osi

The progressive development of microfabrics from initial deposition to slump deformation: an example from a modern sedimenary melange on the Nankai Prism

The progressive development of microfabrics from initial deposition to slump deformation and then a submarine slide was investigated in an active subduction zone using cores recovered during the Integrated Ocean Drilling Program Expedition 333. A Pleistocene–Holocene sequence was recovered at Site C0018A, which was located on a slope basin on the footwall of the megasplay fault in the Nankai Trough, SW Japan. Six mass-transport deposit units intercalated with coherent intervals were recovered from the upper 190 m of the drilled succession. The initial microfabrics in the undeformed hemipelagic sediments were characterized by random and porous fabrics composed predominantly of clay aggregations and connectors. The initial fabrics were cardhouse fabrics, which consist of clay flakes with edge-to-edge (E–E) and/or edge-to-face (E–F) contacts. These initial microfabrics developed into compacted microfabrics, which are random and consolidated fabrics (bookhouse fabrics) that consist of clay flakes with E–F and/or face-to-face (F–F) contacts and develop during burial as a pure shear deformation. During slumping, these fabrics were then deformed under simple shear to become predominantly F–F contacts and form clay chains. Thus, the microfabrics in these submarine slides are a sedimentary mélange that developed locally into a preferred clay orientation with F–F contacts.

Supplementary material: A schematic illustration showing sedimentation processes and fabrics is available at https://doi.org/10.6084/m9.figshare.c.4483385

Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges




osi

Identification of Novel Antigens Recognized by Serum Antibodies in Bovine Tuberculosis [Diagnostic Laboratory Immunology]

Bovine tuberculosis (TB), caused by Mycobacterium bovis, remains an important zoonotic disease posing a serious threat to livestock and wildlife. The current TB tests relying on cell-mediated and humoral immune responses in cattle have performance limitations. To identify new serodiagnostic markers of bovine TB, we screened a panel of 101 recombinant proteins, including 10 polyepitope fusions, by a multiantigen print immunoassay (MAPIA) with well-characterized serum samples serially collected from cattle with experimental or naturally acquired M. bovis infection. A novel set of 12 seroreactive antigens was established. Evaluation of selected proteins in the dual-path platform (DPP) assay showed that the highest diagnostic accuracy (~95%) was achieved with a cocktail of five best-performing antigens, thus demonstrating the potential for development of an improved and more practical serodiagnostic test for bovine TB.




osi

GI-19007, a Novel Saccharomyces cerevisiae-Based Therapeutic Vaccine against Tuberculosis [Vaccines]

As yet, very few vaccine candidates with activity in animals against Mycobacterium tuberculosis infection have been tested as therapeutic postexposure vaccines. We recently described two pools of mycobacterial proteins with this activity, and here we describe further studies in which four of these proteins (Rv1738, Rv2032, Rv3130, and Rv3841) were generated as a fusion polypeptide and then delivered in a novel yeast-based platform (Tarmogen) which itself has immunostimulatory properties, including activation of Toll-like receptors. This platform can deliver antigens into both the class I and class II antigen presentation pathways and stimulate strong Th1 and Th17 responses. In mice this fusion vaccine, designated GI-19007, was immunogenic and elicited strong gamma interferon (IFN-) and interleukin-17 (IL-17) responses; despite this, they displayed minimal prophylactic activity in mice that were subsequently infected with a virulent clinical strain. In contrast, in a therapeutic model in the guinea pig, GI-19007 significantly reduced the lung bacterial load and reduced lung pathology, particularly in terms of secondary lesion development, while significantly improving survival in one-third of these animals. In further studies in which guinea pigs were vaccinated with BCG before challenge, therapeutic vaccination with GI-19007 initially improved survival versus that of animals given BCG alone, although this protective effect was gradually lost at around 400 days after challenge. Given its apparent ability to substantially limit bacterial dissemination within and from the lungs, GI-19007 potentially can be used to limit lung damage as well as facilitating chemotherapeutic regimens in infected individuals.




osi

High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin [Clinical Immunology]

We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.




osi

COVID-19 infection in a patient with multiple sclerosis treated with fingolimod

In December 2019, a novel coronavirus causing an infectious respiratory disease (COVID-19) was identified, which since then has developed into a pandemic with higher rates of mortality in older individuals and those with underlying medical conditions.1 Multiple sclerosis (MS) is an immune-mediated neurologic disease which requires long-term treatment with immunotherapies that have been shown to increase the risk of infections.2 As a result, there is significant anxiety among patients and neurologists during the pandemic regarding the infection outcome in this patient population. We present a patient with MS treated with fingolimod who was diagnosed with COVID-19 and had a favorable outcome.




osi

Anaplastic lymphoma kinase inhibitor-associated myositis

Anaplastic lymphoma kinase (ALK) inhibitors have been used in patients with non-small cell lung cancer (NSCLC) harboring EML4-ALK fusion gene.1 Severe skeletal muscle adverse events of ALK inhibitors, such as muscle weakness, have seldom been reported.2,3 Herein, we describe a patient who showed a severe skeletal muscle deficit after the administration of the ALK inhibitor, alectinib, and was successfully treated by corticosteroids without withdrawal from the cancer therapy.




osi

Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient




osi

Clinical and MRI phenotypes of sarcoidosis-associated myelopathy

Objective

To determine the characteristic clinical and spinal MRI phenotypes of sarcoidosis-associated myelopathy (SAM), we analyzed a large cohort of patients with this disorder.

Methods

Patients diagnosed with SAM at a single center between 2000 and 2018 who met the established criteria for definite and probable neurosarcoidosis were included in a retrospective analysis to identify clinical profiles, CSF characteristics, and MRI lesion morphology.

Results

Of 62 included patients, 33 (53%) were male, and 30 (48%) were African American. SAM was the first clinical presentation of sarcoidosis in 49 patients (79%). Temporal profile of symptom evolution was chronic in 81%, with sensory symptoms most frequently reported (87%). CSF studies showed pleocytosis in 79% and CSF-restricted oligoclonal bands in 23% of samples tested. Four discrete patterns of lesion morphology were identified on spine MRI: longitudinally extensive myelitis (n = 28, 45%), short tumefactive myelitis (n = 14, 23%), spinal meningitis/meningoradiculitis (n = 14, 23%), and anterior myelitis associated with areas of disc degeneration (n = 6, 10%). Postgadolinium enhancement was seen in all but 1 patient during the acute phase. The most frequent enhancement pattern was dorsal subpial enhancement (n = 40), followed by meningeal/radicular enhancement (n = 23) and ventral subpial enhancement (n = 12). In 26 cases (42%), enhancement occurred at locations with coexisting structural changes (e.g., spondylosis).

Conclusions

Recognition of the clinical features (chronically evolving myelopathy) and distinct MRI phenotypes (with enhancement in a subpial and/or meningeal pattern) seen in SAM can aid diagnosis of this disorder. Enhancement patterns suggest that SAM may have a predilection for areas of the spinal cord susceptible to mechanical stress.




osi

The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy

Objective

To assess whether neuropathy with anti-myelin-associated glycoprotein (MAG) antibody may improve after treatment with ibrutinib, an oral inhibitor of Bruton tyrosine kinase, we prospectively treated with ibrutinib a cohort of 3 patients with anti-MAG neuropathy and Waldenström macroglobulinemia (WM).

Methods

All 3 patients underwent bone marrow biopsy showing WM, with MYD88L265P mutated and CXCR4S338X wild type, and were started on ibrutinib 420 mg/die. Patients were assessed at baseline, at 3-6-9 months, and at 12 months in 2 patients with a longer follow-up, using Inflammatory Neuropathy Cause and Treatment (INCAT) Disability Score, INCAT sensory sum score, and Medical Research Council sum score. The modified International Cooperative Ataxia Rating Scale was performed in 2 patients, whereas it was not used in the patient with Parkinson disease as a major comorbidity. Responders were considered the patients improving by at least one point in 2 clinical scales.

Results

All the patients reported an early and subjective benefit, consistent with the objective improvement, especially of the sensory symptoms as shown by clinical scales. Treatment was well tolerated.

Conclusion

These preliminary data point to a possible efficacy of ibrutinib in anti-MAG antibody neuropathy, which is the most common disabling paraproteinemic neuropathy, where active treatment is eagerly needed.

Classification of evidence

This study provides Class IV evidence that for patients with anti-MAG antibody neuropathy, ibrutinib improves neuropathy symptoms.




osi

Effect of depositional water content on the collapsibility of a reconstituted loess

Loess, a wind-blown silty soil, can be deposited under a variety of moisture conditions, including dry deposition, wet deposition and gravitational settling of aggregations formed in moist air by capillary forces at grain contacts. This experimental study uses single and double oedometer tests to assess the effect of depositional water content on the collapse potential of reconstituted samples of the Langley Silt Member, known as Brickearth, a natural loessic soil. A freefall sample preparation technique was used to mimic loess formation and environmental scanning electron microscopy was used to relate the observed behaviour to sample fabric. The results show that loess deposited at higher water contents has a greater collapse potential, which is shown to be related to its looser, more granular fabric.




osi

Multicenter Evaluation of a PCR-Based Digital Microfluidics and Electrochemical Detection System for the Rapid Identification of 15 Fungal Pathogens Directly from Positive Blood Cultures [Mycology]

Routine identification of fungal pathogens from positive blood cultures by culture-based methods can be time-consuming, delaying treatment with appropriate antifungal agents. The GenMark Dx ePlex investigational use only blood culture identification fungal pathogen panel (BCID-FP) rapidly detects 15 fungal targets simultaneously in blood culture samples positive for fungi by Gram staining. We aimed to determine the performance of the BCID-FP in a multicenter clinical study. Blood culture samples collected at 10 United States sites and tested with BCID-FP at 4 sites were compared to the standard-of-care microbiological and biochemical techniques, fluorescence in situ hybridization using peptide nucleic acid probes (PNA-FISH) and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Discrepant results were analyzed by bi-directional PCR/sequencing of residual blood culture samples. A total of 866 clinical samples, 120 retrospectively and 21 prospectively collected, along with 725 contrived samples were evaluated. Sensitivity and specificity of detection of Candida species (C. albicans, C. auris, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, and C. tropicalis) ranged from 97.1 to 100% and 99.8 to 100%, respectively. For the other organism targets, sensitivity and specificity were as follows: 100% each for Cryptococcus neoformans and C. gattii, 98.6% and 100% for Fusarium spp., and 96.2% and 99.9% for Rhodotorula spp., respectively. In 4 of the 141 clinical samples, the BCID-FP panel correctly identified an additional Candida species, undetected by standard-of-care methods. The BCID-FP panel offers a faster turnaround time for identification of fungal pathogens in positive blood cultures that may allow for earlier antifungal interventions and includes C. auris, a highly multidrug-resistant fungus.




osi

Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections [Bacteriology]

Quantitative bacterial culture of bronchoalveolar lavage fluids (BALF) is labor-intensive, and the delay involved in performing culture, definitive identification, and susceptibility testing often results in prolonged use of broad-spectrum antibiotics. The Unyvero lower respiratory tract (LRT) panel (Curetis, Holzgerlingen, Germany) allows the multiplexed rapid detection and identification of 20 potential etiologic agents of pneumonia within 5 h of collection. In addition, the assay includes detection of gene sequences that confer antimicrobial resistance. We retrospectively compared the performance of the molecular panel to routine quantitative bacterial culture methods on remnant BALF. Upon testing 175 BALF, we were able to analyze positive agreement of 181 targets from 129 samples, and 46 samples were negative. The positive percent agreement (PPA) among the microbial targets was 96.5%, and the negative percent agreement (NPA) was 99.6%. The targets with a PPA of <100% were Staphylococcus aureus (34/37 [91.9%]), Streptococcus pneumoniae (10/11 [90.9%]), and Enterobacter cloacae complex (2/4 [50%]). For the analyzable resistance targets, concordance with phenotypic susceptibility testing was 79% (14/18). This study found the Unyvero LRT panel largely concordant with culture results; however, no outcome or clinical impact studies were performed.




osi

A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity [Immunoassays]

Lyme borreliosis is a tick-borne disease caused by the Borrelia burgdorferi sensu lato complex. Bio-Rad Laboratories has developed a fully automated multiplex bead-based assay for the detection of IgM and IgG antibodies to B. burgdorferi. The BioPlex 2200 Lyme Total assay exhibits an improved rate of seropositivity in patients with early Lyme infection. Asymptomatic subjects from endemic and nonendemic origins demonstrated a seroreactivity rate of approximately 4% that was similar to other commercial assays evaluated in this study. Coupled to this result was the observation that the Lyme Total assay retained a high first-tier specificity of 96% while demonstrating a relatively high sensitivity of 91% among a well-characterized CDC Premarketing Lyme serum panel. The Lyme Total assay also performs well under a modified two-tier algorithm (sensitivity, 84.4 to 88.9%; specificity, 98.4 to 99.5%). Furthermore, the new assay is able to readily detect early Lyme infection in patient samples from outside North America.




osi

Closing the Brief Case: Mold Infection of an Indwelling Cranial Device--a Perplexing Combination of "Classic" Laboratory Findings [The Brief Case]




osi

Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens [Virology]

On 31 December 2019, the World Health Organization was informed of a cluster of cases of pneumonia of unknown etiology in Wuhan, China. Subsequent investigations identified a novel coronavirus, now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from the affected patients. Highly sensitive and specific laboratory diagnostics are important for controlling the rapidly evolving SARS-CoV-2-associated coronavirus disease 2019 (COVID-19) epidemic. In this study, we developed and compared the performance of three novel real-time reverse transcription-PCR (RT-PCR) assays targeting the RNA-dependent RNA polymerase (RdRp)/helicase (Hel), spike (S), and nucleocapsid (N) genes of SARS-CoV-2 with that of the reported RdRp-P2 assay, which is used in >30 European laboratories. Among the three novel assays, the COVID-19-RdRp/Hel assay had the lowest limit of detection in vitro (1.8 50% tissue culture infective doses [TCID50]/ml with genomic RNA and 11.2 RNA copies/reaction with in vitro RNA transcripts). Among 273 specimens from 15 patients with laboratory-confirmed COVID-19 in Hong Kong, 77 (28.2%) were positive by both the COVID-19-RdRp/Hel and RdRp-P2 assays. The COVID-19-RdRp/Hel assay was positive for an additional 42 RdRp-P2-negative specimens (119/273 [43.6%] versus 77/273 [28.2%]; P < 0.001), including 29/120 (24.2%) respiratory tract specimens and 13/153 (8.5%) non-respiratory tract specimens. The mean viral load of these specimens was 3.21 x 104 RNA copies/ml (range, 2.21 x 102 to 4.71 x 105 RNA copies/ml). The COVID-19-RdRp/Hel assay did not cross-react with other human-pathogenic coronaviruses and respiratory pathogens in cell culture and clinical specimens, whereas the RdRp-P2 assay cross-reacted with SARS-CoV in cell culture. The highly sensitive and specific COVID-19-RdRp/Hel assay may help to improve the laboratory diagnosis of COVID-19.




osi

Circular RNA hsa_circ_0014130 Inhibits Apoptosis in Non-Small Cell Lung Cancer by Sponging miR-136-5p and Upregulating BCL2

Previous studies indicated that circular RNAs (circRNA) played vital roles in the development of non–small cell lung cancer (NSCLC). Although hsa_circ_0014130 might be a potential NSCLC biomarker, its function in NSCLC remains unknown. Thus, this study aimed to investigate the role of hsa_circ_0014130 in the progression of NSCLC. The levels of hsa_circ_0014130 in NSCLC tissues and adjacent normal tissues were determined by qRT-PCR. In addition, the expressions of Bcl-2 and cleaved caspase-3 in A549 cells were detected with Western blot analysis. Meanwhile, the dual luciferase reporter system assay was used to determine the interaction of hsa_circ_0014130 and miR-136-5p or Bcl-2 and miR-136-5p in NSCLC, respectively. The level of hsa_circ_0014130 was significantly upregulated in NSCLC tissues. Downregulation of hsa_circ_0014130 markedly inhibited the proliferation and invasion of A549 cells via inducing apoptosis. In addition, downregulation of hsa_circ_0014130 inhibited the tumorigenesis of subcutaneous A549 xenograft in mice in vivo. Meanwhile, mechanistic analysis indicated that downregulation of hsa_circ_0014130 decreased the expression of miR-136-5p–targeted gene Bcl-2 via acting as a competitive "sponge" of miR-136-5p. In this study, we found that hsa_circ_0014130 was upregulated in NSCLC tissues. In addition, hsa_circ_0014130 functions as a tumor promoter in NSCLC to promote tumor growth through upregulating Bcl-2 partially via "sponging" miR-136-5p.

Implications:

In conclusion, hsa_circ_0014130 might function as a prognostic factor for patients with NSCLC and might be a therapeutic target for the treatment of NSCLC in future.




osi

Pharmacological Characterization of the Novel and Selective {alpha}7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375 [Neuropharmacology]

Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases.

SIGNIFICANCE STATEMENT

BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.




osi

Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution [Review Articles]

Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe.

Significance Statement

Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.




osi

18F-FAC PET Visualizes Brain-Infiltrating Leukocytes in a Mouse Model of Multiple Sclerosis

Brain-infiltrating leukocytes contribute to multiple sclerosis (MS) and autoimmune encephalomyelitis and likely play a role in traumatic brain injury, seizure, and stroke. Brain-infiltrating leukocytes are also primary targets for MS disease-modifying therapies. However, no method exists for noninvasively visualizing these cells in a living organism. 1-(2'-deoxy-2'-18F-fluoroarabinofuranosyl) cytosine (18F-FAC) is a PET radiotracer that measures deoxyribonucleoside salvage and accumulates preferentially in immune cells. We hypothesized that 18F-FAC PET could noninvasively image brain-infiltrating leukocytes. Methods: Healthy mice were imaged with 18F-FAC PET to quantify if this radiotracer crosses the blood–brain barrier (BBB). Experimental autoimmune encephalomyelitis (EAE) is a mouse disease model with brain-infiltrating leukocytes. To determine whether 18F-FAC accumulates in brain-infiltrating leukocytes, EAE mice were analyzed with 18F-FAC PET, digital autoradiography, and immunohistochemistry, and deoxyribonucleoside salvage activity in brain-infiltrating leukocytes was analyzed ex vivo. Fingolimod-treated EAE mice were imaged with 18F-FAC PET to assess if this approach can monitor the effect of an immunomodulatory drug on brain-infiltrating leukocytes. PET scans of individuals injected with 2-chloro-2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosyl-adenine (18F-CFA), a PET radiotracer that measures deoxyribonucleoside salvage in humans, were analyzed to evaluate whether 18F-CFA crosses the human BBB. Results: 18F-FAC accumulates in the healthy mouse brain at levels similar to 18F-FAC in the blood (2.54 ± 0.2 and 3.04 ± 0.3 percentage injected dose per gram, respectively) indicating that 18F-FAC crosses the BBB. EAE mice accumulate 18F-FAC in the brain at 180% of the levels of control mice. Brain 18F-FAC accumulation localizes to periventricular regions with significant leukocyte infiltration, and deoxyribonucleoside salvage activity is present at similar levels in brain-infiltrating T and innate immune cells. These data suggest that 18F-FAC accumulates in brain-infiltrating leukocytes in this model. Fingolimod-treated EAE mice accumulate 18F-FAC in the brain at 37% lower levels than control-treated EAE mice, demonstrating that 18F-FAC PET can monitor therapeutic interventions in this mouse model. 18F-CFA accumulates in the human brain at 15% of blood levels (0.08 ± 0.01 and 0.54 ± 0.07 SUV, respectively), indicating that 18F-CFA does not cross the BBB in humans. Conclusion: 18F-FAC PET can visualize brain-infiltrating leukocytes in a mouse MS model and can monitor the response of these cells to an immunomodulatory drug. Translating this strategy into humans will require exploring additional radiotracers.




osi

Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT

C-X-C motif chemokine receptor 4 (CXCR4) is expressed on the surface of various cell types involved in atherosclerosis, with a particularly rich receptor expression on macrophages and T cells. First pilot studies with 68Ga-pentixafor, a novel CXCR4-directed PET tracer, have shown promise to noninvasively image inflammation within atherosclerotic plaques. The aim of this retrospective study was to investigate the performance of 68Ga-pentixafor PET/CT for imaging atherosclerosis in comparison to 18F-FDG PET/CT. Methods: Ninety-two patients (37 women and 55 men; mean age, 62 ± 10 y) underwent 68Ga-pentixafor and 18F-FDG PET/CT for staging of oncologic diseases. In these subjects, lesions in the walls of large arteries were identified using morphologic and PET criteria for atherosclerosis (n = 652). Tracer uptake was measured and adjusted for vascular lumen (background) signal by calculation of target-to-background ratios (TBRs) by 2 investigators masked to the other PET scan. On a lesion-to-lesion and patient basis, the TBRs of both PET tracers were compared and additionally correlated to the degree of arterial calcification as quantified in CT. Results: On a lesion-to-lesion basis, 68Ga-pentixafor and 18F-FDG uptake showed a weak correlation (r = 0.28; P < 0.01). 68Ga-pentixafor PET identified more lesions (n = 290; TBR ≥ 1.6, P < 0.01) and demonstrated higher uptake than 18F-FDG PET (1.8 ± 0.5 vs. 1.4 ± 0.4; P < 0.01). The degree of plaque calcification correlated negatively with both 68Ga-pentixafor and 18F-FDG uptake (r = –0.38 vs. –0.31, both P < 0.00001). Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, with only a weak correlation between tracers. Further studies to elucidate the underlying biologic mechanisms and sources of CXCR4 positivity, and to investigate the clinical utility of chemokine receptor–directed imaging of atherosclerosis, are highly warranted.




osi

Positive autofeedback regulation of Ptf1a transcription generates the levels of PTF1A required to generate itch circuit neurons [Research Papers]

Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal. Although these mutants survive postnatally, at ~3–5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.




osi

Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model

Background and objectives

The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB.

Methods

In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance.

Results

We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively.

Conclusion

Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community.




osi

Ivacaftor decreases monocyte sensitivity to interferon-{gamma} in people with cystic fibrosis

Management of cystic fibrosis has been revolutionised by the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators. These compounds treat the underlying molecular basis of the disease by increasing activity of defective CFTR channels, which improves many clinical parameters and enhances patient quality of life [1]. Next-generation modulators, also known as triple combination therapy, promise to be highly efficacious in up to 90% of patients [2] and will likely dramatically change the landscape of cystic fibrosis disease. Studies examining individuals before and after initiation of CFTR modulators have revealed novel functions of CFTR and shown that CFTR modulators do not reverse all disease manifestations [3–5]. Thus, knowledge of the post-modulator cystic fibrosis disease state is crucial for understanding what continued therapies will be needed for people with cystic fibrosis and what new challenges may arise.




osi

A microsimulation model to assess the economic impact of immunotherapy in non-small cell lung cancer

Introduction

Immunotherapy has become the standard of care in advanced non-small cell lung cancer (NSCLC). We aimed to quantify the economic impact, in France, of anti-PD-1 therapy for NSCLC.

Methods

We used patient-level data from the national ESCAP-2011-CPHG cohort study to estimate time to treatment failure and mean cost per patient for the four label indications approved by the European Medicines Agency (EMA) for NSCLC in May 2018. To compute the budget impact, we used a microsimulation model to estimate the target populations of anti-PD-1 therapy over a 3-year period, which were combined with the annual cost of treatment.

Results

Overall, 11 839 patients with NSCLC were estimated to be eligible for anti-PD-1 therapy 3 years after the introduction of anti-PD-1 therapies. The mean annual cost per patient in the control group ranged from 2671 (95% CI 2149–3194) to 6412 (95% CI 5920–6903) across the four indications. The mean annual cost of treatment for the four EMA-approved indications of anti-PD-1 therapy was estimated to be 48.7 million in the control group and at 421.8 million in the immunotherapy group. The overall budget impact in 2019 is expected to amount to 373.1 million. In the sensitivity analysis, flat doses and treatment effect had the greatest influence on the budget impact.

Conclusion

Anti-PD-1 agents for NSCLC treatment are associated with a substantial economic burden.




osi

The Transcriptional Aftermath in Two Independently Formed Hybrids of the Opportunistic Pathogen Candida orthopsilosis

ABSTRACT

Interspecific hybridization can drive evolutionary adaptation to novel environments. The Saccharomycotina clade of budding yeasts includes many hybrid lineages, and hybridization has been proposed as a source for new pathogenic species. Candida orthopsilosis is an emerging opportunistic pathogen for which most clinical isolates are hybrids, each derived from one of at least four independent crosses between the same two parental lineages. To gain insight into the transcriptomic aftermath of hybridization in these pathogens, we analyzed allele-specific gene expression in two independently formed hybrid strains and in a homozygous strain representative of one parental lineage. Our results show that the effect of hybridization on overall gene expression is rather limited, affecting ~4% of the genes studied. However, we identified a larger effect in terms of imbalanced allelic expression, affecting ~9.5% of the heterozygous genes in the hybrids. This effect was larger in the hybrid with more extensive loss of heterozygosity, which may indicate a tendency to avoid loss of heterozygosity in these genes. Consistently, the number of shared genes with allele-specific expression in the two independently formed hybrids was higher than random expectation, suggesting selective retention. Some of the imbalanced genes have functions related to pathogenicity, including zinc transport and superoxide dismutase activities. While it remains unclear whether the observed imbalanced genes play a role in virulence, our results suggest that differences in allele-specific expression may add an additional layer of phenotypic plasticity to traits related to virulence in C. orthopsilosis hybrids.

IMPORTANCE How new pathogens emerge is an important question that remains largely unanswered. Some emerging yeast pathogens are hybrids originated through the crossing of two different species, but how hybridization contributes to higher virulence is unclear. Here, we show that hybrids selectively retain gene regulation plasticity inherited from the two parents and that this plasticity affects genes involved in virulence.




osi

Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and Metabolic Function of Gut Microbiota

ABSTRACT

The chemical structures of soluble fiber carbohydrates vary from source to source due to numerous possible linkage configurations among monomers. However, it has not been elucidated whether subtle structural variations might impact soluble fiber fermentation by colonic microbiota. In this study, we tested the hypothesis that subtle structural variations in a soluble polysaccharide govern the community structure and metabolic output of fermenting microbiota. We performed in vitro fecal fermentation studies using arabinoxylans (AXs) from different classes of wheat (hard red spring [AXHRS], hard red winter [AXHRW], and spring red winter [AXSRW]) with identical initial microbiota. Carbohydrate analyses revealed that AXSRW was characterized by a significantly shorter backbone and increased branching compared with those of the hard varieties. Amplicon sequencing demonstrated that fermentation of AXSRW resulted in a distinct community structure of significantly higher richness and evenness than those of hard-AX-fermenting cultures. AXSRW favored OTUs within Bacteroides, whereas AXHRW and AXHRS favored Prevotella. Accordingly, metabolic output varied between hard and soft varieties; higher propionate production was observed with AXSRW and higher butyrate and acetate with AXHRW and AXHRS. This study showed that subtle changes in the structure of a dietary fiber may strongly influence the composition and function of colonic microbiota, further suggesting that physiological functions of dietary fibers are highly structure dependent. Thus, studies focusing on interactions among dietary fiber, gut microbiota, and health outcomes should better characterize the structures of the carbohydrates employed.

IMPORTANCE Diet, especially with respect to consumption of dietary fibers, is well recognized as one of the most important factors shaping the colonic microbiota composition. Accordingly, many studies have been conducted to explore dietary fiber types that could predictably manipulate the colonic microbiota for improved health. However, the majority of these studies underappreciate the vastness of fiber structures in terms of their microbial utilization and omit detailed carbohydrate structural analysis. In some cases, this causes conflicting results to arise between studies using (theoretically) the same fibers. In this investigation, by performing in vitro fecal fermentation studies using bran arabinoxylans obtained from different classes of wheat, we showed that even subtle changes in the structure of a dietary fiber result in divergent microbial communities and metabolic outputs. This underscores the need for much higher structural resolution in studies investigating interactions of dietary fibers with gut microbiota, both in vitro and in vivo.




osi

Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMs), which are used to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in and increased access to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), short-wave length infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies. PIMs and PVFTs show considerable promise for exploration and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits globally. Industry has consistently supported development of these tools, and in the case of PVFTs encouraged by several successful blind tests where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories, and also by the ongoing reliance on well-established geochemical exploration techniques (e.g. sediment, soil and rock chip sampling) that have aided the discovery of near-surface resources over many decades, but are now proving less effective in the search for deeply buried mineral resources and for those concealed under cover.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




osi

Visual Diagnosis: A Case of Stretchy Skin and Vascular Abnormalities




osi

Investigating the Effects of the Chemical Composition on Glass Corrosion: A Case Study for Type I Vials

Glass is the favorite material for parenteral packaging because of its physico-chemical properties. Type I borosilicate glass is worldwide use at this scope, but it may have some issues related to breakage, corrosion and delamination that might compromise the drug quality, safety and efficacy. These issues can be mitigated and avoided starting from the appropriate selection of the most suitable raw material at the early stage of the glass container design. In this study, Type I borosilicate glass vials manufactured using two glass tubes having different chemical compositions, were studied and compared in terms of their resistance to corrosion. Testing design was applied with the aim to select the best practice approach comparing different storage simulation conditions: ageing treatment through autoclaving and stability testing (real-time and accelerated). Clear differences were found between the different glass types in terms of hydrolytic and corrosion resistance that highlighted the relation between chemical composition and glass chemical durability. Non-negligible differences were also observed using different storage conditions.




osi

Functional Characterization of COG1713 (YqeK) as a Novel Diadenosine Tetraphosphate Hydrolase Family [Article]

Diadenosine tetraphosphate (Ap4A) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. Ap4A is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases. Here, considering evidence that the recombinant protein YqeK from Staphylococcus aureus copurified with ADP, and aided by thermal shift and kinetic analyses, we identified the YqeK family of proteins (COG1713) as an unprecedented class of symmetrically cleaving Ap4A hydrolases. We validated the functional assignment by confirming the ability of YqeK to affect in vivo levels of Ap4A in B. subtilis. YqeK shows a catalytic efficiency toward Ap4A similar to that of the symmetrically cleaving Ap4A hydrolases of the known ApaH family, although it displays a distinct fold that is typical of proteins of the HD domain superfamily harboring a diiron cluster. Analysis of the available 3D structures of three members of the YqeK family provided hints to the mode of substrate binding. Phylogenetic analysis revealed the occurrence of YqeK proteins in a consistent group of Gram-positive bacteria that lack ApaH enzymes. Comparative genomics highlighted that yqeK and apaH genes share a similar genomic context, where they are frequently found in operons involved in integrated responses to stress signals.

IMPORTANCE Elevation of Ap4A level in bacteria is associated with increased sensitivity to heat and oxidative stress, reduced antibiotic tolerance, and decreased pathogenicity. ApaH is the major Ap4A hydrolase in gamma- and betaproteobacteria and has been recently proposed as a novel target to weaken the bacterial resistance to antibiotics. Here, we identified the orphan YqeK protein family (COG1713) as a highly efficient Ap4A hydrolase family, with members distributed in a consistent group of bacterial species that lack the ApaH enzyme. Among them are the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Mycoplasma pneumoniae. By identifying the player contributing to Ap4A homeostasis in these bacteria, we disclose a novel target to develop innovative antibacterial strategies.




osi

Chitotriosidase: a marker and modulator of lung disease

Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article.




osi

The supportive care needs of people living with pulmonary fibrosis and their caregivers: a systematic review

Background

People with pulmonary fibrosis often experience a protracted time to diagnosis, high symptom burden and limited disease information. This review aimed to identify the supportive care needs reported by people with pulmonary fibrosis and their caregivers.

Methods

A systematic review was conducted according to PRISMA guidelines. Studies that investigated the supportive care needs of people with pulmonary fibrosis or their caregivers were included. Supportive care needs were extracted and mapped to eight pre-specified domains using a framework synthesis method.

Results

A total of 35 studies were included. The most frequently reported needs were in the domain of information/education, including information on supplemental oxygen, disease progression and prognosis, pharmacological treatments and end-of-life planning. Psychosocial/emotional needs were also frequently reported, including management of anxiety, anger, sadness and fear. An additional domain of "access to care" was identified that had not been specified a priori; this included access to peer support, psychological support, specialist centres and support for families of people with pulmonary fibrosis.

Conclusion

People with pulmonary fibrosis report many unmet needs for supportive care, particularly related to insufficient information and lack of psychosocial support. These data can inform the development of comprehensive care models for people with pulmonary fibrosis and their loved ones.




osi

Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran

A new larger benthic porcelaneous foraminifer of soritid affinity is described as Tarburina zagrosiana n. gen., n. sp. from the late Maastrichtian of the Tarbur Formation, Zagros Zone, SW Iran. It occurs in foraminiferal–dasycladalean wackestones and packstones, in association with Loftusia ssp., dicyclinids/cuneolinids, Neobalkhania bignoti Cherchi & Schroeder, Gyroconulina columellifera Schroeder & Darmoian, Spirolina? farsiana Schlagintweit & Rashidi, Broeckina cf. dufrenoyi (d'Archiac), other benthic foraminifers, and dasycladalean algae. Due to its elongate test and marginal chamber subdivision by aligned vertical partitions, Tarburina n. gen. can be compared with representatives of the Praerhapydionininae. The interio-marginal slit-like foramina/aperture of Tarburina represents an outstanding feature in complex porcelaneous taxa. The monospecific genus Tarburina is considered a Maastrichtian newcomer within the Late Cretaceous Global Community Maturation cycle of larger benthic foraminifera. A biostratigraphic and palaeobiogeographical restriction seems possible, as reported for many other Late Cretaceous larger benthic foraminifera.




osi

Diagnostic Utility and Impact on Clinical Decision Making of Focused Assessment With Sonography for HIV-Associated Tuberculosis in Malawi: A Prospective Cohort Study

ABSTRACTBackground:The focused assessment with sonography for HIV-associated tuberculosis (TB) (FASH) ultrasound protocol has been increasingly used to help clinicians diagnose TB. We sought to quantify the diagnostic utility of FASH for TB among individuals with HIV in Malawi.Methods:Between March 2016 and August 2017, 210 adults with HIV who had 2 or more signs and symptoms that were concerning for TB (fever, cough, night sweats, weight loss) were enrolled from a public HIV clinic in Lilongwe, Malawi. The treating clinicians conducted a history, physical exam, FASH protocol, and additional TB evaluation (laboratory diagnostics and chest radiography) on all participants. The clinician made a final treatment decision based on all available information. At the 6-month follow-up visit, we categorized participants based on clinical outcomes and diagnostic tests as having probable/confirmed TB or unlikely TB; association of FASH with probable/confirmed TB was calculated using Fisher's exact tests. The impact of FASH on empiric TB treatment was determined by asking the clinicians prospectively about whether they would start treatment at 2 time points in the baseline visit: (1) after the initial history and physical exam; and (2) after history, physical exam, and FASH protocol.Results:A total of 181 participants underwent final analysis, of whom 56 were categorized as probable/confirmed TB and 125 were categorized as unlikely TB. The FASH protocol was positive in 71% (40/56) of participants with probable/confirmed TB compared to 24% (30/125) of participants with unlikely TB (odds ratio=7.9, 95% confidence interval=3.9,16.1; P<.001). Among those classified as confirmed/probable TB, FASH increased the likelihood of empiric TB treatment before obtaining any other diagnostic studies from 9% (5/56) to 46% (26/56) at the point-of-care. For those classified as unlikely TB, FASH increased the likelihood of empiric treatment from 2% to 4%.Conclusion:In the setting of HIV coinfection in Malawi, FASH can be a helpful tool that augments the clinician's ability to make a timely diagnosis of TB.




osi

The Prognosis of Patients With Type 2 Diabetes and Nonalbuminuric Diabetic Kidney Disease Is Not Always Poor: Implication of the Effects of Coexisting Macrovascular Complications (JDDM 54)

OBJECTIVE

Nonalbuminuric diabetic kidney disease (DKD) has become the prevailing phenotype in patients with type 2 diabetes. However, it remains unclear whether its prognosis is poorer than that of other DKD phenotypes.

RESEARCH DESIGN AND METHODS

A total of 2,953 Japanese patients with type 2 diabetes and estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2, enrolled in an observational cohort study in 2004, were followed until 2015. On the basis of albuminuria (>30 mg/g creatinine) and reduced eGFR (<60 mL/min/1.73 m2) at baseline, participants were classified into the four DKD phenotypes—no-DKD, albuminuric DKD without reduced eGFR, nonalbuminuric DKD with reduced eGFR, and albuminuric DKD with reduced eGFR—to assess the risks of mortality, cardiovascular disease (CVD), and renal function decline.

RESULTS

During the mean follow-up of 9.7 years, 113 patients died and 263 developed CVD. In nonalbuminuric DKD, the risks of death or CVD were not higher than those in no-DKD (adjusted hazard ratio 1.02 [95% CI 0.66, 1.60]) and the annual decline in eGFR was slower than in other DKD phenotypes. The risks of death or CVD in nonalbuminuric DKD without prior CVD were similar to those in no-DKD without prior CVD, whereas the risks in nonalbuminuric DKD with prior CVD as well as other DKD phenotypes were higher.

CONCLUSIONS

Nonalbuminuric DKD did not have a higher risk of mortality, CVD events, or renal function decline than the other DKD phenotypes. In nonalbuminuric DKD, the presence of macrovascular complications may be a main determinant of prognosis rather than the renal phenotype.




osi

Trends in Bone Mineral Density, Osteoporosis, and Osteopenia Among U.S. Adults With Prediabetes, 2005-2014

OBJECTIVE

We aimed to evaluate trends in bone mineral density (BMD) and the prevalence of osteoporosis/osteopenia in U.S. adults with prediabetes and normal glucose regulation (NGR) and further investigate the association among prediabetes, osteopenia/osteoporosis, and fracture.

RESEARCH DESIGN AND METHODS

We collected and analyzed data from the U.S. National Health and Nutrition Examination Surveys during the period from 2005 to 2014. Femoral neck and lumbar spine BMD data were available for 5,310 adults with prediabetes and 5,162 adults with NGR >40 years old.

RESULTS

A shift was observed toward a lower BMD and a higher prevalence of osteopenia/osteoporosis at the femoral neck and lumbar spine in U.S. adults >40 years old with prediabetes since 2005, especially in men <60 and women ≥60 years old. A shift toward a higher prevalence of osteopenia/osteoporosis at the femoral neck was also observed in adults >40 years old with NGR. Moreover, prediabetes was associated with a higher prevalence of hip fracture, although participants with prediabetes had higher BMD and a lower prevalence of osteopenia/osteoporosis at the femoral neck.

CONCLUSIONS

There was a declining trend in BMD from 2005 to 2014 in U.S. adults >40 years old with prediabetes and NGR, and this trend was more significant in men <60 years old. Populations with prediabetes may be exposed to relatively higher BMD but a higher prevalence of fracture.




osi

Cardiac biomarkers are prognostic in systemic light chain amyloidosis with no cardiac involvement by standard criteria

Patients with systemic immunoglobulin light chain amyloidosis (AL) with no evidence of cardiac involvement by consensus criteria have excellent survival, but 20% will die within 5 years of diagnosis and prognostic factors remain poorly characterised. We report the outcomes of 378 prospectively followed Mayo stage I patients (N-terminal pro b-type natriuretic peptide <332 ng/L, high sensitivity cardiac troponin <55 ng/L). The median presenting N-terminal pro b-type natriuretic peptide was 161 ng/L, high sensitivity cardiac troponin 10 ng/L, creatinine 76 μmol/L and mean left ventricular septal wall thickness, 10 mm. Median follow up was 42 (1-117 months), with 71 deaths; median overall survival was not reached (78% survival at 5 years). Although no patients had cardiac involvement by echocardiogram, a proportion (n=25/90, 28%) had cardiac involvement by cardiac magnetic resonance imaging. Age, autonomic nervous system involvement, N-terminal pro b-type natriuretic peptide >152 ng/L, high sensitivity cardiac troponin >10 ng/L and cardiac involvement by magnetic resonance imaging were predictive for survival; on multivariate analysis only N-terminal pro b-type natriuretic peptide >152 ng/L (P<0.008, hazard ratio [HR] 3.180, confidence interval [CI]: 1.349-7.495) and cardiac involvement on magnetic resonance imaging (P=0.026, HR=5.360, CI: 1.219-23.574) were prognostic. At 5 years, 70% of patients with N-terminal pro b-type natriuretic peptide >152 ng/L were alive. In conclusion, N-terminal pro b-type natriuretic peptide is prognostic for survival in patients with no cardiac involvement by consensus criteria and cardiac involvement is detected by magnetic resonance imaging in such cases. This suggests that N-terminal pro b-type natriuretic peptide thresholds for cardiac involvement in AL may need to be redefined.




osi

Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model

Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.




osi

Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women

In iron-depleted women without anemia, oral iron supplements induce an increase in serum hepcidin (SHep) that persists for 24 hours, decreasing iron absorption from supplements given later on the same or next day. Consequently, iron absorption from supplements is highest if iron is given on alternate days. Whether this dosing schedule is also beneficial in women with iron-deficiency anemia (IDA) given high-dose iron supplements is uncertain. The primary objective of this study was to assess whether, in women with IDA, alternate-day administration of 100 and 200 mg iron increases iron absorption compared to consecutive-day iron administration. Secondary objectives were to correlate iron absorption with SHep and iron status parameters. We performed a cross-over iron absorption study in women with IDA (n=19; median hemoglobin 11.5 mg/dL; mean serum ferritin 10 mg/L) who received either 100 or 200 mg iron as ferrous sulfate given at 8 AM on days 2, 3 and 5 labeled with stable iron isotopes 57Fe, 58Fe and 54Fe; after a 16-day incorporation period, the other labeled dose was given at 8 AM on days 23, 24 and 26 (days 2, 3 and 5 of the second period). Iron absorption on days 2 and 3 (consecutive) and day 5 (alternate) was assessed by measuring erythrocyte isotope incorporation. For both doses, SHep was higher on day 3 than on day 2 (P<0.001) or day 5 (P<0.01) with no significant difference between days 2 and 5. Similarly, for both doses, fractional iron absorption (FIA) on days 2 and 5 was 40-50% higher than on day 3 (P<0.001), while absorption on day 2 did not differ significantly from day 5. There was no significant difference in the incidence of gastrointestinal side effects comparing the two iron doses (P=0.105). Alternate day dosing of oral iron supplements in anemic women may be preferable because it sharply increases FIA. If needed, to provide the same total amount of iron with alternate day dosing, twice the daily target dose should be given on alternate days, as total iron absorption from a single dose of 200 mg given on alternate days was approximately twice that from 100 mg given on consecutive days (P<0.001). In IDA, even if hepatic hepcidin expression is strongly suppressed by iron deficiency and erythropoietic drive, the intake of oral iron supplements leads to an acute hepcidin increase for 24 hours. The study was funded by ETH Zürich, Switzerland. This study has been registered at www.clinicaltrials.gov as #NCT03623997.




osi

CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model




osi

5-formylcytosine and 5-hydroxymethyluracil as surrogate markers of TET2 and SF3B1 mutations in myelodysplastic syndrome, respectively




osi

Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis




osi

Functional assessment of glucocerebrosidase modulator efficacy in primary patient-derived macrophages is essential for drug development and patient stratification




osi

A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function

Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.




osi

Protection Against Insulin Resistance by Apolipoprotein M/Sphingosine-1-Phosphate

Subjects with low serum HDL cholesterol levels are reported to be susceptible to diabetes, with insulin resistance believed to be the underlying pathological mechanism. Apolipoprotein M (apoM) is a carrier of sphingosine-1-phosphate (S1P), a multifunctional lipid mediator, on HDL, and the pleiotropic effects of HDL are believed to be mediated by S1P. In the current study, we attempted to investigate the potential association between apoM/S1P and insulin resistance. We observed that the serum levels of apoM were lower in patients with type 2 diabetes and that they were negatively correlated with BMI and the insulin resistance index. While deletion of apoM in mice was associated with worsening of insulin resistance, overexpression of apoM was associated with improvement of insulin resistance. Presumably, apoM/S1P exerts its protective effect against insulin resistance by activating insulin signaling pathways, such as the AKT and AMPK pathways, and also by improving the mitochondrial functions through upregulation of SIRT1 protein levels. These actions of apoM/S1P appear to be mediated via activation of S1P1 and/or S1P3. These results suggest that apoM/S1P exerts protective roles against the development of insulin resistance.




osi

Apolipoprotein M and Sphingosine-1-Phosphate: A Potentially Antidiabetic Tandem Carried by HDL




osi

Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity

Accumulation of lipid in skeletal muscle is thought to be related to the development of insulin resistance and type 2 diabetes. Initial work in this area focused on accumulation of intramuscular triglyceride; however, bioactive lipids such as diacylglycerols and sphingolipids are now thought to play an important role. Specific species of these lipids appear to be more negative toward insulin sensitivity than others. Adding another layer of complexity, localization of lipids within the cell appears to influence the relationship between these lipids and insulin sensitivity. This article summarizes how accumulation of total lipids, specific lipid species, and localization of lipids influence insulin sensitivity in humans. We then focus on how these aspects of muscle lipids are impacted by acute and chronic aerobic and resistance exercise training. By understanding how exercise alters specific species and localization of lipids, it may be possible to uncover specific lipids that most heavily impact insulin sensitivity.




osi

Women&#x2019;s experiences of diagnosis and management of polycystic ovary syndrome: a mixed-methods study in general practice

BackgroundPolycystic ovary syndrome (PCOS) is a common lifelong metabolic condition with serious associated comorbidities. Evidence points to a delay in diagnosis and inconsistency in the information provided to women with PCOS.AimTo capture women’s experiences of how PCOS is diagnosed and managed in UK general practice.Design and settingThis was a mixed-methods study with an online questionnaire survey and semi-structured telephone interviews with a subset of responders.MethodAn online survey to elicit women’s experiences of general practice PCOS care was promoted by charities and BBC Radio Leicester. The survey was accessible online between January 2018 and November 2018. A subset of responders undertook a semi-structured telephone interview to provide more in-depth data.ResultsA total of 323 women completed the survey (average age 35.4 years) and semi-structured interviews were conducted with 11 women. There were five key themes identified through the survey responses. Participants described a variable lag time from presentation to PCOS diagnosis, with a median of 6–12 months. Many had experienced mental health problems associated with their PCOS symptoms, but had not discussed these with the GP. Many were unable to recall any discussion about associated comorbidities with the GP. Some differences were identified between the experiences of women from white British backgrounds and those from other ethnic backgrounds.ConclusionFrom the experiences of the women in this study, it appears that PCOS in general practice is not viewed as a long-term condition with an increased risk of comorbidities including mental health problems. Further research should explore GPs’ awareness of comorbidities and the differences in PCOS care experienced by women from different ethnic backgrounds.




osi

Books: Invisible Women: Exposing Data Bias in a World Designed For Men




osi

Prognosis and Survival of Older Patients With Dizziness in Primary Care: A 10-Year Prospective Cohort Study [Original Research]

PURPOSE

The prognosis of older patients with dizziness in primary care is unknown. Our objective was to determine the prognosis and survival of patients with different subtypes and causes of dizziness.

METHODS

In a primary care prospective cohort study, 417 older adults with dizziness (mean age 79 years) received a full diagnostic workup in 2006-2008. A panel of physicians classified the subtype and primary cause of dizziness. Main outcome measures were mortality and dizziness-related impairment assessed at 10-year follow-up.

RESULTS

At 10-year follow-up 169 patients (40.5%) had died. Presyncope was the most common dizziness subtype (69.1%), followed by vertigo (41.0%), disequilibrium (39.8%), and other dizziness (1.7%). The most common primary causes of dizziness were cardiovascular disease (56.8%) and peripheral vestibular disease (14.4%). Multivariable adjusted Cox models showed a lower mortality rate for patients with the subtype vertigo compared with other subtypes (hazard ratio [HR] = 0.62; 95% CI, 0.40-0.96), and for peripheral vestibular disease vs cardiovascular disease as primary cause of dizziness (HR = 0.46; 95% CI, 0.25-0.84). After 10 years, 47.7% of patients who filled out the follow-up measurement experienced substantial dizziness-related impairment. No significant difference in substantial impairment was seen between different subtypes and primary causes of dizziness.

CONCLUSIONS

The 10-year mortality rate was lower for the dizziness subtype vertigo compared with other subtypes. Patients with dizziness primarily caused by peripheral vestibular disease had a lower mortality rate than patients with cardiovascular disease. Substantial dizziness-related impairment in older patients with dizziness 10 years later is high, and indicates that current treatment strategies by family physicians may be suboptimal.