uri

Siliguri's pineapple farmers cry for help as their fruits has no takers amid lockdown




uri

Tamil Nadu announces major relaxations during lockdown




uri

Chiulon reaches Manchuria

Chiulon reaches Manchuria




uri

36 stranded Manipuri including 16 Cancer patients departs Mumbai for Imphal

36 stranded Manipuri including 16 Cancer patients departs Mumbai for Imphal




uri

Coimbatore city sees dip in waste collected during lockdown

Corporation used lockdown period to clear accumulated garbage in various places




uri

200 ATMs without security guards closed in Erode

The district administration and the Corporation has asked all banks to ensure security guards at the ATMs so that they can provide hand sanitisers to the people visiting the kiosks.




uri

Shriya Saran urges fans to help small businesses during the COVID-19 crisis

Shriya Saran urges fans to help small businesses during the COVID-19 crisis




uri

Top bureaucrat sustains minor injuries in accident

Top bureaucrat sustains minor injuries in accident




uri

Kartarpur Corridor to remain open despite security concerns: Amarinder




uri

Scope for improvement in security in Punjab jails: CAG




uri

Irregularities in distribution of sports equipment during SAD-BJP's tenure will be probed: Punjab Sports Minister




uri

Kartarpur visitors quizzed in national security interest: Punjab CM




uri

13 Iranian tourists quarantined in Amritsar




uri

Punjab govt directs district commissioners to ensure door-to-door delivery of basic commodities during lockdown




uri

Punjab CM sanctions Rs 3 cr for providing food packets during lockdown




uri

Punjab Police distributes free food to needy during lockdown in Amritsar




uri

Punjab empowers urban bodies to help poor during lockdown




uri

COVID-19 : Punjab distilleries begins manufacturing sanitisers




uri

20 stuck tourists return to Malaysia from Amritsar




uri

COVID-19: Chandigarh makes it mandatory to cover mouth and nose while venturing out of house




uri

Notice to 38 private schools in Punjab for demanding fees during lockdown




uri

466 morning walkers rounded up during lockdown in Chandigarh




uri

ASI Harjeet Singh promoted as SI for exemplary courage during Patiala Sabzi Mandi attack




uri

33,000 people enrolled at de-addiction centres in Punjab during lockdown: State Health Minister




uri

Punjab govt launches competition for students to spread positivity during lockdown




uri

Punjab Minister directs police to tighten security after depot holder's brother beaten to death




uri

Rajasthan: How tourist hub Pushkar kept coronavirus at bay

Pushkar has become a role model for keeping foreign tourists safe and not a single person has tested positive for Covid-19 in the last two months.




uri

India plans over 100 flights during second phase of evacuation abroad

To link countries where no Indian carrier presently flies




uri

K7 Computing bags performance awards for security solution

The city-based K7 Computing Pvt Ltd, provider of cyber security solutions, has topped the winners list for the Advanced+ Performance Award from AV-Com




uri

Cochin Port Trust helps during ‘Operation Samudra Sethu’ for Maldives expatriates

This is the Indian Navy’s first massive evacuation exercise during the Covid-19 lockdown




uri

Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading

A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments using a 20 kHz ultrasonic fatigue machine mounted on the six-circle diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2) was triggered by the strain gage signal in a synchronous data acquisition scheme (pump–probe-like). The method enables studying loading cycles with a period of 50 µs, achieving a temporal resolution of 1 µs. This allows a precise reconstruction of the diffraction patterns during the loading cycles. From the diffraction patterns, the position of the peaks, their shifts and their respective broadening can be deduced. The diffraction peak shift allows the elastic lattice strain to be estimated with a resolution of ∼10−5. Stress is calculated by the self-consistent scale-transition model through which the elastic response of the material is estimated. The amplitudes of the cyclic stresses range from 40 to 120 MPa and vary linearly with respect to the displacement applied by the ultrasonic machine. Moreover, the experimental results highlight an increase of the diffraction peak broadening with the number of applied cycles.




uri

Correlated changes in structure and viscosity during gelatinization and gelation of tapioca starch granules

Melting of the semicrystalline structure of native tapioca starch granules is correlated to solution viscosity for elucidating gelatinization and gelation processes.









uri

Palladium(II) complexes of a bridging amine bis­(phenolate) ligand featuring κ2 and κ3 coordination modes

Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis­(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely di­chlorido­({6,6'-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II) chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](meth­yl)amino}­eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in inter­molecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains di­chlorido­({6,6'-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II), {(L2)PdCl2}, and chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](methyl)amino}eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II), {(L2X)PdCl}, mol­ecules as well as fractional water and methanol solvent mol­ecules.




uri

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




uri

Synthesis and structure of push–pull merocyanines based on barbituric and thio­barbituric acid

Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, mol­ecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the mol­ecules are connected by weak C—H⋯O and/or C—H⋯S bonds.




uri

Impact and behavior of Sn during the Ni/GeSn solid-state reaction

Ni-based intermetallics are promising materials for forming efficient contacts in GeSn-based Si photonic devices. However, the role that Sn might have during the Ni/GeSn solid-state reaction (SSR) is not fully understood. A comprehensive analysis focused on Sn segregation during the Ni/GeSn SSR was carried out. In situ X-ray diffraction and cross-section transmission electron microscopy measurements coupled with energy-dispersive X-ray spectrometry and electron energy-loss spectroscopy atomic mappings were performed to follow the phase sequence, Sn distribution and segregation. The results showed that, during the SSR, Sn was incorporated into the intermetallic phases. Sn segregation happened first around the grain boundaries (GBs) and then towards the surface. Sn accumulation around GBs hampered atom diffusion, delaying the growth of the Ni(GeSn) phase. Higher thermal budgets will thus be mandatory for formation of contacts in high-Sn-content photonic devices, which could be detrimental for thermal stability.




uri

Structural changes during water-mediated amorphization of semiconducting two-dimensional thio­stannates

Owing to their combined open-framework structures and semiconducting properties, two-dimensional thio­stannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S72−]n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thio­stannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thio­stannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thio­stannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-amino­ethyl)­piperazine] and trenH-SnS-1 [tren = tris­(2-amino­ethyl)­amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200–400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thio­stannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials.




uri

Polymorph evolution during crystal growth studied by 3D electron diffraction

3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order β < α < γ. The least stable β polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some β and one crystallite of the γ polymorph were also observed.




uri

Measuring energy-dependent photoelectron escape in microcrystals

With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices.




uri

Molecular conformational evolution mechanism during nucleation of crystals in solution

Nucleation of crystals from solution is fundamental to many natural and industrial processes. In this work, the molecular mechanism of conformational polymorphism nucleation and the links between the molecular conformation in solutions and in crystals were investigated in detail by using 5-nitro­furazone as the model compound. Different polymorphs were prepared, and the conformations in solutions obtained by dissolving different polymorphs were analysed and compared. The solutions of 5-nitro­furazone were proven to contain multiple conformers through quantum chemical computation, Raman spectra analysis, 2D nuclear Overhauser effect spectroscopy spectra analysis and molecular dynamics simulation. The conformational evolution and desolvation path was illustrated according to the 1H NMR spectra of solutions with different concentrations. Finally, based on all the above analysis, the molecular conformational evolution path during nucleation of 5-nitro­furazone was illustrated. The results presented in this work shed a new light on the molecular mechanism of conformational polymorphism nucleation in solution.




uri

Measuring and using information gained by observing diffraction data

The information gained by making a measurement, termed the Kullback–Leibler divergence, assesses how much more precisely the true quantity is known after the measurement was made (the posterior probability distribution) than before (the prior probability distribution). It provides an upper bound for the contribution that an observation can make to the total likelihood score in likelihood-based crystallographic algorithms. This makes information gain a natural criterion for deciding which data can legitimately be omitted from likelihood calculations. Many existing methods use an approximation for the effects of measurement error that breaks down for very weak and poorly measured data. For such methods a different (higher) information threshold is appropriate compared with methods that account well for even large measurement errors. Concerns are raised about a current trend to deposit data that have been corrected for anisotropy, sharpened and pruned without including the original unaltered measurements. If not checked, this trend will have serious consequences for the reuse of deposited data by those who hope to repeat calculations using improved new methods.




uri

Li-ion half-cells studied operando during cycling by small-angle neutron scattering

Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core–shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account.




uri

Diffracting-grain identification from electron backscatter diffraction maps during residual stress measurements: a comparison between the sin2ψ and cosα methods

The sin2ψ and cosα methods are compared via diffracting-grain identification from electron backscatter diffraction maps. Artificial textures created by the X-ray diffraction measurements are plotted and X-ray elastic constants of the diffracting-grain sets are computed.




uri

Impact and behavior of Sn during the Ni/GeSn solid-state reaction

A comprehensive analysis focused on Sn segregation during the Ni/GeSn solid-state reaction was carried out. It was demonstrated that Sn is soluble in the various Ni/GeSn intermetallic phases and that, when the temperature increases, the Sn segregation occurs first at grain boundaries, which can hamper Ni diffusion and delay the intermetallic formation.




uri

An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization

The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°.