ipo Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses By feedproxy.google.com Published On :: 2020-04-15 Sonia PodvinApr 15, 2020; 0:RA120.002079v1-mcp.RA120.002079Research Full Article
ipo Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity By feedproxy.google.com Published On :: 2020-04-01 Mona RadwanApr 1, 2020; 19:640-654Research Full Article
ipo Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling By feedproxy.google.com Published On :: 2020-04-06 Samuel W EntwisleApr 6, 2020; 0:RA120.001946v2-mcp.RA120.001946Research Full Article
ipo Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly. Full Article
ipo The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
ipo ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain By feedproxy.google.com Published On :: 2020-04-23 Kristian K KristensenApr 23, 2020; 0:jlr.ILR120000780v1-jlr.ILR120000780Images in Lipid Research Full Article
ipo A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time By feedproxy.google.com Published On :: 2020-04-01 Shwetha K. ShettyApr 1, 2020; 61:546-559Methods Full Article
ipo The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes By feedproxy.google.com Published On :: 2020-04-02 Haibo JiangApr 2, 2020; 0:jlr.ILR120000783v1-jlr.ILR120000783Images in Lipid Research Full Article
ipo Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. By feedproxy.google.com Published On :: 2020-04-15 Björn MorénApr 15, 2020; 0:jlr.ILR120000808v1-jlr.ILR120000808Images in Lipid Research Full Article
ipo GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells By feedproxy.google.com Published On :: 2020-05-01 Xia MengMay 1, 2020; 61:591-591Images in Lipid Research Full Article
ipo Episode 51 - The Internet of Sick Burns (IoSB) Snapchat IPO, Android Wear 2.0 and Apple in India By play.acast.com Published On :: Fri, 10 Feb 2017 11:20:46 GMT Techworld Editor Charlotte Jee conducts the tech orchestra this week, trying to get a tune out of this cold, creaking week. Online Editor at Computerworld UK Scott Carey lets us know all about Snapchat's upcoming IPO, billions of dollars, and the gang comes to the realisation they'll perhaps never understand what it's for. Then Senior Staff Writer at PC Advisor Henry Burrell recaps on Google and LG's launch of Android Wear 2.0 and ask - frankly - is it a big deal? Finally Acting Editor at Macworld UK David Price discusses Apple's rumoured plans to move manufacturing to India, which inevitably moves us on to Tech Trumps. See acast.com/privacy for privacy and opt-out information. Full Article tech technology snapchat pod podcast IPO Google Android Wear 2.0 smartwatches Apple Donald Trump
ipo The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-02T09:30:25-07:00 Full Article
ipo Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-15T13:30:25-07:00 Full Article
ipo ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-23T08:30:29-07:00 Full Article
ipo WITHDRAWN: Extraordinary apolipoprotein oxidation in chronic hepatitis C and liver cirrhosis [13. Other] By feedproxy.google.com Published On :: 2007-09-05T09:37:40-07:00 Withdrawn by Author. Full Article
ipo Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling [Research] By feedproxy.google.com Published On :: 2020-04-06T05:35:14-07:00 Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR. Full Article
ipo Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses [Research] By feedproxy.google.com Published On :: 2020-04-15T09:35:42-07:00 Accumulation and propagation of hyperphosphorylated tau (p-tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in (1) proteins uniquely present only in mTau, and not control exosomes, (2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and (3) shared proteins which were significantly up-regulated or down-regulated in mTau compared to control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or down-regulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-tau neuropathology in mouse brain. Full Article
ipo Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH [Methods] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 APOA5 is a low-abundance exchangeable apolipoprotein that plays critical roles in human triglyceride (TG) metabolism. Indeed, aberrations in the plasma concentration or structure of APOA5 are linked to hypertriglyceridemia, hyperchylomicronemia, myocardial infarction risk, obesity, and coronary artery disease. While it has been successfully produced at low yield in bacteria, the resulting protein had limitations for structure-function studies due to its low solubility under physiological buffer conditions. We hypothesized that the yield and solubility of recombinant APOA5 could be increased by: i) engineering a fusion protein construct in a codon optimized expression vector, ii) optimizing an efficient refolding protocol, and iii) screening buffer systems at physiological pH. The result was a high-yield (25 mg/l) bacterial expression system that produces lipid-free APOA5 soluble at concentrations of up to 10 mg/ml at a pH of 7.8 in bicarbonate buffers. Physical characterization of lipid-free APOA5 indicated that it exists as an array of multimers in solution, and far UV circular dichroism analyses show differences in total α-helicity between acidic and neutral pH buffering conditions. The protein was functional in that it bound and emulsified multilamellar dimyristoyl-phosphatidylcholine vesicles and could inhibit postprandial plasma TG accumulation when injected into C57BL/6J mice orally gavaged with Intralipid. Full Article
ipo Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.. Full Article
ipo Separation of postprandial lipoproteins: improved purification of chylomicrons using an ApoB100 immunoaffinity method [Methods] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Elevated levels of triglyceride-rich lipoproteins (TRLs), both fasting and postprandial, are associated with increased risk for atherosclerosis. However, guidelines for treatment are defined solely by fasting lipid levels, even though postprandial lipids may be more informative. In the postprandial state, circulating lipids consist of dietary fat transported from the intestine in chylomicrons (CMs; containing ApoB48) and fat transported from the liver in VLDL (containing ApoB100). Research into the roles of endogenous versus dietary fat has been hindered because of the difficulty in separating these particles by ultracentrifugation. CM fractions have considerable contamination from VLDL (purity, 10%). To separate CMs from VLDL, we produced polyclonal antibodies against ApoB100 and generated immunoaffinity columns. TRLs isolated by ultracentrifugation of plasma were applied to these columns, and highly purified CMs were collected (purity, 90–94%). Overall eight healthy unmedicated adult volunteers (BMI, 27.2 ± 1.4 kg/m2; fasting triacylglycerol, 102.6 ± 19.5 mg/dl) participated in a feeding study, which contained an oral stable-isotope tracer (1-13C acetate). We then used this technique on plasma samples freshly collected during an 8 h human feeding study from a subset of four subjects. We analyzed fractionated lipoproteins by Western blot, isolated and derivatized triacylglycerols, and calculated fractional de novo lipogenesis. The results demonstrated effective separation of postprandial lipoproteins and substantially improved purity compared with ultracentrifugation protocols, using the immunoaffinity method. This method can be used to better delineate the role of dietary sugar and fat on postprandial lipids in cardiovascular risk and explore the potential role of CM remnants in atherosclerosis. Full Article
ipo High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer’s disease pathology. Full Article
ipo Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl–prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl–prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ~4 months of age, both male and female Zmpste24–/– mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl–prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24–knockout mice. To boost farnesyl–prelamin A levels, we bred in the "prelamin A–only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl–prelamin A, reduces adipose tissue stores, but only modestly and only in male mice. Full Article
ipo Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening. Full Article
ipo A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time [Methods] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex. Full Article
ipo GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
ipo Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-03-31T14:12:19-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
ipo Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-04-20T08:51:08-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
ipo Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure. Full Article
ipo Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged. Full Article
ipo Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Hepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription. For regulation of lipogenic gene transcription, various known lipogenic transcription factors, such as USF1, ChREBP, and LXR, interact with and recruit specific histone modifiers, directing specificity toward lipogenesis. Alteration or impairment of the functions of these histone modifiers can lead to dysregulation of lipogenesis and thus hepatosteatosis leading to insulin resistance and type 2 diabetes. Full Article
ipo Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders. Full Article
ipo The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
ipo Visceral Fat Adipokine Secretion Is Associated With Systemic Inflammation in Obese Humans By diabetes.diabetesjournals.org Published On :: 2007-04-01 Luigi FontanaApr 1, 2007; 56:1010-1013Metabolism Full Article
ipo A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity By diabetes.diabetesjournals.org Published On :: 2020-05-01 Jennifer VogelMay 1, 2020; 69:1032-1041Pharmacology and Therapeutics Full Article
ipo 'My Boy Lollipop' singer Millie Small will be sorely missed By jamaica-gleaner.com Published On :: Wed, 06 May 2020 12:07:31 -0500 There has been an outpouring of grief following the death of legendary Jamaican singer Millicent Dolly May Small, popularly known as Millie Small. She died in the United Kingdom today at the age of 73 after suffering a stroke. The voice... Full Article
ipo Insulin-Deficient Diabetic Condition Upregulates the Insulin-Secreting Capacity of Human Induced Pluripotent Stem Cell-Derived Pancreatic Endocrine Progenitor Cells After Implantation in Mice By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 The host environment is a crucial factor for considering the transplant of stem cell–derived immature pancreatic cells in patients with type 1 diabetes. Here, we investigated the effect of insulin (INS)-deficient diabetes on the fate of immature pancreatic endocrine cell grafts and the underlying mechanisms. Human induced pluripotent stem cell–derived pancreatic endocrine progenitor cells (EPCs), which contained a high proportion of chromogranin A+ NK6 homeobox 1+ cells and very few INS+ cells, were used. When the EPCs were implanted under the kidney capsule in immunodeficient mice, INS-deficient diabetes accelerated increase in plasma human C-peptide, a marker of graft-derived INS secretion. The acceleration was suppressed by INS infusion but not affected by partial attenuation of hyperglycemia by dapagliflozin, an INS-independent glucose-lowering agent. Immunohistochemical analyses indicated that the grafts from diabetic mice contained more endocrine cells including proliferative INS-producing cells compared with that from nondiabetic mice, despite no difference in whole graft mass between the two groups. These data suggest that INS-deficient diabetes upregulates the INS-secreting capacity of EPC grafts by increasing the number of endocrine cells including INS-producing cells without changing the graft mass. These findings provide useful insights into postoperative diabetic care for cell therapy using stem cell–derived pancreatic cells. Full Article
ipo Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- or Age-Related Whitening of Brown Adipose Tissue By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:26-08:00 The whitening and loss of brown adipose tissue (BAT) during obesity and aging promote metabolic disorders and related diseases. The imbalance of Ca2+ homeostasis accounts for the dysfunction and clearance of mitochondria during BAT whitening. Capsaicin, a dietary factor activating TRPV1, can inhibit obesity induced by high-fat diet (HFD), but whether capsaicin inhibits BAT loss and the underlying mechanism remain unclear. In this study, we determined that the inhibitory effects of capsaicin on HFD-induced obesity and BAT whitening were dependent on the participation of SIRT3, a critical mitochondrial deacetylase. SIRT3 also mediated all of the beneficial effects of capsaicin on alleviating reactive oxygen species generation, elevating mitochondrial activity, and restricting mitochondrial calcium overload induced by HFD. Mechanistically, SIRT3 inhibits mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium overload by reducing the H3K27ac level on the MCU promoter in an AMPK-dependent manner. In addition, HFD also inhibits AMPK activity to reduce SIRT3 expression, which could be reversed by capsaicin. Capsaicin intervention also inhibited aging-induced BAT whitening through this mechanism. In conclusion, this study emphasizes a critical role of the AMPK/SIRT3 pathway in the maintenance of BAT morphology and function and suggests that intervention in this pathway may be an effective target for preventing obesity- or age-related metabolic diseases. Full Article
ipo Myeloid HMG-CoA Reductase Determines Adipose Tissue Inflammation, Insulin Resistance, and Hepatic Steatosis in Diet-Induced Obese Mice By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:25-08:00 Adipose tissue macrophages (ATMs) are involved in the development of insulin resistance in obesity. We have recently shown that myeloid cell–specific reduction of HMG-CoA reductase (Hmgcrm–/m–), which is the rate-limiting enzyme in cholesterol biosynthesis, protects against atherosclerosis by inhibiting macrophage migration in mice. We hypothesized that ATMs are harder to accumulate in Hmgcrm–/m– mice than in control Hmgcrfl/fl mice in the setting of obesity. To test this hypothesis, we fed Hmgcrm–/m– and Hmgcrfl/fl mice a high-fat diet (HFD) for 24 weeks and compared plasma glucose metabolism as well as insulin signaling and histology between the two groups. Myeloid cell–specific reduction of Hmgcr improved glucose tolerance and insulin sensitivity without altering body weight in the HFD-induced obese mice. The improvement was due to a decrease in the number of ATMs. The ATMs were reduced by decreased recruitment of macrophages as a result of their impaired chemotactic activity. These changes were associated with decreased expression of proinflammatory cytokines in adipose tissues. Myeloid cell–specific reduction of Hmgcr also attenuated hepatic steatosis. In conclusion, reducing myeloid HMGCR may be a promising strategy to improve insulin resistance and hepatic steatosis in obesity. Full Article
ipo The Effect of Thiazolidinediones on Plasma Adiponectin Levels in Normal, Obese, and Type 2 Diabetic Subjects By diabetes.diabetesjournals.org Published On :: 2002-10-01 Joseph G. YuOct 1, 2002; 51:2968-2974Obesity Studies Full Article
ipo High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans: Effects of Cold Exposure and Adiposity By diabetes.diabetesjournals.org Published On :: 2009-07-01 Masayuki SaitoJul 1, 2009; 58:1526-1531Metabolism Full Article
ipo Lipotoxicity in the Pathogenesis of Obesity-Dependent NIDDM: Genetic and Clinical Implications By diabetes.diabetesjournals.org Published On :: 1995-08-01 Roger H UngerAug 1, 1995; 44:863-870Perspectives in Diabetes Full Article
ipo PPAR{gamma} Ligands Increase Expression and Plasma Concentrations of Adiponectin, an Adipose-Derived Protein By diabetes.diabetesjournals.org Published On :: 2001-09-01 Norikazu MaedaSep 1, 2001; 50:2094-2099Pathophysiology Full Article
ipo PPAR-gamma: adipogenic regulator and thiazolidinedione receptor By diabetes.diabetesjournals.org Published On :: 1998-04-01 BM SpiegelmanApr 1, 1998; 47:507-514Articles Full Article
ipo Clinical and Molecular Prevalence of Lipodystrophy in an Unascertained Large Clinical Care Cohort By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:26-08:00 Lipodystrophies are a group of disorders characterized by absence or loss of adipose tissue and abnormal fat distribution, commonly accompanied by metabolic dysregulation. Although considered rare disorders, their prevalence in the general population is not well understood. We aimed to evaluate the clinical and genetic prevalence of lipodystrophy disorders in a large clinical care cohort. We interrogated the electronic health record (EHR) information of >1.3 million adults from the Geisinger Health System for lipodystrophy diagnostic codes. We estimate a clinical prevalence of disease of 1 in 20,000 individuals. We performed genetic analyses in individuals with available genomic data to identify variants associated with inherited lipodystrophies and examined their EHR for comorbidities associated with lipodystrophy. We identified 16 individuals carrying the p.R482Q pathogenic variant in LMNA associated with Dunnigan familial partial lipodystrophy. Four had a clinical diagnosis of lipodystrophy, whereas the remaining had no documented clinical diagnosis despite having accompanying metabolic abnormalities. We observed a lipodystrophy-associated variant carrier frequency of 1 in 3,082 individuals in our cohort with substantial burden of metabolic dysregulation. We estimate a genetic prevalence of disease of ~1 in 7,000 in the general population. Partial lipodystrophy is an underdiagnosed condition. and its prevalence, as defined molecularly, is higher than previously reported. Genetically guided stratification of patients with common metabolic disorders, like diabetes and dyslipidemia, is an important step toward precision medicine. Full Article
ipo Effects of Pioglitazone on Glucose-Dependent Insulinotropic Polypeptide-Mediated Insulin Secretion and Adipocyte Receptor Expression in Patients With Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:25-08:00 Incretin hormone dysregulation contributes to reduced insulin secretion and hyperglycemia in patients with type 2 diabetes mellitus (T2DM). Resistance to glucose-dependent insulinotropic polypeptide (GIP) action may occur through desensitization or downregulation of β-cell GIP receptors (GIP-R). Studies in rodents and cell lines show GIP-R expression can be regulated through peroxisome proliferator–activated receptor (PPAR) response elements (PPREs). Whether this occurs in humans is unknown. To test this, we conducted a randomized, double-blind, placebo-controlled trial of pioglitazone therapy on GIP-mediated insulin secretion and adipocyte GIP-R expression in subjects with well-controlled T2DM. Insulin sensitivity improved, but the insulinotropic effect of infused GIP was unchanged following 12 weeks of pioglitazone treatment. In parallel, we observed increased GIP-R mRNA expression in subcutaneous abdominal adipocytes from subjects treated with pioglitazone. Treatment of cultured human adipocytes with troglitazone increased PPAR binding to GIP-R PPREs. These results show PPAR agonists regulate GIP-R expression through PPREs in human adipocytes, but suggest this mechanism is not important for regulation of the insulinotropic effect of GIP in subjects with T2DM. Because GIP has antilipolytic and lipogenic effects in adipocytes, the increased GIP-R expression may mediate accretion of fat in patients with T2DM treated with PPAR agonists. Full Article
ipo The Novel Adipokine Gremlin 1 Antagonizes Insulin Action and Is Increased in Type 2 Diabetes and NAFLD/NASH By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 The BMP2/4 antagonist and novel adipokine Gremlin 1 is highly expressed in human adipose cells and increased in hypertrophic obesity. As a secreted antagonist, it inhibits the effect of BMP2/4 on adipose precursor cell commitment/differentiation. We examined mRNA levels of Gremlin 1 in key target tissues for insulin and also measured tissue and serum levels in several carefully phenotyped human cohorts. Gremlin 1 expression was high in adipose tissue, higher in visceral than in subcutaneous tissue, increased in obesity, and further increased in type 2 diabetes (T2D). A similar high expression was seen in liver biopsies, but expression was considerably lower in skeletal muscles. Serum levels were increased in obesity but most prominently in T2D. Transcriptional activation in both adipose tissue and liver as well as serum levels were strongly associated with markers of insulin resistance in vivo (euglycemic clamps and HOMA of insulin resistance), and the presence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). We also found Gremlin 1 to antagonize insulin signaling and action in human primary adipocytes, skeletal muscle, and liver cells. Thus, Gremlin 1 is a novel secreted insulin antagonist and biomarker as well as a potential therapeutic target in obesity and its complications T2D and NAFLD/NASH. Full Article
ipo A Novel Model of Diabetic Complications: Adipocyte Mitochondrial Dysfunction Triggers Massive {beta}-Cell Hyperplasia By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Obesity-associated type 2 diabetes mellitus (T2DM) entails insulin resistance and loss of β-cell mass. Adipose tissue mitochondrial dysfunction is emerging as a key component in the etiology of T2DM. Identifying approaches to preserve mitochondrial function, adipose tissue integrity, and β-cell mass during obesity is a major challenge. Mitochondrial ferritin (FtMT) is a mitochondrial matrix protein that chelates iron. We sought to determine whether perturbation of adipocyte mitochondria influences energy metabolism during obesity. We used an adipocyte-specific doxycycline-inducible mouse model of FtMT overexpression (FtMT-Adip mice). During a dietary challenge, FtMT-Adip mice are leaner but exhibit glucose intolerance, low adiponectin levels, increased reactive oxygen species damage, and elevated GDF15 and FGF21 levels, indicating metabolically dysfunctional fat. Paradoxically, despite harboring highly dysfunctional fat, transgenic mice display massive β-cell hyperplasia, reflecting a beneficial mitochondria-induced fat-to-pancreas interorgan signaling axis. This identifies the unique and critical impact that adipocyte mitochondrial dysfunction has on increasing β-cell mass during obesity-related insulin resistance. Full Article
ipo Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Branched esters of palmitic acid and hydroxystearic acid (PAHSA) are anti-inflammatory and antidiabetic lipokines that connect glucose and lipid metabolism. We aimed to characterize involvement of the 5-PAHSA regioisomer in the adaptive metabolic response of white adipose tissue (WAT) to cold exposure (CE) in mice, exploring the cross talk between glucose utilization and lipid metabolism. CE promoted local production of 5- and 9-PAHSAs in WAT. Metabolic labeling of de novo lipogenesis (DNL) using 2H2O revealed that 5-PAHSA potentiated the effects of CE and stimulated triacylglycerol (TAG)/fatty acid (FA) cycling in WAT through impacting lipogenesis and lipolysis. Adipocyte lipolytic products were altered by 5-PAHSA through selective FA re-esterification. The impaired lipolysis in global adipose triglyceride lipase (ATGL) knockout mice reduced free PAHSA levels and uncovered a metabolite reservoir of TAG-bound PAHSAs (TAG estolides) in WAT. Utilization of 13C isotope tracers and dynamic metabolomics documented that 5-PAHSA primes adipocytes for glucose metabolism in a different way from insulin, promoting DNL and impeding TAG synthesis. In summary, our data reveal new cellular and physiological mechanisms underlying the beneficial effects of 5-PAHSA and its relation to insulin action in adipocytes and independently confirm a PAHSA metabolite reservoir linked to ATGL-mediated lipolysis. Full Article
ipo Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes. Full Article
ipo Bariatric Surgery Rapidly Decreases Cardiac Dietary Fatty Acid Partitioning and Hepatic Insulin Resistance Through Increased Intra-abdominal Adipose Tissue Storage and Reduced Spillover in Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Reduced storage of dietary fatty acids (DFAs) in abdominal adipose tissues with enhanced cardiac partitioning has been shown in subjects with type 2 diabetes (T2D) and prediabetes. We measured DFA metabolism and organ partitioning using positron emission tomography with oral and intravenous long-chain fatty acid and glucose tracers during a standard liquid meal in 12 obese subjects with T2D before and 8–12 days after bariatric surgery (sleeve gastrectomy or sleeve gastrectomy and biliopancreatic diversion with duodenal switch). Bariatric surgery reduced cardiac DFA uptake from a median (standard uptake value [SUV]) 1.75 (interquartile range 1.39–2.57) before to 1.09 (1.04–1.53) after surgery (P = 0.01) and systemic DFA spillover from 56.7 mmol before to 24.7 mmol over 6 h after meal intake after surgery (P = 0.01), with a significant increase in intra-abdominal adipose tissue DFA uptake from 0.15 (0.04–0.31] before to 0.49 (0.20–0.59) SUV after surgery (P = 0.008). Hepatic insulin resistance was significantly reduced in close association with increased DFA storage in intra-abdominal adipose tissues (r = –0.79, P = 0.05) and reduced DFA spillover (r = 0.76, P = 0.01). We conclude that bariatric surgery in subjects with T2D rapidly reduces cardiac DFA partitioning and hepatic insulin resistance at least in part through increased intra-abdominal DFA storage and reduced spillover. Full Article