l

Crystal structure of AlPCl8

The crystal structure of aluminium phosphorus chloride (systematic name: phosphorus tetrachloride tetrachloridoaluminate), (PCl4)[AlCl4] or AlPCl8, was determined and refined using single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pbcm. The asymmetric unit comprises one Al atom, one P atom, and five Cl atoms. The structure is characterized by isolated AlCl4 and PCl4 tetrahedra, isostructural with FePCl8 and GaPCl8.




l

Crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies of ethyl 5-amino-2-bromoisonicotinate

In the title compound, C8H9BrN2O2, the C—O—C—C torsion angle between isonicotine and the ethyl group is 180.0 (2)°. Intramolecular N—H...O and C—H...O interactions consolidate the molecular structure. In the crystal, N—H...N interaction form S(5) zigzag chains along [010]. The most significant contributions to the Hirshfeld surface arise from H...H (33.2%), Br...H/H...Br (20.9%), O...H/H...O (11.2%), C...H/H...C (11.1%) and N...H/H...N (10%) contacts. The topology of the three-dimensional energy frameworks was generated using the B3LYP/6–31 G(d,p) model to calculate the total interaction energy. The net interaction energies for the title compound are Eele = 59.2 kJ mol−1, Epol = 15.5 kJ mol−1, Edis = 140.3 kJ mol−1 and Erep = 107.2 kJ mol−1 with a total interaction energy Etot of 128.8 kJ mol−1. The molecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+G(d,p) level and the theoretical and experimentally obtained parameters were compared. The frontier molecular orbitals HOMO and LUMO were generated, giving an energy gap ΔE of 4.0931 eV. The MEP was generated to identify active sites in the molecule and molecular docking studies carried out with the title compound (ligand) and the covid-19 main protease PDB ID: 6LU7, revealing a moderate binding affinity of −5.4 kcal mol−1.




l

Crystal structure and Hirshfeld-surface analysis of an etoxazole metabolite designated R13

The etoxazole metabolite R13, systematic name 4-(4-tert-butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)oxazole (C21H21F2NO2), results from the oxidation of etoxazole, a chitin synthesis inhibitor belonging to the oxazoline class, widely used as an insecticide/acaricide since 1998. The structure of R13 features a central oxazole ring with attached 2,6-difluorophenyl and 4-t-butyl-2-ethoxyphenyl moieties. The overall conformation gives dihedral angles between these rings and the oxazole of 24.91 (5)° (with difluorophenyl) and 15.30 (6)° (with t-butyl-ethoxyphenyl), indicating an overall deviation from planarity. Additionally, torsion angles of the ethoxy and t-butyl groups define the orientation of these substituents relative to their benzene ring. In the crystal packing, no significant hydrogen bonds are present, but a Hirshfeld surface analysis highlights weak intermolecular contacts leading to π–π-stacked dimers linked by weak C—H...N contacts. The packing analysis confirms that most intermolecular interactions involve hydrogen atoms.




l

Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea)

Reaction between equimolar amounts of 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) (H2L) and CuCl2·2H2O in methanol in the presence of the supporting base Et3N gave rise to a neutral dinuclear complex bis[μ-3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate, [Cu2(C16H22N4O3S2)2]·2CH2Cl2 or [Cu2(L)2]·2CH2Cl2. The aroylbis(thioureas) are doubly deprotonated and the resulting anions {L2–} bond to metal ions through (S,O)-chelating moieties. The copper atoms adopt a virtually cis-square-planar environment. In the crystal, adjacent [Cu2(L)2]·2CH2Cl2 units are linked into polymeric chains along the a-axis direction by intermolecular coordinative Cu...S interactions. The co-crystallized solvent molecules play a vital role in the crystal packing. In particular, weak C—Hfuran...Cl and C—Hethyl...Cl contacts consolidate the three-dimensional supramolecular architecture.




l

Crystal structures and circular dichroism of {2,2'-[(1S,2S)-1,2-diphenylethane-1,2-diylbis(nitrilophenylmethanylylidene)]diphenolato}nickel(II) and its ethanol solvate

The title compound, [Ni(C40H30N2O2)] (1), with an optically active Schiff base ligand derived from 2-hydroxybenzophenone and (1S,2S)-1,2-diphenylethylenediamine, was crystallized as the solvent-free and ethanol solvate forms (1 and 1·2C2H5OH). In both structures, the two phenyl groups on the stereogenic centers of the O,N,N,O-tetradentate ligand are axially oriented, and the conformation of the central diamine chelate ring is λ. The circular dichroism (CD) spectra of 1 and the analogous nickel(II) complex [Ni(C30H26N2O2)] (2) in solution show partially similar patterns in the 350–450 nm range, but are mirror images in the longer wavelength region (450–650 nm). In the latter region, the sign of CD for these complexes is sensitive to the substituents on the C=N carbon atoms (phenyl for 1 and methyl for 2) rather than the diamine chelate ring conformation.





l

In situ/operando plug-flow fixed-bed cell for synchrotron PXRD and XAFS investigations at high temperature, pressure, controlled gas atmosphere and ultra-fast heating

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).




l

An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness

X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology. Deformable mirrors are adaptive optics that can produce a flexible surface figure. A method of using a deformable mirror as a phase compensator is described to enhance the focusing performance of an X-ray mirror. This paper presents an active piezoelectric plane X-ray focusing mirror with a linearly changing thickness that has the ability of phase compensation while focusing X-rays. Benefiting from its special structural design, the mirror can realize flexible focusing at different focusing geometries using a single input driving voltage. A prototype was used to measure its performance under one-dimension and two-dimension conditions. The results prove that, even at a bending magnet beamline, the mirror can easily achieve a single-micrometre focusing without a complicated bending mechanism or high-precision surface processing. It is hoped that this kind of deformable mirror will have a wide and flexible application in the synchrotron radiation field.




l

A method with ultra-high angular resolution for X-ray diffraction experiments

In X-ray diffraction measurements, the angular resolution has a detection limit due to the receiving size of the detector. In many cases this detection limit is too large and must be breached to obtain the desired information. A novel method is proposed here by making the detector simultaneously measuring and moving. Using the deconvolution algorithm to remove the convolution effect, the pixel size limitation is finally broken. The algorithm used is not a common one, and suppresses signals at high frequencies, ensuring the reliability of the peak shape after restoration. The feasibility of this method is verified by successfully measuring the crystal truncation rod signal of SrTiO3 single crystal, and the resolution is nearly ten times higher than that of a single pixel. Moreover, this method greatly reduces the noise and improves the signal-to-noise ratio.




l

The African Light Source: history, context and future

The African Light Source (AfLS) project is now almost eight years old. This article assesses the history, current context and future of the project. There is by now considerable momentum in building the user community, including deep training, facilitating access to current facilities, growing the scientific output, scientific networks and growing the local laboratory-scale research infrastructure. The Conceptual Design Report for the AfLS is in its final editing stages. This document specifies the socio-economic and scientific rationales and the technical aspects amongst others. The AfLS is supported by many national and Pan-African scientific professional bodies and voluntary associates across many scientific disciplines, and there are stakeholders throughout the continent and beyond. The current roadmap phases have expanded to include national and Pan-African level conversations with policy makers through new Strategic Task Force groups. The document summarizes this progress and discusses the future of the project.




l

Efficient boundary-guided scanning for high-resolution X-ray ptychography

In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines.




l

Treatment of multiple-beam X-ray diffraction in energy-dependent measurements

During X-ray diffraction experiments on single crystals, the diffracted beam intensities may be affected by multiple-beam X-ray diffraction (MBD). This effect is particularly frequent at higher X-ray energies and for larger unit cells. The appearance of this so-called Renninger effect often impairs the interpretation of diffracted intensities. This applies in particular to energy spectra analysed in resonant experiments, since during scans of the incident photon energy these conditions are necessarily met for specific X-ray energies. This effect can be addressed by carefully avoiding multiple-beam reflection conditions at a given X-ray energy and a given position in reciprocal space. However, areas which are (nearly) free of MBD are not always available. This article presents a universal concept of data acquisition and post-processing for resonant X-ray diffraction experiments. Our concept facilitates the reliable determination of kinematic (MBD-free) resonant diffraction intensities even at relatively high energies which, in turn, enables the study of higher absorption edges. This way, the applicability of resonant diffraction, e.g. to reveal the local atomic and electronic structure or chemical environment, is extended for a vast majority of crystalline materials. The potential of this approach compared with conventional data reduction is demonstrated by the measurements of the Ta L3 edge of well studied lithium tantalate LiTaO3.




l

Performance of a photoelectron momentum microscope in direct- and momentum-space imaging with ultraviolet photon sources

The Photoelectron-Related Image and Nano-Spectroscopy (PRINS) endstation located at the Taiwan Photon Source beamline 27A2 houses a photoelectron momentum microscope capable of performing direct-space imaging, momentum-space imaging and photoemission spectroscopy with position sensitivity. Here, the performance of this microscope is demonstrated using two in-house photon sources – an Hg lamp and He(I) radiation – on a standard checkerboard-patterned specimen and an Au(111) single crystal, respectively. By analyzing the intensity profile of the edge of the Au patterns, the Rashba-splitting of the Au(111) Shockley surface state at 300 K, and the photoelectron intensity across the Fermi edge at 80 K, the spatial, momentum and energy resolution were estimated to be 50 nm, 0.0172 Å−1 and 26 meV, respectively. Additionally, it is shown that the band structures acquired in either constant energy contour mode or momentum-resolved photoemission spectroscopy mode were in close agreement.




l

Similarity score for screening phase-retrieved maps in X-ray diffraction imaging – characterization in reciprocal space

X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.




l

Protocol using similarity score and improved shrink-wrap algorithm for better convergence of phase-retrieval calculation in X-ray diffraction imaging

In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024–1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses.




l

Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone

Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by `error loss' and `accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification.




l

Heitt Mjölnir: a heated miniature triaxial apparatus for 4D synchrotron microtomography

Third- and fourth-generation synchrotron light sources with high fluxes and beam energies enable the use of innovative X-ray translucent experimental apparatus. These experimental devices access geologically relevant conditions whilst enabling in situ characterization using the spatial and temporal resolutions accessible at imaging beamlines. Here, Heitt Mjölnir is introduced, a heated miniature triaxial rig based on the design of Mjölnir, but covering a wider temperature range and larger sample volume at similar pressure capacities. This device is designed to investigate coupled thermal, chemical, hydraulic and mechanical processes from grain to centimetre scales using cylindrical samples of 10 mm × 20 mm (diameter × length). Heitt Mjölnir can simultaneously reach confining (hydraulic) pressures of 30 MPa and 500 MPa of axial stress with independently controlled sample pore fluid pressure < 30 MPa. This internally heated apparatus operates to temperatures up to 573 K with a minimal vertical thermal gradient in the sample of <0.3 K mm−1. This new apparatus has been deployed in operando studies at the TOMCAT (Swiss Light Source), I12 JEEP (Diamond Light Source) and PSICHÉ (Synchrotron SOLEIL) beamlines for 4D X-ray microtomography with scan intervals of a few minutes. Heitt Mjölnir is portable and modular, allowing a wide range of 4D characterizations of low-grade metamorphism and deformational processes. It enables spatially and temporally resolved fluid–rock interaction studies at conditions of crustal reservoirs and is suitable for characterization of material properties in geothermal, carbonation or subsurface gas storage applications. Technical drawings and an operation guide are included in this publication.




l

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy

The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.




l

Angle-resolved X-ray emission spectroscopy facility realized by an innovative spectrometer rotation mechanism at SPring-8 BL07LSU

The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45–135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities.




l

Combination of XEOL, TR-XEOL and HB-T interferometer at the TPS 23A X-ray nanoprobe for exploring quantum materials

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.




l

Correlation of refractive index based and THz streaking arrival time tools for a hard X-ray free-electron laser

To fully exploit ultra-short X-ray pulse durations routinely available at X-ray free-electron lasers to follow out-of-equilibrium dynamics, inherent arrival time fluctuations of the X-ray pulse with an external perturbing laser pulse need to be measured. In this work, two methods of arrival time measurement were compared to measure the arrival time jitter of hard X-ray pulses. The methods were photoelectron streaking by a THz field and a transient refractive index change of a semiconductor. The methods were validated by shot-to-shot correction of a pump–probe transient reflectivity measurement. An ultimate shot-to-shot full width at half-maximum error between the devices of 19.2 ± 0.1 fs was measured.




l

Finback: a web-based data collection system at SSRF biological macromolecular crystallography beamlines

An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database.




l

A thermal deformation optimization method for cryogenically cooled silicon crystal monochromators under high heat load

A method to optimize the thermal deformation of an indirectly cryo-cooled silicon crystal monochromator exposed to intense X-rays at a low-emittance diffraction-limited synchrotron radiation source is presented. The thermal-induced slope error of the monochromator crystal has been studied as a function of heat transfer efficiency, crystal temperature distribution and beam footprint size. A partial cooling method is proposed, which flattens the crystal surface profile within the beam footprint by modifying the cooling contact area to optimize the crystal peak temperature. The optimal temperature varies with different photon energies, which is investigated, and a proper cooling strategy is obtained to fulfil the thermal distortion requirements over the entire photon energy range. At an absorbed power up to 300 W with a maximum power density of 44.8 W mm−2 normal incidence beam from an in-vacuum undulator, the crystal thermal distortion does not exceed 0.3 µrad at 8.33 keV. This method will provide references for the monochromator design on diffraction-limited synchrotron radiation or free-electron laser light sources.




l

A new modular framework for high-level application development at HEPS

As a representative of the fourth-generation light sources, the High Energy Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice to obtain an approximately 100 times emittance reduction compared with third-generation light sources. New technologies bring new challenges to operate the storage ring. In order to meet the beam commissioning requirements of HEPS, a new framework for the development of high-level applications (HLAs) has been created. The key part of the new framework is a dual-layer physical module to facilitate the seamless fusion of physical simulation models with the real machine, allowing for fast switching between different simulation models to accommodate the various simulation scenarios. As a framework designed for development of physical applications, all variables are based on physical quantities. This allows physicists to analytically assess measurement parameters and optimize machine parameters in a more intuitive manner. To enhance both extensibility and adaptability, a modular design strategy is utilized, partitioning the entire framework into discrete modules in alignment with the requirements of HLA development. This strategy not only facilitates the independent development of each module but also minimizes inter-module coupling, thereby simplifying the maintenance and expansion of the entire framework. To simplify the development complexity, the design of the new framework is implemented using Python and is called Python-based Accelerator Physics Application Set (Pyapas). Taking advantage of Python's flexibility and robust library support, we are able to develop and iterate quickly, while also allowing for seamless integration with other scientific computing applications. HLAs for both the HEPS linac and booster have been successfully developed. During the beam commissioning process at the linac, Pyapas's ease of use and reliability have significantly reduced the time required for the beam commissioning operators. As a development framework for HLA designed for the new-generation light sources, Pyapas has the versatility to be employed with HEPS, as well as with other comparable light sources, due to its adaptability.




l

Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under non­equilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.




l

xrdPlanner: exploring area detector geometries for powder diffraction and total scattering experiments

xrdPlanner is a software package designed to aid in the planning and preparation of powder X-ray diffraction and total scattering beam times at synchrotron facilities. Many modern beamlines provide a flexible experimental setup and may have several different detectors available. In combination with a range of available X-ray energies, it often makes it difficult for the user to explore the available parameter space relevant for a given experiment prior to the scheduled beam time. xrdPlanner was developed to provide a fast and straightforward tool that allows users to visualize the accessible part of reciprocal space of their experiment at a given combination of photon energy and detector geometry. To plan and communicate the necessary geometry not only saves time but also helps the beamline staff to prepare and accommodate for an experiment. The program is tailored toward powder X-ray diffraction and total scattering experiments but may also be useful for other experiments that rely on an area detector and for which detector placement and achievable momentum-transfer range are important experimental parameters.




l

DOMAS: a data management software framework for advanced light sources

In recent years, China's advanced light sources have entered a period of rapid construction and development. As modern X-ray detectors and data acquisition technologies advance, these facilities are expected to generate massive volumes of data annually, presenting significant challenges in data management and utilization. These challenges encompass data storage, metadata handling, data transfer and user data access. In response, the Data Organization Management Access Software (DOMAS) has been designed as a framework to address these issues. DOMAS encapsulates four fundamental modules of data management software, including metadata catalogue, metadata acquisition, data transfer and data service. For light source facilities, building a data management system only requires parameter configuration and minimal code development within DOMAS. This paper firstly discusses the development of advanced light sources in China and the associated demands and challenges in data management, prompting a reconsideration of data management software framework design. It then outlines the architecture of the framework, detailing its components and functions. Lastly, it highlights the application progress and effectiveness of DOMAS when deployed for the High Energy Photon Source (HEPS) and Beijing Synchrotron Radiation Facility (BSRF).




l

Extracting the electronic structure signal from X-ray and electron scattering in the gas phase

X-ray and electron scattering from free gas-phase molecules is examined using the independent atom model (IAM) and ab initio electronic structure calculations. The IAM describes the effect of the molecular geometry on the scattering, but does not account for the redistribution of valence electrons due to, for instance, chemical bonding. By examining the total, i.e. energy-integrated, scattering from three molecules, fluoroform (CHF3), 1,3-cyclohexadiene (C6H8) and naphthalene (C10H8), the effect of electron redistribution is found to predominantly reside at small-to-medium values of the momentum transfer (q ≤ 8 Å−1) in the scattering signal, with a maximum percent difference contribution at 2 ≤ q ≤ 3 Å−1. A procedure to determine the molecular geometry from the large-q scattering is demonstrated, making it possible to more clearly identify the deviation of the scattering from the IAM approximation at small and intermediate q and to provide a measure of the effect of valence electronic structure on the scattering signal.




l

Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.




l

ProSPyX: software for post-processing images of X-ray ptychography with spectral capabilities

X-ray ptychography is a coherent diffraction imaging technique based on acquiring multiple diffraction patterns obtained through the illumination of the sample at different partially overlapping probe positions. The diffraction patterns collected are used to retrieve the complex transmittivity function of the sample and the probe using a phase retrieval algorithm. Absorption or phase contrast images of the sample as well as the real and imaginary parts of the probe function can be obtained. Furthermore, X-ray ptychography can also provide spectral information of the sample from absorption or phase shift images by capturing multiple ptychographic projections at varying energies around the resonant energy of the element of interest. However, post-processing of the images is required to extract the spectra. To facilitate this, ProSPyX, a Python package that offers the analysis tools and a graphical user interface required to process spectral ptychography datasets, is presented. Using the PyQt5 Python open-source module for development and design, the software facilitates extraction of absorption and phase spectral information from spectral ptychographic datasets. It also saves the spectra in file formats compatible with other X-ray absorption spectroscopy data analysis software tools, streamlining integration into existing spectroscopic data analysis pipelines. To illustrate its capabilities, ProSPyX was applied to process the spectral ptychography dataset recently acquired on a nickel wire at the SWING beamline of the SOLEIL synchrotron.




l

Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack

This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.




l

Sub-micrometre focusing of intense 100 keV X-rays with multilayer reflective optics

A high-flux sub-micrometre focusing system was constructed using multilayer focusing mirrors in Kirkpatrick–Baez geometry for 100 keV X-rays. The focusing mirror system had a wide bandwidth of 5% and a high peak reflectivity of 74%. Performance was evaluated at the undulator beamline BL05XU of SPring-8, which produced an intense 100 keV X-ray beam with a bandwidth of 1%. When the light source was focused directly in both vertical and horizontal directions, the beam size was measured to be 0.32 µm (V) × 5.3 µm (H) with a flux of 1 × 1012 photons s−1. However, when a limited horizontal slit was used to form a secondary source, the focusing beam size decreased to 0.25 µm (V) × 0.26 µm (H) with a flux of 6 × 1010 photons s−1. The 200 nm line and space patterns of a Siemens star chart made of tantalum were clearly resolved by the absorption contrast of the focused beam. This 100 keV focusing system is applicable to various fields of nondestructive analyses with sub-micrometre resolutions.




l

Ultrashort large-bandwidth X-ray free-electron laser generation with a dielectric-lined waveguide

Large-bandwidth pulses produced by cutting-edge X-ray free-electron lasers (FELs) are of great importance in research fields like material science and biology. In this paper, a new method to generate high-power ultrashort FEL pulses with tunable spectral bandwidth with spectral coherence using a dielectric-lined waveguide without interfering operation of linacs is proposed. By exploiting the passive and dephasingless wakefield at terahertz frequency excited by the beam, stable energy modulation can be achieved in the electron beam and large-bandwidth high-intensity soft X-ray radiation can be generated. Three-dimensional start-to-end simulations have been carried out and the results show that coherent radiation pulses with duration of a few femtoseconds and bandwidths ranging from 1.01% to 2.16% can be achieved by changing the undulator taper profile.




l

Grazing-incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO2 at the Rossendorf beamline

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.




l

Investigation of structural and reflective characteristics of short-period Mo/B4C multilayer X-ray mirrors

The results of a study of the structural and reflective characteristics of short-period multilayer X-ray mirrors based on Mo/B4C at wavelengths 1.54 Å, 9.89 Å and 17.59 Å are presented. The period of the samples varied in the range 8–35 Å. The average widths of the interfaces were ∼3.5 and 2.2 Å at one and the other boundaries, with a tendency for weak growth with any decrease in the period. The interlayer roughness was ∼1 Å. The research results indicate promising prospects for the use of multilayer Mo/B4C mirrors for synchrotron applications.




l

The role of carboxyl­ate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxyl­ate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxyl­ate oxygen lone pair orbitals, through which electron density around carboxyl­ate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.




l

A differentiable simulation package for performing inference of synchrotron-radiation-based diagnostics

The direction of particle accelerator development is ever-increasing beam quality, currents and repetition rates. This poses a challenge to traditional diagnostics that directly intercept the beam due to the mutual destruction of both the beam and the diagnostic. An alternative approach is to infer beam parameters non-invasively from the synchrotron radiation emitted in bending magnets. However, inferring the beam distribution from a measured radiation pattern is a complex and computationally expensive task. To address this challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software package intended as a tool for performing inference of synchrotron-radiation-based diagnostics. SYRIPY has been developed using PyTorch, which makes it both differentiable and able to leverage the high performance of GPUs, two vital characteristics for performing statistical inference. The package consists of three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics propagator, allowing start-to-end simulation of synchrotron radiation detection to be carried out. SYRIPY has been benchmarked against SRW, the prevalent numerical package in the field, showing good agreement and up to a 50× speed improvement. Finally, we have demonstrated how SYRIPY can be used to perform Bayesian inference of beam parameters using stochastic variational inference.




l

Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives – minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups.




l

Novel correction procedure for compensating thermal contraction errors in the measurement of the magnetic field of superconducting undulator coils in a liquid helium cryostat

Superconducting undulators (SCUs) can offer a much higher on-axis undulator field than state-of-the-art cryogenic permanent-magnet undulators with the same period and vacuum gap. The development of shorter-period and high-field SCUs would allow the free-electron laser and synchrotron radiation source community to reduce both the length of undulators and the dimensions of the accelerator. Magnetic measurements are essential for characterizing the magnetic field quality of undulators for operation in a modern light source. Hall probe scanning is so far the most mature technique for local field characterization of undulators. This article focuses on the systematic error caused by thermal contraction that influences Hall probe measurements carried out in a liquid helium cryostat. A novel procedure, based on the redundant measurement of the magnetic field using multiple Hall probes at known relative distance, is introduced for the correction of such systematic error.




l

ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials

The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.




l

Determination of optimal experimental conditions for accurate 3D reconstruction of the magnetization vector via XMCD-PEEM

This work presents a detailed analysis of the performance of X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) as a tool for vector reconstruction of magnetization. For this, 360° domain wall ring structures which form in a synthetic antiferromagnet are chosen as the model to conduct the quantitative analysis. An assessment is made of how the quality of the results is affected depending on the number of projections that are involved in the reconstruction process, as well as their angular distribution. For this a self-consistent error metric is developed which allows an estimation of the optimum azimuthal rotation angular range and number of projections. This work thus proposes XMCD-PEEM as a powerful tool for vector imaging of complex 3D magnetic structures.




l

Quantifying bunch-mode influence on photon-counting detectors at SPring-8

Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.012 to 0.916 Mcps (megacounts per second) for a 120 ns dead time, 0.009 to 0.807 Mcps for a 0.5 µs dead time and 0.020 to 0.273 Mcps for a 3 µs intrinsic detector dead time. Even with equal-interval bunch-modes at SPring-8, the effective maximum count rate does not exceed 1 Mcps pixel−1. In other words, to obtain data with a linearity better than 1%, the maximum intensity of X-rays entering the detector should be reduced to 1 Mcps pixel−1 or less, and, in some cases, even lower, depending on the bunch-mode. When applying count-loss correction using optimized dead times tailored to each bunch-mode, the effective maximum count rate exceeds the values above. However, differences in the effective maximum count rate due to bunch-modes persist. Users of photon-counting 2D detectors are encouraged to familiarize themselves with the count-loss characteristics dependent on bunch-mode, and to conduct experiments accordingly. In addition, when designing the time structure of bunch-modes at synchrotron radiation facilities, it is essential to take into account the impact on experiments using photon-counting 2D detectors.




l

Measuring magnetic hysteresis curves with polarized soft X-ray resonant reflectivity

Calculations and measurements of polarization-dependent soft X-ray scattering intensity are presented during a magnetic hysteresis cycle. It is confirmed that the dependence of the intensity on the magnetic moment can be linear, quadratic or a combination of both, depending on the polarization of the incident X-ray beam and the direction of the magnetic moment. With a linearly polarized beam, the scattered intensity will have a purely quadratic dependence on the magnetic moment when the magnetic moment is parallel to the scattering plane. However, with the magnetic moment perpendicular to the scattering plane, there is also a linear component. This means that, when measuring the hysteresis with linear polarization during a hysteresis cycle, the intensity will be an even function of the applied field when the change in the magnetic moment (and field) is confined within the scattering plane but becomes more complicated when the magnetic moment is out of the scattering plane. Furthermore, with circular polarization, the dependence of the scattered intensity on the moment is a combination of linear and quadratic. With the moment parallel to the scattering plane, the linear component changes with the helicity of the incident beam. Surprisingly, in stark contrast to absorption studies, even when the magnetic moment is perpendicular to the scattering plane there is still a dependence on the moment with a linear component. This linear component is completely independent of the helicity of the beam, meaning that the hysteresis loops will not be inverted with helicity.




l

Development of the multiplex imaging chamber at PAL-XFEL

Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.




l

Efficient end-to-end simulation of time-dependent coherent X-ray scattering experiments

Physical optics simulations for beamlines and experiments allow users to test experiment feasibility and optimize beamline settings ahead of beam time in order to optimize valuable beam time at synchrotron light sources like NSLS-II. Further, such simulations also help to develop and test experimental data processing methods and software in advance. The Synchrotron Radiation Workshop (SRW) software package supports such complex simulations. We demonstrate how recent developments in SRW significantly improve the efficiency of physical optics simulations, such as end-to-end simulations of time-dependent X-ray photon correlation spectroscopy experiments with partially coherent undulator radiation (UR). The molecular dynamics simulation code LAMMPS was chosen to model the sample: a solution of silica nanoparticles in water at room temperature. Real-space distributions of nanoparticles produced by LAMMPS were imported into SRW and used to simulate scattering patterns of partially coherent hard X-ray UR from such a sample at the detector. The partially coherent UR illuminating the sample can be represented by a set of orthogonal coherent modes obtained by simulation of emission and propagation of this radiation through the coherent hard X-ray (CHX) scattering beamline followed by a coherent-mode decomposition. GPU acceleration is added for several key functions of SRW used in propagation from sample to detector, further improving the speed of the calculations. The accuracy of this simulation is benchmarked by comparison with experimental data.




l

X-ray beam diagnostics at the MID instrument of the European X-ray Free-Electron Laser Facility

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.




l

VerSoX B07-B: a high-throughput XPS and ambient pressure NEXAFS beamline at Diamond Light Source

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45–2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.




l

Increased spatial coherence length from an asymmetric crystal reflection at grazing exit

Coherent X-ray imaging is an active field at synchrotron sources. The images rely on the available coherent flux over a limited field of view. At many synchrotron beamlines a double-crystal monochromator (DCM) is employed in a standard nondispersive arrangement. For coherent diffraction imaging it is advantageous to increase the available field of view by increasing the spatial coherence length (SCL) of a beam exiting such a DCM. Here, Talbot interferometry data together with ray-tracing simulations for a (+ − − +) four-reflection experimental arrangement are presented, wherein the first two reflections are in the DCM and the final fourth reflection is asymmetric at grazing exit. Analyses of the interferometry data combined with the simulations show that compared with the beam exiting the DCM a gain of 76% in the SCL was achieved, albeit with a factor of 20 reduction in flux density, which may not be a severe penalty at a synchrotron beamline. Previous efforts reported in the literature to increase the SCL that employed asymmetric crystal diffraction at grazing incidence are also discussed. A much reduced SCL is found presently in simulations wherein the same asymmetric crystal is set for grazing incidence instead of grazing exit. In addition, the present study is compared and contrasted with two other means of increasing the SCL. These are (i) focusing the beam onto an aperture to act as a secondary source, and (ii) allowing the beam to propagate in vacuum an additional distance along the beamline.




l

High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10−3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.




l

A sub-100 nm thickness flat jet for extreme ultraviolet to soft X-ray absorption spectroscopy

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.