ath

Gluing curves of genus 1 and 2 along their 2-torsion. (arXiv:2005.03587v1 [math.AG])

Let $X$ (resp. $Y$) be a curve of genus 1 (resp. 2) over a base field $k$ whose characteristic does not equal 2. We give criteria for the existence of a curve $Z$ over $k$ whose Jacobian is up to twist (2,2,2)-isogenous to the products of the Jacobians of $X$ and $Y$. Moreover, we give algorithms to construct the curve $Z$ once equations for $X$ and $Y$ are given. The first of these involves the use of hyperplane sections of the Kummer variety of $Y$ whose desingularization is isomorphic to $X$, whereas the second is based on interpolation methods involving numerical results over $mathbb{C}$ that are proved to be correct over general fields a posteriori. As an application, we find a twist of a Jacobian over $mathbb{Q}$ that admits a rational 70-torsion point.




ath

Steiner symmetry in the minimization of the principal positive eigenvalue of an eigenvalue problem with indefinite weight. (arXiv:2005.03581v1 [math.AP])

In cite{CC} the authors, investigating a model of population dynamics, find the following result. Let $Omegasubset mathbb{R}^N$, $Ngeq 1$, be a bounded smooth domain. The weighted eigenvalue problem $-Delta u =lambda m u $ in $Omega$ under homogeneous Dirichlet boundary conditions, where $lambda in mathbb{R}$ and $min L^infty(Omega)$, is considered. The authors prove the existence of minimizers $check m$ of the principal positive eigenvalue $lambda_1(m)$ when $m$ varies in a class $mathcal{M}$ of functions where average, maximum, and minimum values are given. A similar result is obtained in cite{CCP} when $m$ is in the class $mathcal{G}(m_0)$ of rearrangements of a fixed $m_0in L^infty(Omega)$. In our work we establish that, if $Omega$ is Steiner symmetric, then every minimizer in cite{CC,CCP} inherits the same kind of symmetry.




ath

On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph])

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.




ath

Graded 2-generated axial algebras. (arXiv:2005.03577v1 [math.RA])

Axial algebras are non-associative algebras generated by semisimple idempotents whose adjoint actions obey a fusion law. Axial algebras that are generated by two such idempotents play a crucial role in the theory. We classify all primitive 2-generated axial algebras whose fusion laws have two eigenvalues and all graded primitive 2-generated axial algebras whose fusion laws have three eigenvalues. This represents a significant broadening in our understanding of axial algebras.




ath

Minimal acceleration for the multi-dimensional isentropic Euler equations. (arXiv:2005.03570v1 [math.AP])

Among all dissipative solutions of the multi-dimensional isentropic Euler equations there exists at least one that minimizes the acceleration, which implies that the solution is as close to being a weak solution as possible. The argument is based on a suitable selection procedure.




ath

Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC])

Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring.




ath

Phase Transitions for one-dimensional Lorenz-like expanding Maps. (arXiv:2005.03558v1 [math.DS])

Given an one-dimensional Lorenz-like expanding map we prove that the conditionlinebreak $P_{top}(phi,partial mathcal{P},ell)<P_{top}(phi,ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $phi:[0,1]longrightarrow mathbb{R}$. We apply this to prove that quasi-H"older-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not H"older and neither weak H"older continuous potentials for which we observe phase transitions. Indeed, this class includes all H"older and weak-H"older continuous potentials and form an open and [2].




ath

Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA])

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.




ath

Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG])

Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.




ath

Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients. (arXiv:2005.03516v1 [math.CA])

In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$.




ath

Twisted quadrics and algebraic submanifolds in R^n. (arXiv:2005.03509v1 [math-ph])

We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of [Aschieri et al.,Class. Quantum Gravity 23 (2006), 1883], whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfel'd twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2,AdS_2$].




ath

Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA])

We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group.




ath

Toric Sasaki-Einstein metrics with conical singularities. (arXiv:2005.03502v1 [math.DG])

We show that any toric K"ahler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics.




ath

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




ath

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




ath

Solving equations in dense Sidon sets. (arXiv:2005.03484v1 [math.CO])

We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.




ath

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




ath

Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG])

We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.




ath

$k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO])

Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable.

In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.




ath

On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA])

We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers.




ath

A note on Penner's cocycle on the fatgraph complex. (arXiv:2005.03414v1 [math.GT])

We study a 1-cocycle on the fatgraph complex of a punctured surface introduced by Penner. We present an explicit cobounding cochain for this cocycle, whose formula involves a summation over trivalent vertices of a trivalent fatgraph spine. In a similar fashion, we express the symplectic form of the underlying surface of a given fatgraph spine.




ath

Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT])

In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind.




ath

Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA])

In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.




ath

A closer look at the non-Hopfianness of $BS(2,3)$. (arXiv:2005.03396v1 [math.GR])

The Baumslag Solitar group $BS(2,3)$, is a so-called non-Hopfian group, meaning that it has an epimorphism $phi$ onto itself, that is not injective. In particular this is equivalent to saying that $BS(2,3)$ has a quotient that is isomorphic to itself. As a consequence the Cayley graph of $BS(2,3)$ has a quotient that is isomorphic to itself up to change of generators. We describe this quotient on the graph-level and take a closer look at the most common epimorphism $phi$. We show its kernel is a free group of infinite rank with an explicit set of generators.




ath

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.




ath

Maximum of Exponential Random Variables, Hurwitz's Zeta Function, and the Partition Function. (arXiv:2005.03392v1 [math.PR])

A natural problem in the context of the coupon collector's problem is the behavior of the maximum of independent geometrically distributed random variables (with distinct parameters). This question has been addressed by Brennan et al. (British J. of Math. & CS. 8 (2015), 330-336). Here we provide explicit asymptotic expressions for the moments of that maximum, as well as of the maximum of exponential random variables with corresponding parameters. We also deal with the probability of each of the variables being the maximal one.

The calculations lead to expressions involving Hurwitz's zeta function at certain special points. We find here explicitly the values of the function at these points. Also, the distribution function of the maximum we deal with is closely related to the generating function of the partition function. Thus, our results (and proofs) rely on classical results pertaining to the partition function.




ath

Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO])

We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal.




ath

Filtered expansions in general relativity II. (arXiv:2005.03390v1 [math-ph])

This is the second of two papers in which we construct formal power series solutions in external parameters to the vacuum Einstein equations, implementing one bounce for the Belinskii-Khalatnikov-Lifshitz (BKL) proposal for spatially inhomogeneous spacetimes. Here we show that spatially inhomogeneous perturbations of spatially homogeneous elements are unobstructed. A spectral sequence for a filtered complex, and a homological contraction based on gauge-fixing, are used to do this.




ath

Clear elements and clear rings. (arXiv:2005.03387v1 [math.AC])

An element in a ring $R$ is called clear if it is the sum of unit-regular element and unit. An associative ring is clear if every its element is clear. In this paper we defined clear rings and extended many results to wider class. Finally, we proved that a commutative B'ezout domain is an elementary divisor ring if and only if every full matrix order 2 over it is nontrivial clear.




ath

A reducibility problem for even Unitary groups: The depth zero case. (arXiv:2005.03386v1 [math.RT])

We study a problem concerning parabolic induction in certain p-adic unitary groups. More precisely, for $E/F$ a quadratic extension of p-adic fields the associated unitary group $G=mathrm{U}(n,n)$ contains a parabolic subgroup $P$ with Levi component $L$ isomorphic to $mathrm{GL}_n(E)$. Let $pi$ be an irreducible supercuspidal representation of $L$ of depth zero. We use Hecke algebra methods to determine when the parabolically induced representation $iota_P^G pi$ is reducible.




ath

A theory of stacks with twisted fields and resolution of moduli of genus two stable maps. (arXiv:2005.03384v1 [math.AG])

We construct a smooth moduli stack of tuples consisting of genus two nodal curves, line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable maps to projective spaces. The construction of this new moduli is based on systematical application of the theory of stacks with twisted fields (STF), which has its prototype appeared in arXiv:1906.10527 and arXiv:1201.2427 and is fully developed in this article. The results of this article are the second step of a series of works toward the resolutions of the moduli of stable maps of higher genera.




ath

A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz. (arXiv:2005.03377v1 [math.AP])

In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations. It is proved that the solution $(u,b)$ becomes regular provided that one velocity and one current density component of the solution satisfy% egin{equation} u_{3}in L^{frac{30alpha }{7alpha -45}}left( 0,T;L^{alpha ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{45}{7}% leq alpha leq infty , label{eq01} end{equation}% and egin{equation} j_{3}in L^{frac{2eta }{2eta -3}}left( 0,T;L^{eta ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{3}{2}leq eta leq infty , label{eq02} end{equation}% which generalize some known results.




ath

Type space functors and interpretations in positive logic. (arXiv:2005.03376v1 [math.LO])

We construct a 2-equivalence $mathfrak{CohTheory}^ ext{op} simeq mathfrak{TypeSpaceFunc}$. Here $mathfrak{CohTheory}$ is the 2-category of positive theories and $mathfrak{TypeSpaceFunc}$ is the 2-category of type space functors. We give a precise definition of interpretations for positive logic, which will be the 1-cells in $mathfrak{CohTheory}$. The 2-cells are definable homomorphisms. The 2-equivalence restricts to a duality of categories, making precise the philosophy that a theory is `the same' as the collection of its type spaces (i.e. its type space functor).

In characterising those functors that arise as type space functors, we find that they are specific instances of (coherent) hyperdoctrines. This connects two different schools of thought on the logical structure of a theory.

The key ingredient, the Deligne completeness theorem, arises from topos theory, where positive theories have been studied under the name of coherent theories.




ath

Constructions of new matroids and designs over GF(q). (arXiv:2005.03369v1 [math.CO])

A perfect matroid design (PMD) is a matroid whose flats of the same rank all have the same size. In this paper we introduce the q-analogue of a PMD and its properties. In order to do that, we first establish new cryptomorphic definitions for q-matroids. We show that q-Steiner systems are examples of q-PMD's and we use this matroid structure to construct subspace designs from q-Steiner systems. We apply this construction to S(2, 13, 3; q) Steiner systems and hence establish the existence of subspace designs with previously unknown parameters.




ath

A Schur-Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem. (arXiv:2005.03365v1 [math.CA])

The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is based on Schur analysis methods. More precisely, we use two interrelated versions of Schur-type algorithms, namely an algebraic one and a function-theoretic one. The algebraic version, worked out in our former paper arXiv:1908.05115, is an algorithm which is applied to finite or infinite sequences of complex matrices. The construction and discussion of the function-theoretic version is a central theme of this paper. This leads us to a complete description via Stieltjes transform of the solution set of the moment problem under consideration. Furthermore, we discuss special solutions in detail.




ath

Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC])

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.




ath

Gaussian invariant measures and stationary solutions of 2D Primitive Equations. (arXiv:2005.03339v1 [math.PR])

We introduce a Gaussian measure formally preserved by the 2-dimensional Primitive Equations driven by additive Gaussian noise. Under such measure the stochastic equations under consideration are singular: we propose a solution theory based on the techniques developed by Gubinelli and Jara in cite{GuJa13} for a hyperviscous version of the equations.




ath

Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP])

We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian.




ath

Maximum dissociation sets in subcubic trees. (arXiv:2005.03335v1 [math.CO])

A subset of vertices in a graph $G$ is called a maximum dissociation set if it induces a subgraph with vertex degree at most 1 and the subset has maximum cardinality. The dissociation number of $G$, denoted by $psi(G)$, is the cardinality of a maximum dissociation set. A subcubic tree is a tree of maximum degree at most 3. In this paper, we give the lower and upper bounds on the dissociation number in a subcubic tree of order $n$ and show that the number of maximum dissociation sets of a subcubic tree of order $n$ and dissociation number $psi$ is at most $1.466^{4n-5psi+2}$.




ath

A remark on the Laplacian flow and the modified Laplacian co-flow in G2-Geometry. (arXiv:2005.03332v1 [math.DG])

We observe that the DeTurck Laplacian flow of G2-structures introduced by Bryant and Xu as a gauge fixing of the Laplacian flow can be regarded as a flow of G2-structures (not necessarily closed) which fits in the general framework introduced by Hamilton in [4].




ath

Asymptotics of PDE in random environment by paracontrolled calculus. (arXiv:2005.03326v1 [math.PR])

We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.




ath

On the Incomparability of Systems of Sets of Lengths. (arXiv:2005.03316v1 [math.AC])

Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor. We consider the system $mathcal L (H)$ of all sets of lengths of $H$ and study when $mathcal L (H)$ contains or is contained in a system $mathcal L (H')$ of a Krull monoid $H'$ with finite class group $G'$, prime divisors in all classes and Davenport constant $mathsf D (G')=mathsf D (G)$. Among others, we show that if $G$ is either cyclic of order $m ge 7$ or an elementary $2$-group of rank $m-1 ge 6$, and $G'$ is any group which is non-isomorphic to $G$ but with Davenport constant $mathsf D (G')=mathsf D (G)$, then the systems $mathcal L (H)$ and $mathcal L (H')$ are incomparable.




ath

Linear independence of generalized Poincar'{e} series for anti-de Sitter $3$-manifolds. (arXiv:2005.03308v1 [math.SP])

Let $Gamma$ be a discrete group acting properly discontinuously and isometrically on the three-dimensional anti-de Sitter space $mathrm{AdS}^{3}$, and $square$ the Laplacian which is a second-order hyperbolic differential operator. We study linear independence of a family of generalized Poincar'{e} series introduced by Kassel-Kobayashi [Adv. Math. 2016], which are defined by the $Gamma$-average of certain eigenfunctions on $mathrm{AdS}^{3}$. We prove that the multiplicities of $L^{2}$-eigenvalues of the hyperbolic Laplacian $square$ on $Gammaackslashmathrm{AdS}^{3}$ are unbounded when $Gamma$ is finitely generated. Moreover, we prove that the multiplicities of extit{stable $L^{2}$-eigenvalues} for compact anti-de Sitter $3$-manifolds are unbounded.




ath

Augmented Valuation and Minimal Pair. (arXiv:2005.03298v1 [math.AC])

Let $(K, u)$ be a valued field, the notions of emph{augmented valuation}, of emph{limit augmented valuation} and of emph{admissible family} of valuations enable to give a description of any valuation $mu$ of $K [x]$ extending $ u$. In the case where the field $K$ is algebraically closed, this description is particularly simple and we can reduce it to the notions of emph{minimal pair} and emph{pseudo-convergent family}. Let $(K, u )$ be a henselian valued field and $ar u$ the unique extension of $ u$ to the algebraic closure $ar K$ of $K$ and let $mu$ be a valuation of $ K [x]$ extending $ u$, we study the extensions $armu$ from $mu$ to $ar K [x]$ and we give a description of the valuations $armu_i$ of $ar K [x]$ which are the extensions of the valuations $mu_i$ belonging to the admissible family associated with $mu$.




ath

Fourier transformation and stability of differential equation on $L^1(Bbb{R})$. (arXiv:2005.03296v1 [math.FA])

In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(Bbb{R})$ which is infinitely differentiable in $Bbb{R} setminus {0}$. Moreover the Hyers-Ulam stability of such equations on $L^1(Bbb{R})$ is investigated.




ath

An alternate definition of the Parry measure. (arXiv:2005.03282v1 [math.DS])

In this paper, we give an alternate definition of the well-known Parry measure on an aperiodic subshift of finite type using correlation between the forbidden words. We use the concept of the local escape rate to obtain this definition. We also compute Perron eigenvectors corresponding to the Perron root of the associated adjacency matrix.




ath

Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schr"odinger term. (arXiv:2005.03281v1 [math.AP])

Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schr"odinger term: $-Delta_p u + mathbb{V}|u|^{p-2}u$ with bound constraints $psi_1 le u le psi_2$ in non-smooth domains. This problem has its own interest in mathematics, engineering, physics and other branches of science. Our approach makes a novel connection between the study of Calder'on-Zygmund theory for nonlinear Schr"odinger type equations and variational inequalities for double obstacle problems.




ath

On a kind of self-similar sets with complete overlaps. (arXiv:2005.03280v1 [math.DS])

Let $E$ be the self-similar set generated by the {it iterated function system} {[ f_0(x)=frac{x}{eta},quad f_1(x)=frac{x+1}{eta}, quad f_{eta+1}=frac{x+eta+1}{eta} ]}with $etage 3$. {Then} $E$ is a self-similar set with complete {overlaps}, i.e., $f_{0}circ f_{eta+1}=f_{1}circ f_1$, but $E$ is not totally self-similar.

We investigate all its generating iterated function systems, give the spectrum of $E$, and determine the Hausdorff dimension and Hausdorff measure of $E$ and of the sets which contain all points in $E$ having finite or infinite different triadic codings.




ath

Smooth non-projective equivariant completions of affine spaces. (arXiv:2005.03277v1 [math.AG])

In this paper we construct an equivariant embedding of the affine space $mathbb{A}^n$ with the translation group action into a complete non-projective algebraic variety $X$ for all $n geq 3$. The theory of toric varieties is used as the main tool for this construction. In the case of $n = 3$ we describe the orbit structure on the variety $X$.




ath

The conjecture of Erd"{o}s--Straus is true for every $nequiv 13 extrm{ mod }24$. (arXiv:2005.03273v1 [math.NT])

In this short note we give a proof of the famous conjecture of Erd"{o}s-Straus for the case $nequiv13 extrm{ mod } 24.$ The Erd"{o}s--Straus conjecture states that the equation $frac{4}{n}=frac{1}{x}+frac{1}{y}+frac{1}{z}$ has positive integer solutions $x,y,z$ for every $ngeq 2$. It is open for $nequiv 1 extrm{ mod } 12$. Indeed, in all of the other cases the solutions are always easy to find. We prove that the conjecture is true for every $nequiv 13 extrm{ mod } 24$. Therefore, to solve it completely, it remains to find solutions for every $nequiv 1 extrm{ mod } 24$.