été

On a kind of self-similar sets with complete overlaps. (arXiv:2005.03280v1 [math.DS])

Let $E$ be the self-similar set generated by the {it iterated function system} {[ f_0(x)=frac{x}{eta},quad f_1(x)=frac{x+1}{eta}, quad f_{eta+1}=frac{x+eta+1}{eta} ]}with $etage 3$. {Then} $E$ is a self-similar set with complete {overlaps}, i.e., $f_{0}circ f_{eta+1}=f_{1}circ f_1$, but $E$ is not totally self-similar.

We investigate all its generating iterated function systems, give the spectrum of $E$, and determine the Hausdorff dimension and Hausdorff measure of $E$ and of the sets which contain all points in $E$ having finite or infinite different triadic codings.




été

Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT])

We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly.




été

On the Brown-Peterson cohomology of $BPU_n$ in lower dimensions and the Thom map. (arXiv:2005.03107v1 [math.AT])

For an odd prime $p$, we determined the Brown-Peterson cohomology of $BPU_n$ in dimensions $-(2p-2)leq ileq 2p+2$, where $BPU_n$ is the classifying space of the projective unitary group $PU_n$. We construct a family of $p$-torsion classes $eta_{p,k}in BP^{2p^{k+1}+2}(BPU_n)$ for $p|n$ and $kgeq 0$ and identify their images under the Thom map with well understood cohomology classes in $H^*(BPU_n;mathbb{Z}_{(p)})$.




été

On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED)

With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)).




été

Lake Ice Detection from Sentinel-1 SAR with Deep Learning. (arXiv:2002.07040v2 [eess.IV] UPDATED)

Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator to monitor climate change and global warming. The spatio-temporal extent of lake ice cover, along with the timings of key phenological events such as freeze-up and break-up, provide important cues about the local and global climate. We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network. In previous studies that used optical satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor, which we overcome thanks to the ability of microwave sensors to penetrate clouds and observe the lakes regardless of the weather and illumination conditions. We cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a state-of-the-art deep convolutional network (CNN). We report results on two winters ( 2016 - 17 and 2017 - 18 ) and three alpine lakes in Switzerland. The proposed model reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even for the most difficult lake. Additionally, we perform cross-validation tests and show that our algorithm generalises well across unseen lakes and winters.




été

IPG-Net: Image Pyramid Guidance Network for Small Object Detection. (arXiv:1912.00632v3 [cs.CV] UPDATED)

For Convolutional Neural Network-based object detection, there is a typical dilemma: the spatial information is well kept in the shallow layers which unfortunately do not have enough semantic information, while the deep layers have a high semantic concept but lost a lot of spatial information, resulting in serious information imbalance. To acquire enough semantic information for shallow layers, Feature Pyramid Networks (FPN) is used to build a top-down propagated path. In this paper, except for top-down combining of information for shallow layers, we propose a novel network called Image Pyramid Guidance Network (IPG-Net) to make sure both the spatial information and semantic information are abundant for each layer. Our IPG-Net has two main parts: the image pyramid guidance transformation module and the image pyramid guidance fusion module. Our main idea is to introduce the image pyramid guidance into the backbone stream to solve the information imbalance problem, which alleviates the vanishment of the small object features. This IPG transformation module promises even in the deepest stage of the backbone, there is enough spatial information for bounding box regression and classification. Furthermore, we designed an effective fusion module to fuse the features from the image pyramid and features from the backbone stream. We have tried to apply this novel network to both one-stage and two-stage detection models, state of the art results are obtained on the most popular benchmark data sets, i.e. MS COCO and Pascal VOC.




été

t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams. (arXiv:1911.06147v2 [cs.CL] UPDATED)

A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.




été

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale. (arXiv:1909.04422v2 [cs.CV] UPDATED)

Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign.




été

Parameterised Counting in Logspace. (arXiv:1904.12156v3 [cs.LO] UPDATED)

Stockhusen and Tantau (IPEC 2013) defined the operators paraW and paraBeta for parameterised space complexity classes by allowing bounded nondeterminism with multiple read and read-once access, respectively. Using these operators, they obtained characterisations for the complexity of many parameterisations of natural problems on graphs.

In this article, we study the counting versions of such operators and introduce variants based on tail-nondeterminism, paraW[1] and paraBetaTail, in the setting of parameterised logarithmic space. We examine closure properties of the new classes under the central reductions and arithmetic operations. We also identify a wide range of natural complete problems for our classes in the areas of walk counting in digraphs, first-order model-checking and graph-homomorphisms. In doing so, we also see that the closure of #paraBetaTail-L under parameterised logspace parsimonious reductions coincides with #paraBeta-L. We show that the complexity of a parameterised variant of the determinant function is #paraBetaTail-L-hard and can be written as the difference of two functions in #paraBetaTail-L for (0,1)-matrices. Finally, we characterise the new complexity classes in terms of branching programs.




été

Deterministic Sparse Fourier Transform with an ell_infty Guarantee. (arXiv:1903.00995v3 [cs.DS] UPDATED)

In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of $x in mathbb{C}^n$ and design a recovery algorithm such that the output of the algorithm approximates $hat x$, the Discrete Fourier Transform (DFT) of $x$. The randomized case has been well-understood, while the main work in the deterministic case is that of Merhi et al.@ (J Fourier Anal Appl 2018), which obtains $O(k^2 log^{-1}k cdot log^{5.5}n)$ samples and a similar runtime with the $ell_2/ell_1$ guarantee. We focus on the stronger $ell_{infty}/ell_1$ guarantee and the closely related problem of incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of $O(k^2 log n)$ samples for the $ell_infty/ell_1$ recovery in time $O(nk log^2 n)$, and a deterministic collection of $O(k^2 log^2 n)$ samples for the $ell_infty/ell_1$ sparse recovery in time $O(k^2 log^3n)$.

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices of the DFT matrix, via a derandomization of Bernstein's inequality and bounds on exponential sums considered in analytic number theory. Our first construction matches a previous randomized construction of Nelson, Nguyen and Woodruff (RANDOM'12), where there was no constraint on the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of $Omega(k^2 + k log n)$ is known, even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of $Omega(k^2 log n/ log k)$ is known for incoherent matrices.




été

An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning. (arXiv:1811.02043v2 [cs.DS] UPDATED)

We investigate sparse matrix bipartitioning -- a problem where we minimize the communication volume in parallel sparse matrix-vector multiplication. We prove, by reduction from graph bisection, that this problem is $mathcal{NP}$-complete in the case where each side of the bipartitioning must contain a linear fraction of the nonzeros.

We present an improved exact branch-and-bound algorithm which finds the minimum communication volume for a given matrix and maximum allowed imbalance. The algorithm is based on a maximum-flow bound and a packing bound, which extend previous matching and packing bounds.

We implemented the algorithm in a new program called MP (Matrix Partitioner), which solved 839 matrices from the SuiteSparse collection to optimality, each within 24 hours of CPU-time. Furthermore, MP solved the difficult problem of the matrix cage6 in about 3 days. The new program is on average more than ten times faster than the previous program MondriaanOpt.

Benchmark results using the set of 839 optimally solved matrices show that combining the medium-grain/iterative refinement methods of the Mondriaan package with the hypergraph bipartitioner of the PaToH package produces sparse matrix bipartitionings on average within 10% of the optimal solution.




été

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




été

Real-Time Context-aware Detection of Unsafe Events in Robot-Assisted Surgery. (arXiv:2005.03611v1 [cs.RO])

Cyber-physical systems for robotic surgery have enabled minimally invasive procedures with increased precision and shorter hospitalization. However, with increasing complexity and connectivity of software and major involvement of human operators in the supervision of surgical robots, there remain significant challenges in ensuring patient safety. This paper presents a safety monitoring system that, given the knowledge of the surgical task being performed by the surgeon, can detect safety-critical events in real-time. Our approach integrates a surgical gesture classifier that infers the operational context from the time-series kinematics data of the robot with a library of erroneous gesture classifiers that given a surgical gesture can detect unsafe events. Our experiments using data from two surgical platforms show that the proposed system can detect unsafe events caused by accidental or malicious faults within an average reaction time window of 1,693 milliseconds and F1 score of 0.88 and human errors within an average reaction time window of 57 milliseconds and F1 score of 0.76.




été

Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. (arXiv:2005.03572v1 [cs.CV])

Deep learning-based object detection and instance segmentation have achieved unprecedented progress. In this paper, we propose Complete-IoU (CIoU) loss and Cluster-NMS for enhancing geometric factors in both bounding box regression and Non-Maximum Suppression (NMS), leading to notable gains of average precision (AP) and average recall (AR), without the sacrifice of inference efficiency. In particular, we consider three geometric factors, i.e., overlap area, normalized central point distance and aspect ratio, which are crucial for measuring bounding box regression in object detection and instance segmentation. The three geometric factors are then incorporated into CIoU loss for better distinguishing difficult regression cases. The training of deep models using CIoU loss results in consistent AP and AR improvements in comparison to widely adopted $ell_n$-norm loss and IoU-based loss. Furthermore, we propose Cluster-NMS, where NMS during inference is done by implicitly clustering detected boxes and usually requires less iterations. Cluster-NMS is very efficient due to its pure GPU implementation, , and geometric factors can be incorporated to improve both AP and AR. In the experiments, CIoU loss and Cluster-NMS have been applied to state-of-the-art instance segmentation (e.g., YOLACT), and object detection (e.g., YOLO v3, SSD and Faster R-CNN) models. Taking YOLACT on MS COCO as an example, our method achieves performance gains as +1.7 AP and +6.2 AR$_{100}$ for object detection, and +0.9 AP and +3.5 AR$_{100}$ for instance segmentation, with 27.1 FPS on one NVIDIA GTX 1080Ti GPU. All the source code and trained models are available at https://github.com/Zzh-tju/CIoU




été

Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC])

This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience.




été

Subtle Sensing: Detecting Differences in the Flexibility of Virtually Simulated Molecular Objects. (arXiv:2005.03503v1 [cs.HC])

During VR demos we have performed over last few years, many participants (in the absence of any haptic feedback) have commented on their perceived ability to 'feel' differences between simulated molecular objects. The mechanisms for such 'feeling' are not entirely clear: observing from outside VR, one can see that there is nothing physical for participants to 'feel'. Here we outline exploratory user studies designed to evaluate the extent to which participants can distinguish quantitative differences in the flexibility of VR-simulated molecular objects. The results suggest that an individual's capacity to detect differences in molecular flexibility is enhanced when they can interact with and manipulate the molecules, as opposed to merely observing the same interaction. Building on these results, we intend to carry out further studies investigating humans' ability to sense quantitative properties of VR simulations without haptic technology.




été

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




été

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




été

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




été

Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR])

XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output.

Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners.

Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications.




été

Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIs. (arXiv:2005.03320v1 [cs.SE])

Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of nine analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.




été

Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV])

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.




été

Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY])

By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process.




été

Determinantal Point Processes in Randomized Numerical Linear Algebra. (arXiv:2005.03185v1 [cs.DS])

Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive.




été

Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE])

Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two.




été

A Parameterized Perspective on Attacking and Defending Elections. (arXiv:2005.03176v1 [cs.GT])

We consider the problem of protecting and manipulating elections by recounting and changing ballots, respectively. Our setting involves a plurality-based election held across multiple districts, and the problem formulations are based on the model proposed recently by~[Elkind et al, IJCAI 2019]. It turns out that both of the manipulation and protection problems are NP-complete even in fairly simple settings. We study these problems from a parameterized perspective with the goal of establishing a more detailed complexity landscape. The parameters we consider include the number of voters, and the budgets of the attacker and the defender. While we observe fixed-parameter tractability when parameterizing by number of voters, our main contribution is a demonstration of parameterized hardness when working with the budgets of the attacker and the defender.




été

Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph])

Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation.




été

Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV])

Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101).




été

Scale-Equalizing Pyramid Convolution for Object Detection. (arXiv:2005.03101v1 [cs.CV])

Feature pyramid has been an efficient method to extract features at different scales. Development over this method mainly focuses on aggregating contextual information at different levels while seldom touching the inter-level correlation in the feature pyramid. Early computer vision methods extracted scale-invariant features by locating the feature extrema in both spatial and scale dimension. Inspired by this, a convolution across the pyramid level is proposed in this study, which is termed pyramid convolution and is a modified 3-D convolution. Stacked pyramid convolutions directly extract 3-D (scale and spatial) features and outperforms other meticulously designed feature fusion modules. Based on the viewpoint of 3-D convolution, an integrated batch normalization that collects statistics from the whole feature pyramid is naturally inserted after the pyramid convolution. Furthermore, we also show that the naive pyramid convolution, together with the design of RetinaNet head, actually best applies for extracting features from a Gaussian pyramid, whose properties can hardly be satisfied by a feature pyramid. In order to alleviate this discrepancy, we build a scale-equalizing pyramid convolution (SEPC) that aligns the shared pyramid convolution kernel only at high-level feature maps. Being computationally efficient and compatible with the head design of most single-stage object detectors, the SEPC module brings significant performance improvement ($>4$AP increase on MS-COCO2017 dataset) in state-of-the-art one-stage object detectors, and a light version of SEPC also has $sim3.5$AP gain with only around 7% inference time increase. The pyramid convolution also functions well as a stand-alone module in two-stage object detectors and is able to improve the performance by $sim2$AP. The source code can be found at https://github.com/jshilong/SEPC.




été

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




été

Heterogeneous Facility Location Games. (arXiv:2005.03095v1 [cs.GT])

We study heterogeneous $k$-facility location games. In this model there are $k$ facilities where each facility serves a different purpose. Thus, the preferences of the agents over the facilities can vary arbitrarily. Our goal is to design strategy proof mechanisms that place the facilities in a way to maximize the minimum utility among the agents. For $k=1$, if the agents' locations are known, we prove that the mechanism that places the facility on an optimal location is strategy proof. For $k geq 2$, we prove that there is no optimal strategy proof mechanism, deterministic or randomized, even when $k=2$ there are only two agents with known locations, and the facilities have to be placed on a line segment. We derive inapproximability bounds for deterministic and randomized strategy proof mechanisms. Finally, we focus on the line segment and provide strategy proof mechanisms that achieve constant approximation. All of our mechanisms are simple and communication efficient. As a byproduct we show that some of our mechanisms can be used to achieve constant factor approximations for other objectives as the social welfare and the happiness.




été

I Always Feel Like Somebody's Sensing Me! A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors. (arXiv:2005.03068v1 [cs.CR])

The increasing ubiquity of low-cost wireless sensors in smart homes and buildings has enabled users to easily deploy systems to remotely monitor and control their environments. However, this raises privacy concerns for third-party occupants, such as a hotel room guest who may be unaware of deployed clandestine sensors. Previous methods focused on specific modalities such as detecting cameras but do not provide a generalizable and comprehensive method to capture arbitrary sensors which may be "spying" on a user. In this work, we seek to determine whether one can walk in a room and detect any wireless sensor monitoring an individual. As such, we propose SnoopDog, a framework to not only detect wireless sensors that are actively monitoring a user, but also classify and localize each device. SnoopDog works by establishing causality between patterns in observable wireless traffic and a trusted sensor in the same space, e.g., an inertial measurement unit (IMU) that captures a user's movement. Once causality is established, SnoopDog performs packet inspection to inform the user about the monitoring device. Finally, SnoopDog localizes the clandestine device in a 2D plane using a novel trial-based localization technique. We evaluated SnoopDog across several devices and various modalities and were able to detect causality 96.6% percent of the time, classify suspicious devices with 100% accuracy, and localize devices to a sufficiently reduced sub-space.




été

How Does the IMPACT Baseline Test for Athletes Really Work?

Retired Soccer Star Briana Scurry describes how the computerized baseline test works and how it is used for athletes who have sustained a concussion.




été

Chronic Traumatic Encephalopathy (CTE) in Amateur Athletes

A new study suggests that vulnerability to CTE is not limited to professional athletes.




été

Teen athletes sandbag concussion tests to stay in the game

What happens when the drive to play outweighs the potential risk of injury? Some high school athletes are finding ways around the precautions coaching and medical staff take to ensure their safety.




été

The Complete Tutorial on the Top 5 Ways to Query Your Relational Database in JavaScript - Part 2

Welcome back! In the first part of this series, we looked at a very "low-level" way to interact with a relational database by sending it raw SQL strings and retrieving the results. We created a very simple Express application that we can use as an example and deployed it on Heroku with a Postgres database.

In this part, we're going to examine a few libraries which build on top of that foundation, adding layers of abstraction that let you read and manipulate database data in a more "JavaScript-like" way.




été

Key Missteps at the CDC Have Set Back Its Ability to Detect the Potential Spread of Coronavirus

The CDC designed a flawed test for COVID-19, then took weeks to figure out a fix so state and local labs could use it. New York still doesn’t trust the test’s accuracy By Caroline Chen, Marshall Allen, Lexi Churchill and Isaac Arnsdorf Propublica…



  • News/Nation & World

été

UPDATED: Spokane Veterans Home isolated residents back in February due to respiratory illness — with no way to test

UPDATE: The Department of Veterans Affairs announced after this article was first published that Spokane Veterans Home residents with COVID-19 would be moved to the Mann-Grandstaff VA Medical Center.…



  • News/Local News

été

Two more residents of the Spokane Veterans Home have died, bringing death toll to five

Two more residents who were staying at the Spokane Veterans Home have died of complications related to COVID-19, according to the Washington State Department of Veterans Affairs. There have now been five residents of the home who have died following their diagnosis of COVID-19.…




été

The Spokane County Sheriff's Office has discretely acquired technology that enables them to bypass phone passwords

Cops are hackers now, too.…



  • News/Local News

été

Branched hetero polyfunctional polyoxyalkylene compound and intermediate thereof

A branched hetero polyfunctional polyoxyalkylene compound represented by the following formula (1): wherein Z represents a hydroxyl group-removed residue of pentaerythritol or dipentaerythritol, OA1 and OA2 represent an oxyalkylene group having 2 to 4 carbon atoms, L1, L2 and L3 represent an alkylene group or an alkylene group that contains an ester bond, a urethane bond, an amide bond, an ether bond, a carbonate bond, a secondary amino group or a urea bond, X and Y are different from each other and represent a functional group capable of a chemical reaction; m and n are an average number of moles of the oxyalkylene group added, m represents 5 to 1,000, n represents 0 to 1,000, and p, q and r represent 0 or 1; and s1 is an integer of 2 or more and s1+s2=4 or 6.




été

Urban traffic state detection based on support vector machine and multilayer perceptron

A system and method that facilitates urban traffic state detection based on support vector machine (SVM) and multilayer perceptron (MLP) classifiers is provided. Moreover, the SVM and MLP classifiers are fused into a cascaded two-tier classifier that improves the accuracy of the traffic state classification. To further improve the accuracy, the cascaded two-tier classifier (e.g., MLP-SVM), a single SVM classifier and a single MLP classifier are fused to determine a final decision for a traffic state. In addition, fusion strategies are employed during training and implementation phases to compensate for data acquisition and classification errors caused by noise and/or outliers.




été

Monitoring method and subsystem that detects abnormal system states

The current application is directed to monitoring subsystems, and monitoring methods incorporated within the monitoring subsystems, that monitor operation of devices and systems in order to identify normal states and to quickly determine when a device or system transitions from a normal state to an abnormal state. The methods and monitoring components to which the current application is directed employ self-organizing maps and moving-average self-organizing maps to both characterize normal system behavior and to identify transitions to abnormal system behaviors.




été

Determining a dynamic user profile indicative of a user behavior context with a mobile device

Methods, apparatuses and articles of manufacture for use in a mobile device to determine whether a dynamic user profile is to transition from a first state to a second state based, at least in part, on one or more sensed indicators. The dynamic user profile may be indicative of one or more current inferable user behavior contexts for a user co-located with the mobile device. The mobile device may transition a dynamic user profile from a first state to a second state, in response to a determination that the dynamic user profile is to transition from the first state to the second state, and operatively affect one or more functions performed, at least in part, by the mobile device based, at least in part, on the transition of the dynamic user profile to the second state.




été

Determining a replacement document owner

Provided are a method, computer program product, and system for generating a recommendation for transfer of ownership of content. At least one characteristic of a first owner is determined. At least one characteristic of the content is determined. A second owner for the content is determined based on the at least one characteristic of the first owner, and the at least one content characteristic. The recommendation for transfer of ownership is generated, based at least in part on the determination of the second owner.




été

Fast efficient vocabulary computation with hashed vocabularies applying hash functions to cluster centroids that determines most frequently used cluster centroid IDs

The disclosed embodiments describe a method, an apparatus, an application specific integrated circuit, and a server that provides a fast and efficient look up for data analysis. The apparatus and server may be configured to obtain data segments from a plurality of input devices. The data segments may be individual unique subsets of the entire data set obtained by a plurality input devices. A hash function may be applied to an aggregated set of the data segments. A result of the hash function may be stored in a data structure. A codebook may be generated from the hash function results.




été

Process for producing biodiesel through lower molecular weight alcohol-targeted cavitation

A method for producing fatty acid alkyl esters from biolipids through transesterification and/or esterification reactions uses a flow-through cavitation device for generating cavitation bubbles in a fluidic reaction medium. The fluidic medium is passed through sequential compartments in the cavitation device having varying diameters and inner surface features to create localized reductions in fluid pressure thus vaporizing volatile alcohols and creating an increased surface area and optimized conditions for the reaction to occur at the gas-liquid interface around the bubbles.




été

Heterocyclic compounds as imaging probes of tau pathology

Heterocyclic compounds of formula (I) useful as imaging probes of Tau pathology in Alzheimer's disease are described. Compositions and methods of making such compounds are also described.




été

Heterocyclyl pyrazolopyrimidine analogues as selective JAK inhibitors

The present invention relates to compounds of formula (I) wherein X1 to X5, Y, Z1 to Z3, and R have the meaning as cited in the description and the claims. Said compounds are useful as JAK inhibitors for the treatment or prophylaxis of immunological, inflammatory, autoimmune, allergic disorders, and immunologically-mediated diseases. The invention also relates to pharmaceutical compositions including said compounds, the preparation of such compounds as well as the use as medicaments.




été

Fused heterocyclic derivative, medicinal composition containing the same, and medicinal use thereof

The present invention provides a compound useful as an agent for the prevention or treatment of a sex hormone-dependent disease or the like. That is, the present invention provides a fused heterocyclic derivative represented by the following general formula (I), a pharmaceutical composition containing the same, a medicinal use thereof and the like. In the formula (I), ring A represents 5-membered cyclic unsaturated hydrocarbon or 5-membered heteroaryl; RA represents halogen, alkyl, alkenyl, alkynyl, carboxy, alkoxy, carbamoyl, alkylcarbamoyl or the like ; ring B represents aryl or heteroaryl; RB represents halogen, alkyl, carboxy, alkoxy, carbamoyl, alkylcarbamoyl or the like; E1 and E2 represent an oxygen atom or the like; U represents a single bond or alkylene; X represents a group represented by Y, —SO2—Y, —O—(alkylene)—Y, —O—Z in which Y represents Z, amino or the like; Z represents cycloalkyl, heterocycloalkyl, aryl, heteroaryl or the like; or the like.