un Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions By projecteuclid.org Published On :: Tue, 04 Feb 2020 04:00 EST Umberto Amato, Anestis Antoniadis, Italia De Feis. Source: Statistics Surveys, Volume 14, 32--70.Abstract: We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model. Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy. Simple methods have been proposed in the literature for reducing the bias at the boundaries. We introduce new ones based on adaptive combinations of two estimators. The underlying idea is to combine a highly accurate method for non-regular functions, e.g., wavelets, with one well behaved at boundaries, e.g., Splines or Local Polynomial. We provide some asymptotic optimal results supporting our approach. All the methods can handle data with a random design. We also sketch some generalization to the multidimensional setting. To study the performance of the proposed approaches we have conducted an extensive set of simulations on synthetic data. An interesting regression analysis of two real data applications using these procedures unambiguously demonstrates their effectiveness. Full Article
un Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists By projecteuclid.org Published On :: Tue, 05 Nov 2019 22:03 EST John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko. Source: Statistics Surveys, Volume 13, 150--180.Abstract: Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study. Full Article
un PLS for Big Data: A unified parallel algorithm for regularised group PLS By projecteuclid.org Published On :: Mon, 02 Sep 2019 04:00 EDT Pierre Lafaye de Micheaux, Benoît Liquet, Matthew Sutton. Source: Statistics Surveys, Volume 13, 119--149.Abstract: Partial Least Squares (PLS) methods have been heavily exploited to analyse the association between two blocks of data. These powerful approaches can be applied to data sets where the number of variables is greater than the number of observations and in the presence of high collinearity between variables. Different sparse versions of PLS have been developed to integrate multiple data sets while simultaneously selecting the contributing variables. Sparse modeling is a key factor in obtaining better estimators and identifying associations between multiple data sets. The cornerstone of the sparse PLS methods is the link between the singular value decomposition (SVD) of a matrix (constructed from deflated versions of the original data) and least squares minimization in linear regression. We review four popular PLS methods for two blocks of data. A unified algorithm is proposed to perform all four types of PLS including their regularised versions. We present various approaches to decrease the computation time and show how the whole procedure can be scalable to big data sets. The bigsgPLS R package implements our unified algorithm and is available at https://github.com/matt-sutton/bigsgPLS . Full Article
un Fundamentals of cone regression By projecteuclid.org Published On :: Thu, 19 May 2016 09:04 EDT Mariella Dimiccoli. Source: Statistics Surveys, Volume 10, 53--99.Abstract: Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution. Full Article
un A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection By projecteuclid.org Published On :: Tue, 19 Jan 2016 09:04 EST Clément Marteau, Theofanis Sapatinas. Source: Statistics Surveys, Volume 9, 253--297.Abstract: We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches. Full Article
un $M$-functionals of multivariate scatter By projecteuclid.org Published On :: Fri, 20 Mar 2015 09:11 EDT Lutz Dümbgen, Markus Pauly, Thomas Schweizer. Source: Statistics Surveys, Volume 9, 32--105.Abstract: This survey provides a self-contained account of $M$-estimation of multivariate scatter. In particular, we present new proofs for existence of the underlying $M$-functionals and discuss their weak continuity and differentiability. This is done in a rather general framework with matrix-valued random variables. By doing so we reveal a connection between Tyler’s (1987a) $M$-functional of scatter and the estimation of proportional covariance matrices. Moreover, this general framework allows us to treat a new class of scatter estimators, based on symmetrizations of arbitrary order. Finally these results are applied to $M$-estimation of multivariate location and scatter via multivariate $t$-distributions. Full Article
un Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain By projecteuclid.org Published On :: Mon, 28 Oct 2013 09:06 EDT Sean L. Simpson, F. DuBois Bowman, Paul J. LaurientiSource: Statist. Surv., Volume 7, 1--36.Abstract: Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. Full Article
un Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
un Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED) By arxiv.org Published On :: Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification. Full Article
un Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED) By arxiv.org Published On :: Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets. Full Article
un Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED) By arxiv.org Published On :: The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened. Full Article
un A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED) By arxiv.org Published On :: Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance. Full Article
un DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED) By arxiv.org Published On :: A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain. Full Article
un Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED) By arxiv.org Published On :: Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins. Full Article
un Additive Bayesian variable selection under censoring and misspecification. (arXiv:1907.13563v3 [stat.ME] UPDATED) By arxiv.org Published On :: We study the interplay of two important issues on Bayesian model selection (BMS): censoring and model misspecification. We consider additive accelerated failure time (AAFT), Cox proportional hazards and probit models, and a more general concave log-likelihood structure. A fundamental question is what solution can one hope BMS to provide, when (inevitably) models are misspecified. We show that asymptotically BMS keeps any covariate with predictive power for either the outcome or censoring times, and discards other covariates. Misspecification refers to assuming the wrong model or functional effect on the response, including using a finite basis for a truly non-parametric effect, or omitting truly relevant covariates. We argue for using simple models that are computationally practical yet attain good power to detect potentially complex effects, despite misspecification. Misspecification and censoring both have an asymptotically negligible effect on (suitably-defined) false positives, but their impact on power is exponential. We portray these issues via simple descriptions of early/late censoring and the drop in predictive accuracy due to misspecification. From a methods point of view, we consider local priors and a novel structure that combines local and non-local priors to enforce sparsity. We develop algorithms to capitalize on the AAFT tractability, approximations to AAFT and probit likelihoods giving significant computational gains, a simple augmented Gibbs sampler to hierarchically explore linear and non-linear effects, and an implementation in the R package mombf. We illustrate the proposed methods and others based on likelihood penalties via extensive simulations under misspecification and censoring. We present two applications concerning the effect of gene expression on colon and breast cancer. Full Article
un Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED) By arxiv.org Published On :: Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute). Full Article
un Plan2Vec: Unsupervised Representation Learning by Latent Plans. (arXiv:2005.03648v1 [cs.LG]) By arxiv.org Published On :: In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space. Full Article
un Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG]) By arxiv.org Published On :: We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems. Full Article
un Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG]) By arxiv.org Published On :: Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches. Full Article
un On unbalanced data and common shock models in stochastic loss reserving. (arXiv:2005.03500v1 [q-fin.RM]) By arxiv.org Published On :: Introducing common shocks is a popular dependence modelling approach, with some recent applications in loss reserving. The main advantage of this approach is the ability to capture structural dependence coming from known relationships. In addition, it helps with the parsimonious construction of correlation matrices of large dimensions. However, complications arise in the presence of "unbalanced data", that is, when (expected) magnitude of observations over a single triangle, or between triangles, can vary substantially. Specifically, if a single common shock is applied to all of these cells, it can contribute insignificantly to the larger values and/or swamp the smaller ones, unless careful adjustments are made. This problem is further complicated in applications involving negative claim amounts. In this paper, we address this problem in the loss reserving context using a common shock Tweedie approach for unbalanced data. We show that the solution not only provides a much better balance of the common shock proportions relative to the unbalanced data, but it is also parsimonious. Finally, the common shock Tweedie model also provides distributional tractability. Full Article
un Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME]) By arxiv.org Published On :: In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples. Full Article
un Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG]) By arxiv.org Published On :: Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks. We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges. Full Article
un Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS]) By arxiv.org Published On :: This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. Full Article
un Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP]) By arxiv.org Published On :: An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation. Full Article
un Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG]) By arxiv.org Published On :: People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods. Full Article
un Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM]) By arxiv.org Published On :: This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets. Full Article
un Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV]) By arxiv.org Published On :: The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems. Full Article
un State Library creates a new space for Aboriginal communities to connect with their cultural heritage By feedproxy.google.com Published On :: Wed, 19 Feb 2020 23:11:15 +0000 Thursday 20 February 2020 In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures. Full Article
un Shortlists announced for 2020 NSW Premier’s Literary Awards By feedproxy.google.com Published On :: Thu, 19 Mar 2020 21:24:32 +0000 Friday 20 March 2020 Contemporary works by leading and emerging Australian writers have been shortlisted for the 2020 NSW Premier's Literary Awards, the State Library of NSW announced today. Full Article
un 2020 NSW Premier’s Literary Awards announced By feedproxy.google.com Published On :: Sat, 25 Apr 2020 01:29:17 +0000 Sunday 26 April 2020 A total of $295,000 awarded across 12 prize categories. Full Article
un Object-Oriented Software for Functional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 This paper introduces the funData R package as an object-oriented implementation of functional data. It implements a unified framework for dense univariate and multivariate functional data on one- and higher dimensional domains as well as for irregular functional data. The aim of this package is to provide a user-friendly, self-contained core toolbox for functional data, including important functionalities for creating, accessing and modifying functional data objects, that can serve as a basis for other packages. The package further contains a full simulation toolbox, which is a useful feature when implementing and testing new methodological developments. Based on the theory of object-oriented data analysis, it is shown why it is natural to implement functional data in an object-oriented manner. The classes and methods provided by funData are illustrated in many examples using two freely available datasets. The MFPCA package, which implements multivariate functional principal component analysis, is presented as an example for an advanced methodological package that uses the funData package as a basis, including a case study with real data. Both packages are publicly available on GitHub and the Comprehensive R Archive Network. Full Article
un Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain By blog.wellcomelibrary.org Published On :: Thu, 02 Nov 2017 12:49:06 +0000 The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 7 November. Speaker: Dr Michael Brown (University of Roehampton), ‘Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain’ The historical study of the… Continue reading Full Article Early Medicine Events and Visits 19th century emotions seminars surgery
un Close encounters: a manuscripts workshop By blog.wellcomelibrary.org Published On :: Mon, 23 Apr 2018 15:18:54 +0000 A free manuscripts workshop for PhD students at Wellcome Collection, 01 June 2018 Engaging with an artefact from the past is often a powerful experience, eliciting emotional and sensory, as well as analytical, responses. Researchers in the library at Wellcome… Continue reading Full Article Early Medicine Events and Visits emotions manuscripts materiality senses study visits
un 2020 NSW Premier’s Literary Awards announced By feedproxy.google.com Published On :: Sat, 25 Apr 2020 01:12:46 +0000 A total of $295,000 awarded across 12 prize categories. Full Article
un Upper extremity injuries in young athletes By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319566511 (electronic bk.) Full Article
un The unedited : a novel about genome and identity By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Rørth, Pernille, authorCallnumber: OnlineISBN: 9783030346249 (electronic bk.) Full Article
un The mungbean genome By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030200084 (electronic bk.) Full Article
un Sustainable digital communities : 15th International Conference, iConference 2020, Boras, Sweden, March 23–26, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: iConference (Conference) (15th : 2020 : Boras, Sweden)Callnumber: OnlineISBN: 9783030436872 Full Article
un Sowing legume seeds, reaping cash : a renaissance within communities in Sub-Saharan Africa By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Akpo, Essegbemon, author.Callnumber: OnlineISBN: 9789811508455 (electronic bk.) Full Article
un Regulation of cancer immune checkpoints : molecular and cellular mechanisms and therapy By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811532665 Full Article
un Radiomics and radiogenomics in neuro-oncology : First International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Radiomics and Radiogenomics in Neuro-oncology using AI Workshop (1st : 2019 : Shenzhen Shi, China)Callnumber: OnlineISBN: 9783030401245 Full Article
un Psychoactive medicinal plants and fungal neurotoxins By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Singh Saroya, Amritpal, authorCallnumber: OnlineISBN: 9789811523137 (electronic bk.) Full Article
un Nutritional and health aspects of food in South Asian countries By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128200124 (electronic bk.) Full Article
un Neonatal lung ultrasonography By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789402415490 (electronic bk.) Full Article
un Mosquitoes, communities, and public health in Texas By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128145463 (electronic bk.) Full Article
un Milk and dairy foods : their functionality in human health and disease By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128156049 (electronic bk.) Full Article
un Microbial endophytes : functional biology and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196540 (print) Full Article
un Machine learning in aquaculture : hunger classification of Lates calcarifer By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Mohd Razman, Mohd Azraai, authorCallnumber: OnlineISBN: 9789811522376 (electronic bk.) Full Article
un Interaction of nanomaterials with the immune system By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030339623 (electronic bk.) Full Article
un Human behavior analysis : sensing and understanding By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Yu, Zhiwen, authorCallnumber: OnlineISBN: 9789811521096 (electronic bk.) Full Article