xi

Vampire Facials at New Mexico Spa Linked to HIV Infections

Title: Vampire Facials at New Mexico Spa Linked to HIV Infections
Category: Health News
Created: 5/1/2019 12:00:00 AM
Last Editorial Review: 5/1/2019 12:00:00 AM




xi

Was Dyslexia the Secret to Leonardo da Vinci's Greatness?

Title: Was Dyslexia the Secret to Leonardo da Vinci's Greatness?
Category: Health News
Created: 5/2/2019 12:00:00 AM
Last Editorial Review: 5/3/2019 12:00:00 AM




xi

What Is a Pulse Oximeter, and Should You Get One to Warn of COVID-19?

Title: What Is a Pulse Oximeter, and Should You Get One to Warn of COVID-19?
Category: Health News
Created: 4/28/2020 12:00:00 AM
Last Editorial Review: 4/29/2020 12:00:00 AM




xi

AHA News: Coronavirus Intensifies Existing Issues for Older Immigrants

Title: AHA News: Coronavirus Intensifies Existing Issues for Older Immigrants
Category: Health News
Created: 4/28/2020 12:00:00 AM
Last Editorial Review: 4/29/2020 12:00:00 AM




xi

FDA OKs Farxiga for Heart Failure With Reduced Ejection Fraction

Title: FDA OKs Farxiga for Heart Failure With Reduced Ejection Fraction
Category: Health News
Created: 5/6/2020 12:00:00 AM
Last Editorial Review: 5/7/2020 12:00:00 AM




xi

Depression, Anxiety, PTSD May Plague Many COVID-19 Survivors

Title: Depression, Anxiety, PTSD May Plague Many COVID-19 Survivors
Category: Health News
Created: 5/7/2020 12:00:00 AM
Last Editorial Review: 5/8/2020 12:00:00 AM




xi

Keflex (cephalexin)

Title: Keflex (cephalexin)
Category: Medications
Created: 12/31/1997 12:00:00 AM
Last Editorial Review: 2/12/2020 12:00:00 AM




xi

Xiaflex (collagenase clostridium histolyticum)

Title: Xiaflex (collagenase clostridium histolyticum)
Category: Medications
Created: 3/3/2020 12:00:00 AM
Last Editorial Review: 3/3/2020 12:00:00 AM




xi

Replace That Old Carpet to Shield Your Kids From Toxins

Title: Replace That Old Carpet to Shield Your Kids From Toxins
Category: Health News
Created: 4/29/2020 12:00:00 AM
Last Editorial Review: 4/30/2020 12:00:00 AM




xi

Teen Moms at High Risk for Depression, Anxiety

Title: Teen Moms at High Risk for Depression, Anxiety
Category: Health News
Created: 2/28/2020 12:00:00 AM
Last Editorial Review: 3/2/2020 12:00:00 AM




xi

CDK9 Blockade Exploits Context-dependent Transcriptional Changes to Improve Activity and Limit Toxicity of Mithramycin for Ewing Sarcoma

There is a need to develop novel approaches to improve the balance between efficacy and toxicity for transcription factor–targeted therapies. In this study, we exploit context-dependent differences in RNA polymerase II processivity as an approach to improve the activity and limit the toxicity of the EWS-FLI1–targeted small molecule, mithramycin, for Ewing sarcoma. The clinical activity of mithramycin for Ewing sarcoma is limited by off-target liver toxicity that restricts the serum concentration to levels insufficient to inhibit EWS-FLI1. In this study, we perform an siRNA screen of the druggable genome followed by a matrix drug screen to identify mithramycin potentiators and a synergistic "class" effect with cyclin-dependent kinase 9 (CDK9) inhibitors. These CDK9 inhibitors enhanced the mithramycin-mediated suppression of the EWS-FLI1 transcriptional program leading to a shift in the IC50 and striking regressions of Ewing sarcoma xenografts. To determine whether these compounds may also be liver protective, we performed a qPCR screen of all known liver toxicity genes in HepG2 cells to identify mithramycin-driven transcriptional changes that contribute to the liver toxicity. Mithramycin induces expression of the BTG2 gene in HepG2 but not Ewing sarcoma cells, which leads to a liver-specific accumulation of reactive oxygen species (ROS). siRNA silencing of BTG2 rescues the induction of ROS and the cytotoxicity of mithramycin in these cells. Furthermore, CDK9 inhibition blocked the induction of BTG2 to limit cytotoxicity in HepG2, but not Ewing sarcoma cells. These studies provide the basis for a synergistic and less toxic EWS-FLI1–targeted combination therapy for Ewing sarcoma.




xi

Two previously unrecorded xiphosurid trace fossils, Selenichnites rossendalensis and Crescentichnus tesiltus, from the Middle Jurassic of Yorkshire, UK

The invertebrate trace fossils Selenichnites rossendalensis and Crescentichnus tesiltus are recorded and described from the Middle Jurassic Gristhorpe Member of the Cloughton Formation of the Cleveland Basin. This is the first record of these ichnospecies from the basin and now completes the occurrence of these and other traces assumed to have been made by limulids from all three non-marine formations of the Ravenscar Group.




xi

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




xi

The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors.

IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis.




xi

Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species

ABSTRACT

Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.

IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ~$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.




xi

Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth

ABSTRACT

Population-level analyses are rapidly becoming inadequate to answer many of biomedical science and microbial ecology’s most pressing questions. The role of microbial populations within ecosystems and the evolutionary selective pressure on individuals depend fundamentally on the metabolic activity of single cells. Yet, many existing single-cell technologies provide only indirect evidence of metabolic specialization because they rely on correlations between transcription and phenotype established at the level of the population to infer activity. In this study, we take a top-down approach using isotope labels and secondary ion mass spectrometry to track the uptake of carbon and nitrogen atoms from different sources into biomass and directly observe dynamic changes in anabolic specialization at the level of single cells. We investigate the classic microbiological phenomenon of diauxic growth at the single-cell level in the model methylotroph Methylobacterium extorquens. In nature, this organism inhabits the phyllosphere, where it experiences diurnal changes in the available carbon substrates, necessitating an overhaul of central carbon metabolism. We show that the population exhibits a unimodal response to the changing availability of viable substrates, a conclusion that supports the canonical model but has thus far been supported by only indirect evidence. We anticipate that the ability to monitor the dynamics of anabolism in individual cells directly will have important applications across the fields of ecology, medicine, and biogeochemistry, especially where regulation downstream of transcription has the potential to manifest as heterogeneity that would be undetectable with other existing single-cell approaches.

IMPORTANCE Understanding how genetic information is realized as the behavior of individual cells is a long-term goal of biology but represents a significant technological challenge. In clonal microbial populations, variation in gene regulation is often interpreted as metabolic heterogeneity. This follows the central dogma of biology, in which information flows from DNA to RNA to protein and ultimately manifests as activity. At present, DNA and RNA can be characterized in single cells, but the abundance and activity of proteins cannot. Inferences about metabolic activity usually therefore rely on the assumption that transcription reflects activity. By tracking the atoms from which they build their biomass, we make direct observations of growth rate and substrate specialization in individual cells throughout a period of growth in a changing environment. This approach allows the flow of information from DNA to be constrained from the distal end of the regulatory cascade and will become an essential tool in the rapidly advancing field of single-cell metabolism.




xi

Structural Basis of Ca2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins

ABSTRACT

The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free -amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis. The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.

IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.




xi

Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems

ABSTRACT

The recent discovery of complete ammonia oxidizers (comammox) contradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by two different microorganisms. However, our knowledge of the survival strategies of comammox in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Analyses of genomes and in situ transcriptomes of four comammox organisms from two full-scale WWTPs revealed that comammox were active and showed a surprisingly high metabolic versatility. A gene cluster for the utilization of urea and a gene encoding cyanase suggest that comammox may use diverse organic nitrogen compounds in addition to free ammonia as the substrates. The comammox organisms also encoded the genomic potential for multiple alternative energy metabolisms, including respiration with hydrogen, formate, and sulfite as electron donors. Pathways for the biosynthesis and degradation of polyphosphate, glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help comammox survive unfavorable conditions and facilitate switches between lifestyles in fluctuating environments. One of the comammox strains acquired from the anaerobic tank encoded and transcribed genes involved in homoacetate fermentation or in the utilization of exogenous acetate, both pathways being unexpected in a nitrifying bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase which has not yet been found in any other Nitrospira genome and might confer a selective advantage to this strain over other Nitrospira strains in anoxic conditions.

IMPORTANCE The discovery of comammox in the genus Nitrospira changes our perception of nitrification. However, genomes of comammox organisms have not been acquired from full-scale WWTPs, and very little is known about their survival strategies and potential metabolisms in complex wastewater treatment systems. Here, four comammox metagenome-assembled genomes and metatranscriptomic data sets were retrieved from two full-scale WWTPs. Their impressive and—among nitrifiers—unsurpassed ecophysiological versatility could make comammox Nitrospira an interesting target for optimizing nitrification in current and future bioreactor configurations.




xi

Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.

IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents.




xi

Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity

ABSTRACT

The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of Morgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae. We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity.

IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions.




xi

Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses CaV3.1 as the Cell Surface Receptor

ABSTRACT

Dermonecrotic toxin (DNT) is one of the representative toxins produced by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains unknown. In this study, we identified the T-type voltage-gated Ca2+ channel CaV3.1 as the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly expressed in the nervous system, the neurotoxicity of DNT was examined. DNT affected cultured neural cells and caused flaccid paralysis in mice after intracerebral injection. No neurological symptoms were observed by intracerebral injection with the other major virulence factors of the organisms, pertussis toxin and adenylate cyclase toxin. These results indicate that DNT has aspects of the neurotropic virulence factor of B. pertussis. The possibility of the involvement of DNT in encephalopathy, which is a complication of pertussis, is also discussed.

IMPORTANCE Bordetella pertussis, which causes pertussis, a contagious respiratory disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin, and dermonecrotic toxin (DNT), for which molecular actions have been elucidated. The former two toxins are known to be involved in the emergence of some clinical symptoms and/or contribute to the establishment of bacterial infection. In contrast, the role of DNT in pertussis remains unclear. Our study shows that DNT affects neural cells through specific binding to the T-type voltage-gated Ca2+ channel that is highly expressed in the central nervous system and leads to neurological disorders in mice after intracerebral injection. These data raise the possibility of DNT as an etiological agent for pertussis encephalopathy, a severe complication of B. pertussis infection.




xi

Toxin-Antitoxin Gene Pairs Found in Tn3 Family Transposons Appear To Be an Integral Part of the Transposition Module

ABSTRACT

Much of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tns). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes, which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself.

IMPORTANCE Transposable elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, molding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g., conferring antibiotic or heavy metal resistance and virulence), and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tns during transposition.




xi

Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells

ABSTRACT

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.

IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.




xi

"Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

ABSTRACT

Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.

IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.




xi

Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort

Objective

To investigate the pattern of progression of neurologic impairment in Friedreich ataxia (FRDA) and identify patients with fast disease progression as detected by clinical rating scales.

Methods

Clinical, demographic, and genetic data were analyzed from 54 patients with FRDA included at the Brussels site of the European Friedreich's Ataxia Consortium for Translational Studies, with an average prospective follow-up of 4 years.

Results

Afferent ataxia predated other features of FRDA, followed by cerebellar ataxia and pyramidal weakness. The Scale for the Assessment and Rating of Ataxia (SARA) best detected progression in ambulatory patients and in the first 20 years of disease duration but did not effectively capture progression in advanced disease. Dysarthria, sitting, and upper limb coordination items kept worsening after loss of ambulation. Eighty percent of patients needing support to walk lost ambulation within 2 years. Age at onset had a strong influence on progression of neurologic and functional deficits, which was maximal in patients with symptom onset before age 8 years. All these patients became unable to walk by 15 years after onset, significantly earlier than patients with later onset. Progression in the previous 1 or 2 years was not predictive of progression in the subsequent year.

Conclusions

The SARA is a sensitive outcome measure in ambulatory patients with FRDA and has an excellent correlation with functional capabilities. Ambulatory patients with onset before age 8 years showed the fastest measurable worsening. Loss of ambulation in high-risk patients is a disease milestone that should be considered as an end point in clinical trials.




xi

Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition

Objective

To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia.

Methods

Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations.

Results

All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse.

Conclusions

This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition.




xi

Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation

Objective

To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome.

Methods

We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity.

Results

The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance.

Conclusions

Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication.




xi

TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35

Objective

To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6.

Methods

Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype.

Results

The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals.

Conclusions

The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35.




xi

SCFTIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism




xi

Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants

Background

Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth, but the role of the microbiome in its development remains unclear. Therefore, we assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut–lung axis by comparing bacterial communities in the upper and lower airways with stool findings. Finally, we assessed whether the bacterial communities were associated with lung inflammation to suggest dysbiosis.

Methods

We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates), lower airways (tracheal aspirate fluid and bronchoalveolar lavage fluid) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3–V4 region of the 16S rRNA gene.

Results

From 1102 (539 nasopharyngeal aspirates, 276 tracheal aspirate fluid, 89 bronchoalveolar lavage, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16S RNA gene sequencing. Bacterial load was low at birth and quickly increased with time, but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut, with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers.

Conclusions

Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated, such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants.




xi

Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin

The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7].




xi

Apraxia of speech involves lesions of dorsal arcuate fasciculus and insula in patients with aphasia

Objective

To determine the contributions of apraxia of speech (AOS) and anomia to conversational dysfluency.

Methods

In this observational study of 52 patients with chronic aphasia, 47 with concomitant AOS, fluency was quantified using correct information units per minute (CIUs/min) from propositional speech tasks. Videos of patients performing conversational, how-to and picture-description tasks, word and sentence repetition, and diadochokinetic tasks were used to diagnose AOS using the Apraxia of Speech Rating Scale (ASRS). Anomia was quantified by patients' scores on the 30 even-numbered items from the Boston Naming Test (BNT).

Results

Together, ASRS and BNT scores accounted for 51.4% of the total variance in CIUs/min; the ASRS score accounted for the majority of that variance. The BNT score was associated with lesions in the left superior temporal gyrus, left inferior frontal gyrus, and large parts of the insula. The global ASRS score was associated with lesions in the left dorsal arcuate fasciculus (AF), pre- and post-central gyri, and both banks of the central sulcus of the insula. The ASRS score for the primary distinguishing features of AOS (no overlap with features of aphasia) was associated with less AF and more insular involvement. Only ~27% of this apraxia-specific lesion overlapped with lesions associated with the BNT score. Lesions associated with AOS had minimal overlap with the frontal aslant tract (FAT) (<1%) or the extreme capsule fiber tract (1.4%). Finally, ASRS scores correlated significantly with damage to the insula but not to the AF, extreme capsule, or FAT.

Conclusions

Results are consistent with previous findings identifying lesions of the insula and AF in patients with AOS, damage to both of which may create dysfluency in patients with aphasia.




xi

Ataxic-hypotonic cerebral palsy in a cerebral palsy registry: Insights into a distinct subtype

Objective

To specifically report on ataxic-hypotonic cerebral palsy (CP) using registry data and to directly compare its features with other CP subtypes.

Methods

Data on prenatal, perinatal, and neonatal characteristics and gross motor function (Gross Motor Function Classification System [GMFCS]) and comorbidities in 35 children with ataxic-hypotonic CP were extracted from the Canadian Cerebral Palsy Registry and compared with 1,804 patients with other subtypes of CP.

Results

Perinatal adversity was detected significantly more frequently in other subtypes of CP (odds ratio [OR] 4.3, 95% confidence interval [CI] 1.5–11.7). The gestational age at birth was higher in ataxic-hypotonic CP (median 39.0 weeks vs 37.0 weeks, p = 0.027). Children with ataxic-hypotonic CP displayed more intrauterine growth restriction (OR 2.6, 95% CI 1.0–6.8) and congenital malformation (OR 2.4, 95% CI 1.2–4.8). MRI was more likely to be either normal (OR 3.8, 95% CI 1.4–10.5) or to show a cerebral malformation (OR 4.2, 95% CI 1.5–11.9) in ataxic-hypotonic CP. There was no significant difference in terms of GMFCS or the presence of comorbidities, except for more frequent communication impairment in ataxic-hypotonic CP (OR 4.2, 95% CI 1.5–11.6).

Conclusions

Our results suggest a predominantly genetic or prenatal etiology for ataxic-hypotonic CP and imply that a diagnosis of ataxic-hypotonic CP does not impart a worse prognosis with respect to comorbidities or functional impairment. This study contributes toward a better understanding of ataxic-hypotonic CP as a distinct nosologic entity within the spectrum of CP with its own pathogenesis, risk factors, clinical profile, and prognosis compared with other CP subtypes.




xi

Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4 [Developmental and Behavioral Genetics]

The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated Sall4 using Hoxb6Cre and Plzf in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The Sall4; Plzf double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of Sall4; Plzf. We found that Sall4 regulates Plzf expression prior to hindlimb outgrowth. Further expression analysis indicated that Hox10 genes and GLI3 are severely downregulated in the Sall4; Plzf double knockout hindlimb bud. In contrast, PLZF expression is reduced but detectable in Sall4; Gli3 double knockout limb buds, and SALL4 is expressed in the Plzf; Gli3 double knockout limb buds. These results indicate that Plzf, Gli3, and Hox10 genes downstream of Sall4, regulate femur and tibia development. In the autopod, we show that Sall4 negatively regulates Hedgehog signaling, which allows for development of the most anterior digit. Collectively, our study illustrates genetic systems that regulate development of the proximal-anterior skeletal elements in hindlimbs.




xi

Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila [Gene Expression]

BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity (Sry-). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry- interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry- was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.




xi

A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription [Bacterial Infections]

Antimicrobial peptides play an important role in host defense against Vibrio cholerae. Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carRr and carRs alleles, respectively, and replaced the carRs allele of a sensitive strain with the carRr allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains.




xi

A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting [Gene Delivery]

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.

IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.




xi

Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation [Virus-Cell Interactions]

Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus.

IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection.




xi

NF-{kappa}B and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection [Pathogenesis and Immunity]

The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-B transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-B complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.

IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-B p50 subunit partners with Keap1 to form the Keap1-NF-B complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.




xi

Sample multiplexing for targeted pathway proteomics in aging mice [Systems Biology]

Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over...




xi

Profile of Xiaowei Zhuang, winner of the 2020 Vilcek Prize in Biomedical Science [Profiles]

In 2006, the New York City-based Vilcek Foundation created an annual prize program for foreign-born biomedical scientists who have made major contributions to their fields while living and working in the United States. The founders, themselves immigrants from Czechoslovakia, established the program to raise public awareness of the indispensable role...




xi

NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.




xi

E2F6-Mediated Downregulation of MIR22HG Facilitates the Progression of Laryngocarcinoma by Targeting the miR-5000-3p/FBXW7 Axis [Research Article]

Recently, abundant evidence has clarified that long noncoding RNAs (lncRNAs) play an oncogenic or anticancer role in the tumorigenesis and development of diverse human cancers. Described as a crucial regulator in some cancers, MIR22HG has not yet been studied in laryngocarcinoma and therefore the underlying regulatory role of MIR22HG in laryngocarcinoma is worth detecting. In this study, MIR22HG expression in laryngocarcinoma cells was confirmed to be downregulated, and upregulated MIR22HG expression led to suppressive effects on laryngocarcinoma cell proliferation and migration. Molecular mechanism assays revealed that MIR22HG sponges miR-5000-3p in laryngocarcinoma cells. Besides, decreased expression of miR-5000-3p suppressed laryngocarcinoma cell proliferation and migration. Moreover, the FBXW7 gene was reported to be a downstream target gene of miR-5000-3p in laryngocarcinoma cells. More importantly, rescue assays verified that FBXW7 depletion or miR-5000-3p upregulation countervailed the repressive effects of MIR22HG overexpression on laryngocarcinoma progression. In addition, E2F6 was proved to be capable of inhibiting MIR22HG transcription in laryngocarcinoma cells. To sum up, E2F6-induced downregulation of MIR22HG promotes laryngocarcinoma progression through the miR-5000-3p/FBXW7 axis.




xi

Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System [Research Article]

The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B–/–). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.




xi

Complexities in Integrating Social Risk Assessment into Health Care Delivery




xi

Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell [RESEARCH ARTICLE]

Ana Gabriela Jimenez, Emily Cornelius Ruhs, Kailey J. Tobin, Katie N. Anderson, Audrey Le Pogam, Lyette Regimbald, and Francois Vezina

Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches –10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to –20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (–5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.




xi

The brains of six African mole-rat species show divergent responses to hypoxia [RESEARCH ARTICLE]

Samantha M. Logan, Kama E. Szereszewski, Nigel C. Bennett, Daniel W. Hart, Barry van Jaarsveld, Matthew E. Pamenter, and Kenneth B. Storey

Mole-rats are champions of self-preservation, with increased longevity compared to other rodents their size, strong antioxidant capabilities, and specialized defenses against endogenous oxidative stress. However, how the brains of these subterranean mammals handle acute in vivo hypoxia is poorly understood. This study is the first to examine the molecular response to low oxygen in six different species of hypoxia-tolerant mole-rats from sub-Saharan Africa. Protein carbonylation, a known marker of DNA damage (hydroxy-2’-deoxyguanosine), and antioxidant capacity did not change following hypoxia but HIF-1 protein levels increased significantly in the brains of two species. Nearly 30 miRNAs known to play roles in hypoxia-tolerance were differentially regulated in a species-specific manner. The miRNAs exhibiting the strongest response to low oxygen stress inhibit apoptosis and regulate neuroinflammation, likely providing neuroprotection. A principal component analysis using a subset of the molecular targets assessed herein revealed differences between control and hypoxic groups for two solitary species (Georychus capensis and Bathyergus suillus), which are ecologically adapted to a normoxic environment, suggesting a heightened sensitivity to hypoxia relative to species that may experience hypoxia more regularly in nature. By contrast, all molecular data were included in the PCA to detect a difference between control and hypoxic populations of eusocial Heterocephalus glaber, indicating they may require many lower-fold changes in signaling pathways to adapt to low oxygen settings. Finally, none of the Cryptomys hottentotus subspecies showed a statistical difference between control and hypoxic groups, presumably due to hypoxia-tolerance derived from environmental pressures associated with a subterranean and social lifestyle.




xi

Limits to Sustained Energy Intake XXXI: Effect of Graded Levels of Dietary Fat on Lactation Performance in Swiss Mice [RESEARCH ARTICLE]

Yi Huang, Jazmin Osorio Mendoza, Catherine Hambly, Baoguo Li, Zengguang Jin, Li Li, Moshen Madizi, Sumei Hu, and John R. Speakman

The heat dissipation limit theory predicts lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared to those of 8.3% and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6, 25%: 278.8±25.8, 41.7%: 359.6±51.5, 58.3%: 353.7±43.6, 66.6%: 346±44.7 kJ day–1), lower daily energy expenditure (8.3%: 128.5±16, 25%: 131.6±8.4, 41.7%: 124.4±10.8, 58.3%: 115.1±10.5, 66.6%: 111.2±11.5 kJ day–1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3, 25%: 147.2±25.1, 41.7%: 225.1±49.6, 58.3%: 238.6±40.1, 66.6%: 234.8±41.1 kJ day–1). Milk fat content (%) was unrelated to dietary fat content, indicating females on higher fat diets (> 41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared to those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.




xi

Membrane peroxidation index and maximum lifespan are negatively correlated in fish of genus Nothobranchius [SHORT COMMUNICATION]

Jorge de Costa, Gustavo Barja, and Pedro F. Almaida-Pagan

Lipid composition of cell membranes is linked to metabolic rate and lifespan in mammals and birds but very little information is available for fishes. In this study, three fish species of the short-lived annual genus Nothobranchius with different maximum lifespan potentials (MLSP) and the longer-lived outgroup species Aphyosemion australe were studied to test whether they conform to the predictions of the longevity-homeoviscous adaptation (LHA) theory of aging. Lipid analyses were performed in whole fish samples and peroxidation indexes (PIn) for every PL class and for the whole membrane, were calculated. Total PL content was significantly lower in A. australe and N. korthausae, the two species with the highest MLSP, and a negative correlation between membrane total PIn and fish MLSP was found, this meaning that the longer-lived fish species have more saturated membranes and therefore, a lower susceptibility to oxidative damage, as the LHA theory posits.




xi

Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer [RESEARCH ARTICLE]

Jack Nguyen and Meir M. Barak

Cortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analyzed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. Seeing that the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is likely subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression vs. tension) affect differently the osteoclasts and osteoblasts in the BMU. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while osteoblasts’ osteoid deposition and mineralization is not affected by strain magnitude and sign.