s The HEPS synchrotron unleashes new medical frontiers By journals.iucr.org Published On :: 2024-06-26 Full Article text
s Roentgenoscopy of laser-induced projectile impact testing By journals.iucr.org Published On :: 2024-06-06 Laser-induced projectile impact testing (LIPIT) based on synchrotron imaging is proposed and validated. This emerging high-velocity, high-strain microscale dynamic loading technique offers a unique perspective on the strain and energy dissipation behavior of materials subjected to high-speed microscale single-particle impacts. When combined with synchrotron radiation imaging techniques, LIPIT allows for in situ observation of particle infiltration. Two validation experiments were carried out, demonstrating the potential of LIPIT in the roentgenoscopy of the dynamic properties of various materials. With a spatial resolution of 10 µm and a temporal resolution of 33.4 µs, the system was successfully realized at the Beijing Synchrotron Radiation Facility 3W1 beamline. This innovative approach opens up new avenues for studying the dynamic properties of materials in situ. Full Article text
s The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties By journals.iucr.org Published On :: 2024-06-06 In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors. Full Article text
s Signal-to-noise and spatial resolution in in-line imaging. 1. Basic theory, numerical simulations and planar experimental images By journals.iucr.org Published On :: 2024-06-06 Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper. Full Article text
s TomoPyUI: a user-friendly tool for rapid tomography alignment and reconstruction By journals.iucr.org Published On :: 2024-06-26 The management and processing of synchrotron and neutron computed tomography data can be a complex, labor-intensive and unstructured process. Users devote substantial time to both manually processing their data (i.e. organizing data/metadata, applying image filters etc.) and waiting for the computation of iterative alignment and reconstruction algorithms to finish. In this work, we present a solution to these problems: TomoPyUI, a user interface for the well known tomography data processing package TomoPy. This highly visual Python software package guides the user through the tomography processing pipeline from data import, preprocessing, alignment and finally to 3D volume reconstruction. The TomoPyUI systematic intermediate data and metadata storage system improves organization, and the inspection and manipulation tools (built within the application) help to avoid interrupted workflows. Notably, TomoPyUI operates entirely within a Jupyter environment. Herein, we provide a summary of these key features of TomoPyUI, along with an overview of the tomography processing pipeline, a discussion of the landscape of existing tomography processing software and the purpose of TomoPyUI, and a demonstration of its capabilities for real tomography data collected at SSRL beamline 6-2c. Full Article text
s X-ray optics for the cavity-based X-ray free-electron laser By journals.iucr.org Published On :: 2024-06-21 A cavity-based X-ray free-electron laser (CBXFEL) is a possible future direction in the development of fully coherent X-ray sources. CBXFELs consist of a low-emittance electron source, a magnet system with several undulators and chicanes, and an X-ray cavity. The X-ray cavity stores and circulates X-ray pulses for repeated FEL interactions with electron pulses until the FEL reaches saturation. CBXFEL cavities require low-loss wavefront-preserving optical components: near-100%-reflectivity X-ray diamond Bragg-reflecting crystals, outcoupling devices such as thin diamond membranes or X-ray gratings, and aberration-free focusing elements. In the framework of the collaborative CBXFEL research and development project of Argonne National Laboratory, SLAC National Accelerator Laboratory and SPring-8, we report here the design, manufacturing and characterization of X-ray optical components for the CBXFEL cavity, which include high-reflectivity diamond crystal mirrors, a diamond drumhead crystal with thin membranes, beryllium refractive lenses and channel-cut Si monochromators. All the designed optical components have been fully characterized at the Advanced Photon Source to demonstrate their suitability for the CBXFEL cavity application. Full Article text
s Characterization of silicon pore optics for the NewAthena X-ray observatory in the PTB laboratory at BESSY II By journals.iucr.org Published On :: 2024-06-24 The New Advanced Telescope for High ENergy Astrophysics (NewAthena) will be the largest space-based X-ray observatory ever built. It will have an effective area above 1.1 m2 at 1 keV, which corresponds to a polished mirror surface of about 300 m2 due to the grazing incidence. As such a mirror area is not achievable with an acceptable mass even with nested shells, silicon pore optics (SPO) technology will be utilized. In the PTB laboratory at BESSY II, two dedicated beamlines are in use for their characterization with monochromatic radiation at 1 keV and a low divergence well below 2 arcsec: the X-ray Pencil Beam Facility (XPBF 1) and the X-ray Parallel Beam Facility (XPBF 2.0), where beam sizes up to 8 mm × 8 mm are available while maintaining low beam divergence. This beamline is used for characterizing mirror stacks and controlling the focusing properties of mirror modules (MMs) – consisting of four mirror stacks – during their assembly at the beamline. A movable CCD based camera system 12 m from the MM registers the direct and the reflected beams. The positioning of the detector is verified by a laser tracker. The energy-dependent reflectance in double reflection through the pores of an MM with an Ir coating was measured at the PTB four-crystal monochromator beamline in the photon energy range 1.75 keV to 10 keV, revealing the effects of the Ir M edges. The measured reflectance properties are in agreement with the design values to achieve the envisaged effective area. Full Article text
s PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite By journals.iucr.org Published On :: 2024-06-25 The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts – zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron–photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra. Full Article text
s X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants By journals.iucr.org Published On :: 2024-06-25 X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle. Full Article text
s Mango wiggler as a novel insertion device providing a large and symmetrical imaging field of view By journals.iucr.org Published On :: 2024-06-21 A novel insertion device is introduced, designated as the Mango wiggler, designed for synchrotron radiation (SR) imaging that provides a large field of view. This innovative device is constructed from two orthogonal planar wigglers with a small difference in their period lengths, eliciting the phase difference of the magnetic fields to incrementally transitions from 0 to π/2. Such a configuration enlarges the vertical divergence of the light source, as with the horizontal divergence. The appellation `Mango wiggler' derives from the distinctive mango-shaped contour of its radiation field. A comprehensive suite of theoretical analyses and simulations has been executed to elucidate the radiation properties of the Mango wiggler, employing SPECTRA and Mathematica as calculation tools. In conjunction with the ongoing construction of the High Energy Photon Source in Beijing a practical Mango wiggler device has been fabricated for utilization in SR imaging applications. Theoretical analyses were applied to this particular Mango wiggler to yield several theoretical conclusions, and several simulations were performed according to the measured magnetic field results. Full Article text
s Sub-nanometre quality X-ray mirrors created using ion beam figuring By journals.iucr.org Published On :: 2024-06-21 Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics. Full Article text
s Nonlinear optimization for a low-emittance storage ring By journals.iucr.org Published On :: 2024-06-25 A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter ηc. Finding an appropriate ηc demands too much computing time because MOGA needs be run several times in order to find a good ηc. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new ηc for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings. Full Article text
s L3-edge X-ray spectroscopy of rhodium and palladium compounds By journals.iucr.org Published On :: 2024-06-26 L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results. Full Article text
s GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility By journals.iucr.org Published On :: 2024-06-25 The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials. Full Article text
s Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning By journals.iucr.org Published On :: 2024-06-25 Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems. Full Article text
s In situ photodeposition of ultra-small palladium particles on TiO2 By journals.iucr.org Published On :: 2024-07-15 In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions. Full Article text
s X-ray lens figure errors retrieved by deep learning from several beam intensity images By journals.iucr.org Published On :: 2024-07-23 The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images. Full Article text
s High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up By journals.iucr.org Published On :: 2024-07-15 Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated. Full Article text
s StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data By journals.iucr.org Published On :: 2024-07-15 StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/WAXS) data analysis workflow platform with graphical user interface (GUI). It aims to provide an interactive and user-friendly tool for analysis of both batch data files and real-time data streams. Users can easily create customizable workflows through the GUI to meet their specific needs. One characteristic of StreamSAXS is its plug-in framework, which enables developers to extend the built-in workflow tasks. Another feature is the support for both already acquired and real-time data sources, allowing StreamSAXS to function as an offline analysis platform or be integrated into large-scale acquisition systems for end-to-end data management. This paper presents the core design of StreamSAXS and provides user cases demonstrating its utilization for SAXS/WAXS data analysis in offline and online scenarios. Full Article text
s Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source By journals.iucr.org Published On :: 2024-07-15 The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users. Full Article text
s BEATS: BEAmline for synchrotron X-ray microTomography at SESAME By journals.iucr.org Published On :: 2024-07-15 The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME. Full Article text
s Study on the UV FEL single-shot damage threshold of an Au thin film By journals.iucr.org Published On :: 2024-07-23 The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS. Full Article text
s TEMPUS, a Timepix4-based system for the event-based detection of X-rays By journals.iucr.org Published On :: 2024-07-23 TEMPUS is a new detector system being developed for photon science. It is based on the Timepix4 chip and, thus, it can be operated in two distinct modes: a photon-counting mode, which allows for conventional full-frame readout at rates up to 40 kfps; and an event-driven time-stamping mode, which allows excellent time resolution in the nanosecond regime in measurements with moderate X-ray flux. In this paper, the initial prototype, a single-chip device, is introduced, and the readout system described. Moreover, and in order to evaluate its capabilities, some tests were performed at PETRA III and ESRF for which results are also presented. Full Article text
s New opportunities for time-resolved imaging using diffraction-limited storage rings By journals.iucr.org Published On :: 2024-07-30 The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system. Full Article text
s Area normalization of HERFD-XANES spectra By journals.iucr.org Published On :: 2024-08-06 The normalization of X-ray absorption near-edge structure (XANES) spectra is required for comparing spectral features and extracting quantitative information in analytical techniques such as linear combination analysis, principal component analysis and multivariate curve resolution. Most published data are normalized to the edge-jump, but normalization to the spectral area has also been applied. The latter is particularly attractive if only a small energy range around the absorption can be recorded reliably. Here, the two normalization methods are compared at the L3-edge of Pt, Pd and Rh, and at the Ni K-edge using experimental and calculated spectra. Normalization to the spectral area is found to be a viable approach if the range for the area normalization is sufficiently large. Full Article text
s VUV absorption spectra of water and nitrous oxide by a double-duty differentially pumped gas filter By journals.iucr.org Published On :: 2024-07-23 The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the { ilde{f D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution. Full Article text
s A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory By journals.iucr.org Published On :: 2024-08-07 Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles. Full Article text
s Effectiveness of ab initio molecular dynamics in simulating EXAFS spectra from layered systems By journals.iucr.org Published On :: 2024-07-23 The simulation of EXAFS spectra of thin films via ab initio methods is discussed. The procedure for producing the spectra is presented as well as an application to a two-dimensional material (WSe2) where the effectiveness of this method in reproducing the spectrum and the linear dichroic response is shown. A series of further examples in which the method has been employed for the structural determination of materials are given. Full Article text
s Web-CONEXS: an inroad to theoretical X-ray absorption spectroscopy By journals.iucr.org Published On :: 2024-08-01 Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data. Full Article text
s Development and commissioning of a broadband online X-ray spectrometer for the SXFEL Facility By journals.iucr.org Published On :: 2024-07-29 A broadband online X-ray spectrometer has been designed and commissioned at the SUD beamline of the Shanghai Soft X-ray Free-Electron Laser Facility, which can deliver both SASE and seeded FEL pulses to user experiments, spanning the photon energy range of 50–620 eV. The resolving powers of the spectrometer calibrated via online measurement at 92 eV and 249 eV are ∼20000 and ∼15000, respectively, and the absolute photon energy is characterized by an electron time-of-flight spectrometer. The high energy resolution provided by the spectrometer can differentiate the fine structure in the FEL spectrum, to determine its pulse length. Full Article text
s Spexwavepy: an open-source Python package for X-ray wavefront sensing using speckle-based techniques By journals.iucr.org Published On :: 2024-07-30 In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines. Full Article text
s Development of a high-performance and cost-effective in-vacuum undulator By journals.iucr.org Published On :: 2024-08-01 In-vacuum undulators (IVUs), which have become an essential tool in synchrotron radiation facilities, have two technical challenges toward further advancement: one is a strong attractive force between top and bottom magnetic arrays, and the other is a stringent requirement on magnetic materials to avoid demagnetization. The former imposes a complicated design on mechanical and vacuum structures, while the latter limits the possibility of using high-performance permanent magnets. To solve these issues, a number of technical developments have been made, such as force cancellation and modularization of magnetic arrays, and enhancement of resistance against demagnetization by means of a special magnetic circuit. The performance of a new IVU built upon these technologies has revealed their effectiveness for constructing high-performance IVUs in a cost-effective manner. Full Article text
s Development of an X-ray ionization beam position monitor for PAL-XFEL soft X-rays By journals.iucr.org Published On :: 2024-07-29 The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) operates hard X-ray and soft X-ray beamlines for conducting scientific experiments providing intense ultrashort X-ray pulses based on the self-amplified spontaneous emission (SASE) process. The X-ray free-electron laser is characterized by strong pulse-to-pulse fluctuations resulting from the SASE process. Therefore, online photon diagnostics are very important for rigorous measurements. The concept of photo-absorption and emission using solid materials is seldom considered in soft X-ray beamline diagnostics. Instead, gas monitoring detectors, which utilize the photo-ionization of noble gas, are employed for monitoring the beam intensity. To track the beam position at the soft X-ray beamline in addition to those intensity monitors, an X-ray ionization beam position monitor (XIBPM) has been developed and characterized at the soft X-ray beamline of PAL-XFEL. The XIBPM utilizes ionization of either the residual gas in an ultra-high-vacuum environment or injected krypton gas, along with a microchannel plate with phosphor. The XIBPM was tested separately for monitoring horizontal and vertical beam positions, confirming the feasibility of tracking relative changes in beam position both on average and down to single-shot measurements. This paper presents the basic structure and test results of the newly developed non-invasive XIBPM. Full Article text
s A 1D imaging soft X-ray spectrometer for the small quantum systems instrument at the European XFEL By journals.iucr.org Published On :: 2024-07-30 A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump–probe measurements and in investigations of propagation effects and other nonlinear phenomena. Full Article text
s Diamond sensors for hard X-ray energy and position resolving measurements at the European XFEL By journals.iucr.org Published On :: 2024-07-30 The diagnostics of X-ray beam properties has a critical importance at the European X-ray Free-Electron Laser facility. Besides existing diagnostic components, utilization of a diamond sensor was proposed to achieve radiation-hard, non-invasive beam position and pulse energy measurements for hard X-rays. In particular, with very hard X-rays, diamond-based sensors become a useful complement to gas-based devices which lose sensitivity due to significantly reduced gas cross-sections. The measurements presented in this work were performed with diamond sensors consisting of an electronic-grade single-crystal chemical-vapor-deposition diamond with position-sensitive resistive electrodes in a duo-lateral configuration. The results show that the diamond sensor delivers pulse-resolved X-ray beam position data at 2.25 MHz with an uncertainty of less than 1% of the beam size. To our knowledge this is the first demonstration of pulse-resolved position measurements at the MHz rate using a transmissive diamond sensor at a free-electron laser facility. It can therefore be a valuable tool for X-ray free-electron lasers, especially for high-repetition-rate machines, enabling applications such as beam-based alignment and intra-pulse-train position feedback. Full Article text
s The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics By journals.iucr.org Published On :: 2024-08-06 The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample. Full Article text
s Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments By journals.iucr.org Published On :: 2024-08-05 The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction. Full Article text
s MuscleX: data analysis software for fiber diffraction patterns from muscle By journals.iucr.org Published On :: 2024-07-30 MuscleX is an integrated, open-source computer software suite for data reduction of X-ray fiber diffraction patterns from striated muscle and other fibrous systems. It is written in Python and runs on Linux, Microsoft Windows or macOS. Most modules can be run either from a graphical user interface or in a `headless mode' from the command line, suitable for incorporation into beamline control systems. Here, we provide an overview of the general structure of the MuscleX software package and describe the specific features of the individual modules as well as examples of applications. Full Article text
s Controlling cantilevered adaptive X-ray mirrors By journals.iucr.org Published On :: 2024-08-05 Modeling the behavior of a prototype cantilevered X-ray adaptive mirror (held from one end) demonstrates its potential for use on high-performance X-ray beamlines. Similar adaptive mirrors are used on X-ray beamlines to compensate optical aberrations, control wavefronts and tune mirror focal distances at will. Controlled by 1D arrays of piezoceramic actuators, these glancing-incidence mirrors can provide nanometre-scale surface shape adjustment capabilities. However, significant engineering challenges remain for mounting them with low distortion and low environmental sensitivity. Finite-element analysis is used to predict the micron-scale full actuation surface shape from each channel and then linear modeling is applied to investigate the mirrors' ability to reach target profiles. Using either uniform or arbitrary spatial weighting, actuator voltages are optimized using a Moore–Penrose matrix inverse, or pseudoinverse, revealing a spatial dependence on the shape fitting with increasing fidelity farther from the mount. Full Article text
s Double-edge scan wavefront metrology and its application in crystal diffraction wavefront measurements By journals.iucr.org Published On :: 2024-07-29 Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals. Full Article text
s MLgrating: a program for simulating multilayer gratings for tender X-ray applications By journals.iucr.org Published On :: 2024-08-01 Multilayer gratings are increasingly popular optical elements at X-ray beamlines, as they can provide much higher photon flux in the tender X-ray range compared with traditional single-layer coated gratings. While there are several proprietary software tools that provide the functionality to simulate the efficiencies of such gratings, until now the X-ray community has lacked an open-source alternative. Here MLgrating is presented, a program for simulating the efficiencies of both multilayer gratings and single-layer coated gratings for X-ray applications. MLgrating is benchmarked by comparing its output with that of other software tools and plans are discussed for how the program could be extended in the future. Full Article text
s New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick–Baez active optical system KAOS By journals.iucr.org Published On :: 2024-08-16 Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions. Full Article text
s In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum By journals.iucr.org Published On :: 2024-08-06 Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected. Full Article text
s Demonstration of full polarization control of soft X-ray pulses with Apple X undulators at SwissFEL using recoil ion momentum spectroscopy By journals.iucr.org Published On :: 2024-08-09 The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated. Full Article text
s Characterizing electron-collecting CdTe for use in a 77 ns burst-rate imager By journals.iucr.org Published On :: 2024-08-07 The Keck-PAD (pixel array detector) was developed at Cornell as a burst-rate imager capable of recording images from successive electron bunches (153 ns period) from the Advanced Photon Source (APS). Both Si and hole-collecting Schottky CdTe have been successfully bonded to this ASIC (application-specific integrated circuit) and used with this frame rate. The facility upgrades at the APS will lower the bunch period to 77 ns, which will require modifications to the Keck-PAD electronics to image properly at this reduced period. In addition, operation at high X-ray energies will require a different sensor material having a shorter charge collection time. For the target energy of 40 keV for this project, simulations have shown that electron-collecting CdTe should allow >90% charge collection within 35 ns. This collection time will be sufficient to sample the signal from one frame and prepare for the next. 750 µm-thick electron-collecting Schottky CdTe has been obtained from Acrorad and bonded to two different charge-integrating ASICs developed at Cornell, the Keck-PAD and the CU-APS-PAD. Carrier mobility has been investigated using the detector response to single X-ray bunches at the Cornell High Energy Synchrotron Source and to a pulsed optical laser. The tests indicate that the collection time will meet the requirements for 77 ns imaging. Full Article text
s Vibrational stability improvement of a mirror system using active mass damping By journals.iucr.org Published On :: 2024-08-08 Addressing the demand for high stability of beamline instruments at the SHINE facility, a high stability mirror regulating mechanism has been developed for mirror adjustments. Active mass damping was adopted to attenuate pitch angle vibrations of mirrors caused by structural vibrations. An internal absolute velocity feedback was used to reduce the negative impact of spillover effects and to improve performance. The experiment was conducted on a prototype structure of a mirror regulating mechanism, and results showed that the vibration RMS of the pitch angle was effectively attenuated from 47 nrad to 27 nrad above 1 Hz. Full Article text
s Correcting angular distortions in Bragg coherent X-ray diffraction imaging By journals.iucr.org Published On :: 2024-08-08 Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval. Full Article text
s Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging By journals.iucr.org Published On :: 2024-08-05 The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions. Full Article text
s Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions By journals.iucr.org Published On :: 2024-08-23 Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed. Full Article text
s Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV By journals.iucr.org Published On :: 2024-08-22 One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that provide micrometre-thick liquid sheets with high stability, intending to make this technology more widely available to users. Our research is a collaboration between the EuXFEL and MAX IV research facilities. This collaboration aims to develop and refine a 3D-printed flat sheet nozzle design and a versatile jetting platform that is compatible with multiple endstations and measurement techniques. Our flat sheet jet platform improves the stability of the jet and increases its surface area, enabling more precise scanning and differential measurements in X-ray absorption, scattering, and imaging applications. Here, we demonstrate the performance of this new arrangement for a flat sheet jet setup with X-ray photoelectron spectroscopy, photoelectron angular distribution, and soft X-ray absorption spectroscopy experiments performed at the photoemission endstation of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden. Full Article text