical method developed in our previous work "A short proof of Boundary Harnack Principle".




ath

Cliques with many colors in triple systems. (arXiv:2005.03078v1 [math.CO])

ErdH{o}s and Hajnal constructed a 4-coloring of the triples of an $N$-element set such that every $n$-element subset contains 2 triples with distinct colors, and $N$ is double exponential in $n$. Conlon, Fox and R"odl asked whether there is some integer $qge 3$ and a $q$-coloring of the triples of an $N$-element set such that every $n$-element subset has 3 triples with distinct colors, and $N$ is double exponential in $n$. We make the first nontrivial progress on this problem by providing a $q$-coloring with this property for all $qgeq 9$, where $N$ is exponential in $n^{2+cq}$ and $c>0$ is an absolute constant.




ath

Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities. (arXiv:2005.03073v1 [math.AT])

In this paper we study manifolds $M_{Sigma}$ with fibered singularities, more specifically, a relevant space $Riem^{psc}(X_{Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $Riem^{psc}(X_{Sigma})$ is homotopy invariant under certain surgeries on $M_{Sigma}$.




ath

A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA])

Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes.




ath

Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG])

We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor.




ath

Quantization of Lax integrable systems and Conformal Field Theory. (arXiv:2005.03053v1 [math-ph])

We present the correspondence between Lax integrable systems with spectral parameter on a Riemann surface, and Conformal Field Theories, in quite general set-up suggested earlier by the author. This correspondence turns out to give a prequantization of the integrable systems in question.




ath

General Asymptotic Regional Gradient Observer. (arXiv:2005.03009v1 [math.OC])

The main purpose of this paper is to study and characterize the existing of general asymptotic regional gradient observer which observe the current gradient state of the original system in connection with gradient strategic sensors. Thus, we give an approach based to Luenberger observer theory of linear distributed parameter systems which is enabled to determinate asymptotically regional gradient estimator of current gradient system state. More precisely, under which condition the notion of asymptotic regional gradient observability can be achieved. Furthermore, we show that the measurement structures allows the existence of general asymptotic regional gradient observer and we give a sufficient condition for such asymptotic regional gradient observer in general case. We also show that, there exists a dynamical system for the considered system is not general asymptotic gradient observer in the usual sense, but it may be general asymptotic regional gradient observer. Then, for this purpose we present various results related to different types of sensor structures, domains and boundary conditions in two dimensional distributed diffusion systems




ath

Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED)

In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance.




ath

On the list recoverability of randomly punctured codes. (arXiv:2005.02478v2 [math.CO] UPDATED)

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.




ath

Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED)

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.




ath

Subgraph densities in a surface. (arXiv:2003.13777v2 [math.CO] UPDATED)

Given a fixed graph $H$ that embeds in a surface $Sigma$, what is the maximum number of copies of $H$ in an $n$-vertex graph $G$ that embeds in $Sigma$? We show that the answer is $Theta(n^{f(H)})$, where $f(H)$ is a graph invariant called the `flap-number' of $H$, which is independent of $Sigma$. This simultaneously answers two open problems posed by Eppstein (1993). When $H$ is a complete graph we give more precise answers.




ath

Mathematical Formulae in Wikimedia Projects 2020. (arXiv:2003.09417v2 [cs.DL] UPDATED)

This poster summarizes our contributions to Wikimedia's processing pipeline for mathematical formulae. We describe how we have supported the transition from rendering formulae as course-grained PNG images in 2001 to providing modern semantically enriched language-independent MathML formulae in 2020. Additionally, we describe our plans to improve the accessibility and discoverability of mathematical knowledge in Wikimedia projects further.




ath

Safe non-smooth black-box optimization with application to policy search. (arXiv:1912.09466v3 [math.OC] UPDATED)

For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem $min f^0(x)$ subject to $f^i(x)leq 0,~ i = 1,ldots, m$, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.




ath

A predictive path-following controller for multi-steered articulated vehicles. (arXiv:1912.06259v5 [math.OC] UPDATED)

Stabilizing multi-steered articulated vehicles in backward motion is a complex task for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a jack-knife state. In this work, a model predictive path-following controller is proposed enabling automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like tractor and an arbitrary number of trailers with passive or active steering. The proposed path-following controller is tailored to follow nominal paths that contains full state and control-input information, and is designed to satisfy various physical constraints on the vehicle states as well as saturations and rate limitations on the tractor's curvature and the trailer steering angles. The performance of the proposed model predictive path-following controller is evaluated in a set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has steerable wheels.




ath

Numerical study on the effect of geometric approximation error in the numerical solution of PDEs using a high-order curvilinear mesh. (arXiv:1908.09917v2 [math.NA] UPDATED)

When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.




ath

A Shift Selection Strategy for Parallel Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation. (arXiv:1908.06043v2 [math.NA] UPDATED)

The central importance of large scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which will be explored in future work.




ath

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




ath

Fast Cross-validation in Harmonic Approximation. (arXiv:1903.10206v3 [math.NA] UPDATED)

Finding a good regularization parameter for Tikhonov regularization problems is a though yet often asked question. One approach is to use leave-one-out cross-validation scores to indicate the goodness of fit. This utilizes only the noisy function values but, on the downside, comes with a high computational cost. In this paper we present a general approach to shift the main computations from the function in question to the node distribution and, making use of FFT and FFT-like algorithms, even reduce this cost tremendously to the cost of the Tikhonov regularization problem itself. We apply this technique in different settings on the torus, the unit interval, and the two-dimensional sphere. Given that the sampling points satisfy a quadrature rule our algorithm computes the cross-validations scores in floating-point precision. In the cases of arbitrarily scattered nodes we propose an approximating algorithm with the same complexity. Numerical experiments indicate the applicability of our algorithms.