es Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions By www.jneurosci.org Published On :: 2019-09-11 Tessa E.S. CharlesworthSep 11, 2019; 39:7228-7243Viewpoints Full Article
es Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia By www.jneurosci.org Published On :: 2015-11-18 Fadel ZeidanNov 18, 2015; 35:15307-15325BehavioralSystemsCognitive Full Article
es Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys By www.jneurosci.org Published On :: 2024-10-16 Corey M. ZiembaOct 16, 2024; 44:e0349242024-e0349242024Systems/Circuits Full Article
es Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep By www.jneurosci.org Published On :: 2019-07-03 Jesse J. LangilleJul 3, 2019; 39:5244-5246Journal Club Full Article
es A Gradient in Endogenous Rhythmicity and Oscillatory Drive Matches Recruitment Order in an Axial Motor Pool By www.jneurosci.org Published On :: 2012-08-08 Evdokia MenelaouAug 8, 2012; 32:10925-10939BehavioralSystemsCognitive Full Article
es Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine By www.jneurosci.org Published On :: 2021-02-03 Danilo De GregorioFeb 3, 2021; 41:891-900Symposium and Mini-Symposium Full Article
es Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male By www.jneurosci.org Published On :: 2024-05-29 Hannah GrotzingerMay 29, 2024; 44:e1856232024-e1856232024BehavioralSystemsCognitive Full Article
es The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands By www.jneurosci.org Published On :: 2019-12-11 William W. SeeleyDec 11, 2019; 39:9878-9882Progressions Full Article
es Circadian Rhythms Tied to Changes in Brain Morphology in a Densely Sampled Male By www.jneurosci.org Published On :: 2024-09-18 Elle M. MurataSep 18, 2024; 44:e0573242024-e0573242024BehavioralSystemsCognitive Full Article
es Preservation and conservation By www.sl.nsw.gov.au Published On :: Mon, 18 Mar 2024 00:01:16 +0000 Come behind the scenes to see the Conservation Laboratory and the work undertaken by the Collection Care Branch. Full Article
es Drawing in the Galleries By www.sl.nsw.gov.au Published On :: Tue, 19 Mar 2024 03:00:19 +0000 Join us in the Paintings Galleries for drawing adventures! Full Article
es Library tour for families By www.sl.nsw.gov.au Published On :: Tue, 19 Mar 2024 03:37:14 +0000 Bring the whole family on a tour to discover the spaces and stories at the State Library of NSW. Full Article
es To See or Not to See: Prestimulus {alpha} Phase Predicts Visual Awareness By www.jneurosci.org Published On :: 2009-03-04 Kyle E. MathewsonMar 4, 2009; 29:2725-2732BehavioralSystemsCognitive Full Article
es An Implicit Plan Overrides an Explicit Strategy during Visuomotor Adaptation By www.jneurosci.org Published On :: 2006-04-05 Pietro MazzoniApr 5, 2006; 26:3642-3645BRIEF COMMUNICATION Full Article
es Decoding and Reconstructing Color from Responses in Human Visual Cortex By www.jneurosci.org Published On :: 2009-11-04 Gijs Joost BrouwerNov 4, 2009; 29:13992-14003BehavioralSystemsCognitive Full Article
es Age-Related Changes in 1/f Neural Electrophysiological Noise By www.jneurosci.org Published On :: 2015-09-23 Bradley VoytekSep 23, 2015; 35:13257-13265BehavioralSystemsCognitive Full Article
es Neuronal Avalanches in Neocortical Circuits By www.jneurosci.org Published On :: 2003-12-03 John M. BeggsDec 3, 2003; 23:11167-11177BehavioralSystemsCognitive Full Article
es Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation By www.jneurosci.org Published On :: 2006-10-04 Holly OakleyOct 4, 2006; 26:10129-10140Neurobiology of Disease Full Article
es Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream By www.jneurosci.org Published On :: 2015-07-08 Umut GüçlüJul 8, 2015; 35:10005-10014BehavioralSystemsCognitive Full Article
es Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to -9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization. Full Article
es A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses. Full Article
es Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex. Full Article
es Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota–gut–brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD. Full Article
es The Role of the Hippocampus in Consolidating Motor Learning during Wakefulness By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Full Article
es Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain. Full Article
es Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior. Full Article
es Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior. Full Article
es Electrocortical Responses in Anticipation of Avoidable and Inevitable Threats: A Multisite Study By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 When faced with danger, human beings respond with a repertoire of defensive behaviors, including freezing and active avoidance. Previous research has revealed a pattern of physiological responses, characterized by heart rate bradycardia, reduced visual exploration, and heightened sympathetic arousal in reaction to avoidable threats, suggesting a state of attentive immobility in humans. However, the electrocortical underpinnings of these behaviors remain largely unexplored. To investigate the visuocortical components of attentive immobility, we recorded parieto-occipital alpha activity, along with eye movements and autonomic responses, while participants awaited either an avoidable, inevitable, or no threat. To test the robustness and generalizability of our findings, we collected data from a total of 101 participants (76 females, 25 males) at two laboratories. Across sites, we observed an enhanced suppression of parieto-occipital alpha activity during avoidable threats, in contrast to inevitable or no threat trials, particularly toward the end of the trial that prompted avoidance responses. This response pattern coincided with heart rate bradycardia, centralization of gaze, and increased sympathetic arousal. Furthermore, our findings expand on previous research by revealing that the amount of alpha suppression, along with centralization of gaze, and heart rate changes predict the speed of motor responses. Collectively, these findings indicate that when individuals encounter avoidable threats, they enter a state of attentive immobility, which enhances perceptual processing and facilitates action preparation. This state appears to reflect freezing-like behavior in humans. Full Article
es Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions. Full Article
es Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope of the 1/frequency (1/f) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states. Full Article
es BRCA1 Promotes Repair of DNA Damage in Cochlear Hair Cells and Prevents Hearing Loss By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive. In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA damage–inducing agent generates DNA damage in postmitotic HCs but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA damage–induced cell death and hearing loss. Full Article
es Erratum: Rosenberg et al., "{beta}-Adrenergic Signaling Promotes Morphological Maturation of Astrocytes in Female Mice" By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
es Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and for engineering applications such as brain–machine interfaces. However, neural decoding studies mainly focused on different decoding algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organization. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that the inhibitory neurons’ preference for ILD off the midline and the excitatory neurons’ heterogeneous ILD tuning account for their decoding differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimental and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations. Full Article
es PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4bM220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone–shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4bM220T mice. At 24 h post-trauma, Pde4bM220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4bM220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk. Full Article
es Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by -secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ. Full Article
es Investigation of Metaplasticity Associated with Transcranial Focused Ultrasound Neuromodulation in Humans By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Low-intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for noninvasive brain stimulation (NIBS). TUS delivered in a theta (5 Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30–60 min, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex. We delivered four interventions: (1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), (2) real cTBS150 followed by sham tbTUS (cTBS only), (3) real cTBS150 followed by real tbTUS (metaplasticity), and (4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation (ICF), and short-interval intracortical facilitation before and up to 90 min after plasticity intervention. Plasticity effects lasted at least 60 min longer when tbTUS was primed with cTBS150 compared with tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed. Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggests that metaplasticity can be harnessed in the therapeutic development of TUS. Full Article
es Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal’s behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences. Full Article
es Our Brains on Art: An Ancient Prescription for 21st Century Solutions By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Full Article
es A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration. Full Article
es Retinal Input to Macaque Superior Colliculus Derives from Branching Axons Projecting to the Lateral Geniculate Nucleus By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 The superior colliculus receives a direct projection from retinal ganglion cells. In primates, it remains unknown if the same ganglion cells also supply the lateral geniculate nucleus. To address this issue, a double-label experiment was performed in two male macaques. The animals fixated a target while injection sites were scouted in the superior colliculus by recording and stimulating with a tetrode. Once suitable sites were identified, cholera toxin subunit B-Alexa Fluor 488 was injected via an adjacent micropipette. In a subsequent acute experiment, cholera toxin subunit B-Alexa Fluor 555 was injected into the lateral geniculate nucleus at matching retinotopic locations. After a brief survival period, ganglion cells were examined in retinal flatmounts. The percentage of double-labeled cells varied locally, depending on the relative efficiency of retrograde transport by each tracer and the precision of retinotopic overlap of injection sites in each target nucleus. In counting boxes with extensive overlap, 76–98% of ganglion cells projecting to the superior colliculus were double labeled. Cells projecting to the superior colliculus constituted 4.0–6.7% of the labeled ganglion cell population. In one particularly large zone, there were 5,746 cells labeled only by CTB-AF555, 561cells double labeled by CTB-AF555 and CTB-AF488, but no cell labeled only by CTB-AF488. These data indicate that retinal input to the macaque superior colliculus arises from a collateral axonal branch supplied by ~5% of the ganglion cells that project to the lateral geniculate nucleus. Surprisingly, there exist no ganglion cells that project exclusively to the SC. Full Article
es Cortically Disparate Visual Features Evoke Content-Independent Load Signals during Storage in Working Memory By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 It is well established that holding information in working memory (WM) elicits sustained stimulus-specific patterns of neural activity. Nevertheless, here we provide evidence for a distinct class of neural activity that tracks the number of individuated items in working memory, independent of the type of visual features stored. We present two EEG studies of young adults of both sexes that provide robust evidence for a signal tracking the number of individuated representations in working memory, regardless of the specific feature values stored. In Study 1, subjects maintained either colors or orientations across separate blocks in a single session. We found near-perfect generalization of the load signal between these two conditions, despite being able to simultaneously decode which feature had been voluntarily stored. In Study 2, participants attended to two features with very distinct cortical representations: color and motion coherence. We again found evidence for a neural load signal that robustly generalized across these distinct visual features, even though cortically disparate regions process color and motion coherence. Moreover, representational similarity analysis provided converging evidence for a content-independent load signal, while simultaneously showing that unique variance in EEG activity tracked the specific features that were stored. We posit that this load signal reflects a content-independent "pointer" operation that binds objects to the current context while parallel but distinct neural signals represent the features that are stored for each item in memory. Full Article
es Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs. Full Article
es Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits. Full Article
es Erratum: McCosh et al., "Norepinephrine Neurons in the Nucleus of the Solitary Tract Suppress Luteinizing Hormone Secretion in Female Mice" By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Full Article
es The Hippocampus Preorders Movements for Skilled Action Sequences By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Plasticity in the subcortical motor basal ganglia–thalamo–cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory—the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders. Full Article
es Spatiotemporal Neural Network for Sublexical Information Processing: An Intracranial SEEG Study By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Words offer a unique opportunity to separate the processing mechanisms of object subcomponents from those of the whole object, because the phonological or semantic information provided by the word subcomponents (i.e., sublexical information) can conflict with that provided by the whole word (i.e., lexical information). Previous studies have revealed some of the specific brain regions and temporal information involved in sublexical information processing. However, a comprehensive spatiotemporal neural network for sublexical processing remains to be fully elucidated due to the low temporal or spatial resolutions of previous neuroimaging studies. In this study, we recorded stereoelectroencephalography signals with high spatial and temporal resolutions from a large sample of 39 epilepsy patients (both sexes) during a Chinese character oral reading task. We explored the activated brain regions and their connectivity related to three sublexical effects: phonological regularity (whether the whole character's pronunciation aligns with its phonetic radical), phonological consistency (whether characters with the same phonetic radical share the same pronunciation), and semantic transparency (whether the whole character's meaning aligns with its semantic radical). The results revealed that sublexical effects existed in the inferior frontal gyrus, precentral and postcentral gyri, temporal lobe, and middle occipital gyrus. Additionally, connectivity from the middle occipital gyrus to the postcentral gyrus and from postcentral gyrus to the fusiform gyrus was associated with the sublexical effects. These findings provide valuable insights into the spatiotemporal dynamics of sublexical processing and object recognition in the brain. Full Article
es G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Systemic study of pathogenic pathways and interrelationships underlying genes associated with Alzheimer's disease (AD) facilitates the identification of new targets for effective treatments. Recently available large-scale multiomics datasets provide opportunities to use computational approaches for such studies. Here, we devised a novel disease gene identification (digID) computational framework that consists of a semi-supervised deep learning classifier to predict AD-associated genes and a protein–protein interaction (PPI) network-based analysis to prioritize the importance of these predicted genes in AD. digID predicted 1,529 AD-associated genes and revealed potentially new AD molecular mechanisms and therapeutic targets including GNAI1 and GNB1, two G-protein subunits that regulate cell signaling, and KNG1, an upstream modulator of CDC42 small G-protein signaling and mediator of inflammation and candidate coregulator of amyloid precursor protein (APP). Analysis of mRNA expression validated their dysregulation in AD brains but further revealed the significant spatial patterns in different brain regions as well as among different subregions of the frontal cortex and hippocampi. Super-resolution STochastic Optical Reconstruction Microscopy (STORM) further demonstrated their subcellular colocalization and molecular interactions with APP in a transgenic mouse model of both sexes with AD-like mutations. These studies support the predictions made by digID while highlighting the importance of concurrent biological validation of computationally identified gene clusters as potential new AD therapeutic targets. Full Article
es A Novel Directed Seed-Based Connectivity Analysis Toolbox Applied to Human and Marmoset Resting-State FMRI By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Estimating the direction of functional connectivity (FC) can help further elucidate complex brain function. However, the estimation of directed FC at the voxel level in fMRI data, and evaluating its performance, has yet to be done. We therefore developed a novel directed seed-based connectivity analysis (SCA) method based on normalized pairwise Granger causality that provides greater detail and accuracy over ROI-based methods. We evaluated its performance against 145 cortical retrograde tracer injections in male and female marmosets that were used as ground truth cellular connectivity on a voxel-by-voxel basis. The receiver operating characteristic (ROC) curve was calculated for each injection, and we achieved area under the ROC curve of 0.95 for undirected and 0.942 for directed SCA in the case of high cell count threshold. This indicates that SCA can reliably estimate the strong cellular connections between voxels in fMRI data. We then used our directed SCA method to analyze the human default mode network (DMN) and found that dlPFC (dorsolateral prefrontal cortex) and temporal lobe were separated from other DMN regions, forming part of the language-network that works together with the core DMN regions. We also found that the cerebellum (Crus I-II) was strongly targeted by the posterior parietal cortices and dlPFC, but reciprocal connections were not observed. Thus, the cerebellum may not be a part of, but instead a target of, the DMN and language-network. Summarily, our novel directed SCA method, visualized with a new functional flat mapping technique, opens a new paradigm for whole-brain functional analysis. Full Article
es Neural Representations of Concreteness and Concrete Concepts Are Specific to the Individual By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Different people listening to the same story may converge upon a largely shared interpretation while still developing idiosyncratic experiences atop that shared foundation. What linguistic properties support this individualized experience of natural language? Here, we investigate how the "concrete–abstract" axis—the extent to which a word is grounded in sensory experience—relates to within- and across-subject variability in the neural representations of language. Leveraging a dataset of human participants of both sexes who each listened to four auditory stories while undergoing functional magnetic resonance imaging, we demonstrate that neural representations of "concreteness" are both reliable across stories and relatively unique to individuals, while neural representations of "abstractness" are variable both within individuals and across the population. Using natural language processing tools, we show that concrete words exhibit similar neural representations despite spanning larger distances within a high-dimensional semantic space, which potentially reflects an underlying representational signature of sensory experience—namely, imageability—shared by concrete words but absent from abstract words. Our findings situate the concrete–abstract axis as a core dimension that supports both shared and individualized representations of natural language. Full Article
es Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex. Similarly, homozygous or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function, and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory-deprived mice. Together, these results suggest that experience- and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. Additionally, MEF2C regulates the expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits. Full Article