l

Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline

To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed.




l

Improving sensitivity of XANES structural fit to the bridged metal–metal coordination

Hard X-ray absorption spectroscopy is a valuable in situ probe for non-destructive diagnostics of metal sites. The low-energy interval of a spectrum (XANES) contains information about the metal oxidation state, ligand type, symmetry and distances in the first coordination shell but shows almost no dependency on the bridged metal–metal bond length. The higher-energy interval (EXAFS), on the contrary, is more sensitive to the coordination numbers and can decouple the contribution from distances in different coordination shells. Supervised machine-learning methods can combine information from different intervals of a spectrum; however, computational approaches for the near-edge region of the spectrum and higher energies are different. This work aims to keep all benefits of XANES and extend its sensitivity towards the interatomic distances in the first and second coordination shells. Using a binuclear bridged copper complex as a case study and cross-validation analysis as a quantitative tool it is shown that the first 170 eV above the edge are already sufficient to balance the contributions of Cu–O/N scattering and Cu–Cu scattering. As a more general outcome this work highlights the trivial but often overlooked importance of using `longer' energy intervals of XANES for structural refinement and machine-learning predictions. The first 200 eV above the absorption edge still do not require parametrization of Debye–Waller damping and can be calculated within full multiple scattering or finite difference approximations with only moderately increased computational costs.




l

Modelling the power threshold and optimum thermal deformation of indirectly liquid-nitro­gen cryo-cooled Si monochromators

Maximizing the performance of crystal monochromators is a key aspect in the design of beamline optics for diffraction-limited synchrotron sources. Temperature and deformation of cryo-cooled crystals, illuminated by high-power beams of X-rays, can be estimated with a purely analytical model. The analysis is based on the thermal properties of cryo-cooled silicon crystals and the cooling geometry. Deformation amplitudes can be obtained, quickly and reliably. In this article the concept of threshold power conditions is introduced and defined analytically. The contribution of parameters such as liquid-nitro­gen cooling efficiency, thermal contact conductance and interface contact area of the crystal with the cooling base is evaluated. The optimal crystal illumination and the base temperature are inferred, which help minimize the optics deformation. The model has been examined using finite-element analysis studies performed for several beamlines of the Diamond-II upgrade.




l

At-wavelength metrology of an X-ray mirror using a downstream wavefront modulator

At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication.




l

PINK: a tender X-ray beamline for X-ray emission spectroscopy

A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30–80) provides a high photon flux (1014 photons s−1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000–40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.




l

Iterative Bragg peak removal on X-ray absorption spectra with automatic intensity correction

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.




l

Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis

The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis.




l

A new experimental setup for combined fast differential scanning calorimetry and X-ray photon correlation spectroscopy

Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter.




l

Evaluation of the X-ray/EUV Nanolithography Facility at AS through wavefront propagation simulations

Synchrotron light sources can provide the required spatial coherence, stability and control to support the development of advanced lithography at the extreme ultraviolet and soft X-ray wavelengths that are relevant to current and future fabricating technologies. Here an evaluation of the optical performance of the soft X-ray (SXR) beamline of the Australian Synchrotron (AS) and its suitability for developing interference lithography using radiation in the 91.8 eV (13.5 nm) to 300 eV (4.13 nm) range are presented. A comprehensive physical optics model of the APPLE-II undulator source and SXR beamline was constructed to simulate the properties of the illumination at the proposed location of a photomask, as a function of photon energy, collimation and monochromator parameters. The model is validated using a combination of experimental measurements of the photon intensity distribution of the undulator harmonics. It is shown that the undulator harmonics intensity ratio can be accurately measured using an imaging detector and controlled using beamline optics. Finally, the photomask geometric constraints and achievable performance for the limiting case of fully spatially coherent illumination are evaluated.




l

Wavefront analysis and phase correctors design using SHADOW

Knife-edge imaging is a successful method for determining the wavefront distortion of focusing optics such as Kirkpatrick–Baez mirrors or compound refractive lenses. In this study, the wavefront error of an imperfect elliptical mirror is predicted by developing a knife-edge program using the SHADOW/OASYS platform. It is shown that the focusing optics can be aligned perfectly by minimizing the parabolic and cubic coefficients of the wavefront error. The residual wavefront error provides precise information about the figure/height errors of the focusing optics suggesting it as an accurate method for in situ optical metrology. A Python program is developed to design a customized wavefront refractive corrector to minimize the residual wavefront error. Uniform beam at and out of focus and higher peak intensity are achieved by the wavefront correction in comparison with ideal focusing. The developed code provides a quick way for wavefront error analysis and corrector design for non-ideal optics especially for the new-generation diffraction-limited sources, and saves considerable experimental time and effort.




l

Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.




l

Infrared spectroscopy across scales in length and time at BESSY II

The infrared beamline at BESSY II storage ring was upgraded recently to extend the capabilities of infrared microscopy. The endstations available at the beamline are now facilitating improved characterization of molecules and materials at different length scales and time resolutions. Here, the current outline of the beamline is reported and an overview of the endstations available is given. In particular, the first results obtained by using a new microscope for nano-spectroscopy that was implemented are presented. The capabilities of the scattering-type near-field optical microscope (s-SNOM) are demonstrated by investigating cellulose microfibrils, representing nanoscopic objects of a hierarchical structure. It is shown that the s-SNOM coupled to the beamline allows imaging to be performed with a spatial resolution of less than 30 nm and infrared spectra to be collected from an effective volume of less than 30 nm × 30 nm × 12 nm. Potential steps for further optimization of the beamline performance are discussed.




l

A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging

Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation–matter interactions in these applications.




l

Laminography as a tool for imaging large-size samples with high resolution

Despite the increased brilliance of the new generation synchrotron sources, there is still a challenge with high-resolution scanning of very thick and absorbing samples, such as a whole mouse brain stained with heavy elements, and, extending further, brains of primates. Samples are typically cut into smaller parts, to ensure a sufficient X-ray transmission, and scanned separately. Compared with the standard tomography setup where the sample would be cut into many pillars, the laminographic geometry operates with slab-shaped sections significantly reducing the number of sample parts to be prepared, the cutting damage and data stitching problems. In this work, a laminography pipeline for imaging large samples (>1 cm) at micrometre resolution is presented. The implementation includes a low-cost instrument setup installed at the 2-BM micro-CT beamline of the Advanced Photon Source. Additionally, sample mounting, scanning techniques, data stitching procedures, a fast reconstruction algorithm with low computational complexity, and accelerated reconstruction on multi-GPU systems for processing large-scale datasets are presented. The applicability of the whole laminography pipeline was demonstrated by imaging four sequential slabs throughout an entire mouse brain sample stained with osmium, in total generating approximately 12 TB of raw data for reconstruction.




l

Teaching about the birth of synchrotron light: the role of Frascati and a missed opportunity

The users of synchrotron light are now tens of thousands throughout the world. Paradoxically, many of them do not know much about the early history of their domain. This is regrettable, since education about the initial developments makes it easier to fully understand synchrotron radiation and effectively use its amazing features. Scarcely known, in particular, is the key role of scientists working in Frascati, Italy. Partly based on his personal experiences, the author reports here relevant aspects of this story, including a pioneering French–Italian experiment that started in the early 1960s, and the Frascati contributions in the 1970s and 1980s to the birth of synchrotron light research. Finally, the unwise strategic decisions that prevented Italy from achieving absolute leadership in this domain – in spite of its unique initial advantages – are analyzed.




l

The concept for hard X-ray beamline optics at SLS 2.0

In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.




l

Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.




l

Enhanced X-ray free-electron laser performance with optical klystron and helical undulators

This article presents a demonstration of the improved performance of an X-ray free-electron laser (FEL) using the optical klystron mechanism and helical undulator configuration, in comparison with the common planar undulator configuration without optical klystron. The demonstration was carried out at Athos, the soft X-ray beamline of SwissFEL. Athos has variable-polarization undulators, and small magnetic chicanes placed between every two undulators to fully exploit the optical klystron. It was found that, for wavelengths of 1.24 nm and 3.10 nm, the required length to achieve FEL saturation is reduced by about 35% when using both the optical klystron and helical undulators, with each effect accounting for about half of the improvement. Moreover, it is shown that a helical undulator configuration provides a 20% to 50% higher pulse energy than planar undulators. This work represents an important step towards more compact and high-power FELs, rendering this key technology more efficient, affordable and accessible to the scientific community.




l

First X-ray spectral ptychography and resonant ptychographic computed tomography experiments at the SWING beamline from Synchrotron SOLEIL

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and β, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.




l

Hard X-ray operation of X-ray gas monitors at the European XFEL

X-ray gas monitors (XGMs) are operated at the European XFEL for non-invasive single-shot pulse energy measurements and average beam-position monitoring. The underlying measurement principle is the photo-ionization of rare gas atoms at low gas pressures and the detection of the photo-ions and photo-electrons created. These are essential for tuning and sustaining self-amplified spontaneous emission (SASE) operation, machine radiation safety, and sorting single-shot experimental data according to pulse energy. In this paper, the first results from XGM operation at photon energies up to 30 keV are presented, which are far beyond the original specification of this device. Here, the Huge Aperture MultiPlier (HAMP) is used for single-shot pulse energy measurements since the standard X-ray gas monitor detectors (XGMDs) do not provide a sufficient signal-to-noise ratio, even at the highest operating gas pressures. A single-shot correlation coefficient of 0.98 is measured between consecutive XGMs operated with HAMP, which is as good as measuring with the standard XGMD detectors. An intra-train non-linearity of the HAMP signal is discovered, and operation parameters to mitigate this effect are studied. The upper repetition rate limit of HAMP operation at 2.25 MHz is also determined. Finally, the possibilities and limits for future XGM operation at photon energies up to 50 keV are discussed.




l

Mapping of lithium ion concentrations in 3D structures through development of in situ correlative imaging of X-ray Compton scattering-computed tomography

Understanding the correlation between chemical and microstructural properties is critical for unraveling the fundamental relationship between materials chemistry and physical structures that can benefit materials science and engineering. Here, we demonstrate novel in situ correlative imaging of the X-ray Compton scattering computed tomography (XCS-CT) technique for studying this fundamental relationship. XCS-CT can image light elements that do not usually exhibit strong signals using other X-ray characterization techniques. This paper describes the XCS-CT setup and data analysis method for calculating the valence electron momentum density and lithium-ion concentration, and provides two examples of spatially and temporally resolved chemical properties inside batteries in 3D. XCS-CT was applied to study two types of rechargeable lithium batteries in standard coin cell casings: (1) a lithium-ion battery containing a cathode of bespoke microstructure and liquid electrolyte, and (2) a solid-state battery containing a solid-polymer electrolyte. The XCS-CT technique is beneficial to a wide variety of materials and systems to map chemical composition changes in 3D structures.




l

The laser pump X-ray probe system at LISA P08 PETRA III

Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid–air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump–probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.




l

Self-calibration strategies for reducing systematic slope measurement errors of autocollimators in deflectometric profilometry

Deflectometric profilometers are used to precisely measure the form of beam shaping optics of synchrotrons and X-ray free-electron lasers. They often utilize autocollimators which measure slope by evaluating the displacement of a reticle image on a detector. Based on our privileged access to the raw image data of an autocollimator, novel strategies to reduce the systematic measurement errors by using a set of overlapping images of the reticle obtained at different positions on the detector are discussed. It is demonstrated that imaging properties such as, for example, geometrical distortions and vignetting, can be extracted from this redundant set of images without recourse to external calibration facilities. This approach is based on the fact that the properties of the reticle itself do not change – all changes in the reticle image are due to the imaging process. Firstly, by combining interpolation and correlation, it is possible to determine the shift of a reticle image relative to a reference image with minimal error propagation. Secondly, the intensity of the reticle image is analysed as a function of its position on the CCD and a vignetting correction is calculated. Thirdly, the size of the reticle image is analysed as a function of its position and an imaging distortion correction is derived. It is demonstrated that, for different measurement ranges and aperture diameters of the autocollimator, reductions in the systematic errors of up to a factor of four to five can be achieved without recourse to external measurements.




l

Asymmetric electrostatic dodecapole: compact bandpass filter with low aberrations for momentum microscopy

Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer.




l

High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.




l

Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments

Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s−1, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines.




l

X-ray phase-contrast tomography of cells manipulated with an optical stretcher

X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.




l

Soft X-ray wavefront sensing at an ellipsoidal mirror shell

A reliable `in situ' method for wavefront sensing in the soft X-ray domain is reported, developed for the characterization of rotationally symmetric optical elements, like an ellipsoidal mirror shell. In a laboratory setup, the mirror sample is irradiated by an electron-excited (4.4 keV), micrometre-sized (∼2 µm) fluorescence source (carbon Kα, 277 eV). Substantially, the three-dimensional intensity distribution I(r) is recorded by a CCD camera (2048 × 512 pixels of 13.5 µm) at two positions along the optical axis, symmetrically displaced by ±21–25% from the focus. The transport-of-intensity equation is interpreted in a geometrical sense from plane to plane and implemented as a ray tracing code, to retrieve the phase Φ(r) from the radial intensity gradient on a sub-pixel scale. For reasons of statistical reliability, five intra-/extra-focal CCD image pairs are evaluated and averaged to an annular two-dimensional map of the wavefront error {cal W}. In units of the test wavelength (C Kα), an r.m.s. value sigma_{cal{W}} = ±10.9λ0 and a peak-to-valley amplitude of ±31.3λ0 are obtained. By means of the wavefront, the focus is first reconstructed with a result for its diameter of 38.4 µm, close to the direct experimental observation of 39.4 µm (FWHM). Secondly, figure and slope errors of the ellipsoid are characterized with an average of ±1.14 µm and ±8.8 arcsec (r.m.s.), respectively, the latter in reasonable agreement with the measured focal intensity distribution. The findings enable, amongst others, the precise alignment of axisymmetric X-ray mirrors or the design of a wavefront corrector for high-resolution X-ray science.




l

Development of a portable and cost-effective femtosecond fibre laser synchronizable with synchrotron X-ray pulses

This study introduces a compact, portable femtosecond fibre laser system designed for synchronization with SPring-8 synchrotron X-ray pulses in a uniform filling mode. Unlike traditional titanium–sapphire mode-locked lasers, which are fixed installations, our system utilizes fibre laser technology to provide a practical alternative for time-resolved spectroscopy, striking a balance between usability, portability and cost-efficiency. Comprehensive evaluations, including pulse characterization, timing jitter and frequency stability tests revealed a centre wavelength of 1600 nm, a pulse energy of 4.5 nJ, a pulse duration of 35 fs with a timing jitter of less than 9 ps, confirming the suitability of the system for time-resolved spectroscopic studies. This development enhances the feasibility of experiments that combine synchrotron X-rays and laser pulses, offering significant scientific contributions by enabling more flexible and diverse research applications.




l

Dual-beam X-ray nano-holotomography

Nanotomography with hard X-rays is a widely used technique for high-resolution imaging, providing insights into the structure and composition of various materials. In recent years, tomographic approaches based on simultaneous illuminations of the same sample region from different angles by multiple beams have been developed at micrometre image resolution. Transferring these techniques to the nanoscale is challenging due to the loss in photon flux by focusing the X-ray beam. We present an approach for multi-beam nanotomography using a dual-beam Fresnel zone plate (dFZP) in a near-field holography setup. The dFZP generates two nano-focused beams that overlap in the sample plane, enabling the simultaneous acquisition of two projections from slightly different angles. This first proof-of-principle implementation of the dual-beam setup allows for the efficient removal of ring artifacts and noise using machine-learning approaches. The results open new possibilities for full-field multi-beam nanotomography and pave the way for future advancements in fast holotomography and artifact-reduction techniques.




l

Automated spectrometer alignment via machine learning

During beam time at a research facility, alignment and optimization of instrumentation, such as spectrometers, is a time-intensive task and often needs to be performed multiple times throughout the operation of an experiment. Despite the motorization of individual components, automated alignment solutions are not always available. In this study, a novel approach that combines optimisers with neural network surrogate models to significantly reduce the alignment overhead for a mobile soft X-ray spectrometer is proposed. Neural networks were trained exclusively using simulated ray-tracing data, and the disparity between experiment and simulation was obtained through parameter optimization. Real-time validation of this process was performed using experimental data collected at the beamline. The results demonstrate the ability to reduce alignment time from one hour to approximately five minutes. This method can also be generalized beyond spectrometers, for example, towards the alignment of optical elements at beamlines, making it applicable to a broad spectrum of research facilities.




l

The HEPS synchrotron unleashes new medical frontiers




l

Roentgenoscopy of laser-induced projectile impact testing

Laser-induced projectile impact testing (LIPIT) based on synchrotron imaging is proposed and validated. This emerging high-velocity, high-strain microscale dynamic loading technique offers a unique perspective on the strain and energy dissipation behavior of materials subjected to high-speed microscale single-particle impacts. When combined with synchrotron radiation imaging techniques, LIPIT allows for in situ observation of particle infiltration. Two validation experiments were carried out, demonstrating the potential of LIPIT in the roentgenoscopy of the dynamic properties of various materials. With a spatial resolution of 10 µm and a temporal resolution of 33.4 µs, the system was successfully realized at the Beijing Synchrotron Radiation Facility 3W1 beamline. This innovative approach opens up new avenues for studying the dynamic properties of materials in situ.




l

The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties

In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors.




l

Signal-to-noise and spatial resolution in in-line imaging. 1. Basic theory, numerical simulations and planar experimental images

Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.




l

TomoPyUI: a user-friendly tool for rapid tomography alignment and reconstruction

The management and processing of synchrotron and neutron computed tomography data can be a complex, labor-intensive and unstructured process. Users devote substantial time to both manually processing their data (i.e. organizing data/metadata, applying image filters etc.) and waiting for the computation of iterative alignment and reconstruction algorithms to finish. In this work, we present a solution to these problems: TomoPyUI, a user interface for the well known tomography data processing package TomoPy. This highly visual Python software package guides the user through the tomography processing pipeline from data import, preprocessing, alignment and finally to 3D volume reconstruction. The TomoPyUI systematic intermediate data and metadata storage system improves organization, and the inspection and manipulation tools (built within the application) help to avoid interrupted workflows. Notably, TomoPyUI operates entirely within a Jupyter environment. Herein, we provide a summary of these key features of TomoPyUI, along with an overview of the tomography processing pipeline, a discussion of the landscape of existing tomography processing software and the purpose of TomoPyUI, and a demonstration of its capabilities for real tomography data collected at SSRL beamline 6-2c.




l

X-ray optics for the cavity-based X-ray free-electron laser

A cavity-based X-ray free-electron laser (CBXFEL) is a possible future direction in the development of fully coherent X-ray sources. CBXFELs consist of a low-emittance electron source, a magnet system with several undulators and chicanes, and an X-ray cavity. The X-ray cavity stores and circulates X-ray pulses for repeated FEL interactions with electron pulses until the FEL reaches saturation. CBXFEL cavities require low-loss wavefront-preserving optical components: near-100%-reflectivity X-ray diamond Bragg-reflecting crystals, outcoupling devices such as thin diamond membranes or X-ray gratings, and aberration-free focusing elements. In the framework of the collaborative CBXFEL research and development project of Argonne National Laboratory, SLAC National Accelerator Laboratory and SPring-8, we report here the design, manufacturing and characterization of X-ray optical components for the CBXFEL cavity, which include high-reflectivity diamond crystal mirrors, a diamond drumhead crystal with thin membranes, beryllium refractive lenses and channel-cut Si monochromators. All the designed optical components have been fully characterized at the Advanced Photon Source to demonstrate their suitability for the CBXFEL cavity application.




l

Characterization of silicon pore optics for the NewAthena X-ray observatory in the PTB laboratory at BESSY II

The New Advanced Telescope for High ENergy Astrophysics (NewAthena) will be the largest space-based X-ray observatory ever built. It will have an effective area above 1.1 m2 at 1 keV, which corresponds to a polished mirror surface of about 300 m2 due to the grazing incidence. As such a mirror area is not achievable with an acceptable mass even with nested shells, silicon pore optics (SPO) technology will be utilized. In the PTB laboratory at BESSY II, two dedicated beamlines are in use for their characterization with monochromatic radiation at 1 keV and a low divergence well below 2 arcsec: the X-ray Pencil Beam Facility (XPBF 1) and the X-ray Parallel Beam Facility (XPBF 2.0), where beam sizes up to 8 mm × 8 mm are available while maintaining low beam divergence. This beamline is used for characterizing mirror stacks and controlling the focusing properties of mirror modules (MMs) – consisting of four mirror stacks – during their assembly at the beamline. A movable CCD based camera system 12 m from the MM registers the direct and the reflected beams. The positioning of the detector is verified by a laser tracker. The energy-dependent reflectance in double reflection through the pores of an MM with an Ir coating was measured at the PTB four-crystal monochromator beamline in the photon energy range 1.75 keV to 10 keV, revealing the effects of the Ir M edges. The measured reflectance properties are in agreement with the design values to achieve the envisaged effective area.




l

PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts – zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron–photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.




l

X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants

X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle.




l

Mango wiggler as a novel insertion device providing a large and symmetrical imaging field of view

A novel insertion device is introduced, designated as the Mango wiggler, designed for synchrotron radiation (SR) imaging that provides a large field of view. This innovative device is constructed from two orthogonal planar wigglers with a small difference in their period lengths, eliciting the phase difference of the magnetic fields to incrementally transitions from 0 to π/2. Such a configuration enlarges the vertical divergence of the light source, as with the horizontal divergence. The appellation `Mango wiggler' derives from the distinctive mango-shaped contour of its radiation field. A comprehensive suite of theoretical analyses and simulations has been executed to elucidate the radiation properties of the Mango wiggler, employing SPECTRA and Mathematica as calculation tools. In conjunction with the ongoing construction of the High Energy Photon Source in Beijing a practical Mango wiggler device has been fabricated for utilization in SR imaging applications. Theoretical analyses were applied to this particular Mango wiggler to yield several theoretical conclusions, and several simulations were performed according to the measured magnetic field results.




l

Sub-nanometre quality X-ray mirrors created using ion beam figuring

Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics.




l

Nonlinear optimization for a low-emittance storage ring

A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter ηc. Finding an appropriate ηc demands too much computing time because MOGA needs be run several times in order to find a good ηc. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new ηc for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings.




l

L3-edge X-ray spectroscopy of rhodium and palladium compounds

L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results.




l

GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.




l

Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning

Transition-metal nitro­gen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems.




l

In situ photodeposition of ultra-small palladium particles on TiO2

In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions.




l

X-ray lens figure errors retrieved by deep learning from several beam intensity images

The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images.




l

High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.




l

StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data

StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/WAXS) data analysis workflow platform with graphical user interface (GUI). It aims to provide an interactive and user-friendly tool for analysis of both batch data files and real-time data streams. Users can easily create customizable workflows through the GUI to meet their specific needs. One characteristic of StreamSAXS is its plug-in framework, which enables developers to extend the built-in workflow tasks. Another feature is the support for both already acquired and real-time data sources, allowing StreamSAXS to function as an offline analysis platform or be integrated into large-scale acquisition systems for end-to-end data management. This paper presents the core design of StreamSAXS and provides user cases demonstrating its utilization for SAXS/WAXS data analysis in offline and online scenarios.