sign

Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes

The increasing prevalence of type 2 diabetes poses a major challenge to societies worldwide. Blood-based factors like serum proteins are in contact with every organ in the body to mediate global homeostasis and may thus directly regulate complex processes such as aging and the development of common chronic diseases. We applied a data-driven proteomics approach, measuring serum levels of 4,137 proteins in 5,438 elderly Icelanders and identified 536 proteins associated with prevalent and/or incident type 2 diabetes. We validated a subset of the observed associations in an independent case-control study of type 2 diabetes. These protein associations provide novel biological insights into the molecular mechanisms that are dysregulated prior to and following the onset of type 2 diabetes and can be detected in serum. A bi-directional two-sample Mendelian randomization analysis indicated that serum changes of at least 23 proteins are downstream of the disease or its genetic liability, while 15 proteins were supported as having a causal role in type 2 diabetes.




sign

Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology]

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance.




sign

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.




sign

Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices]

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.




sign

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




sign

Correction: Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. [Additions and Corrections]

VOLUME 295 (2020) PAGES 4079–4092There was an error in the abstract. “The pyridinium cation hampers uptake of OPs into the central nervous system (CNS)” should read as “The pyridinium cation hampers uptake into the central nervous system (CNS).”




sign

Broadtail Designs hosts ‘Curvy in Quarantine’ Yoga Live on IG

COVID-19 has completely readjusted how we operate daily. With the proliferation of the ‘work from home’ concept, many persons have become even more stationary as they spend full days on their couches, tapping on their communication devices while...




sign

Tacrolimus-Induced BMP/SMAD Signaling Associates With Metabolic Stress-Activated FOXO1 to Trigger {beta}-Cell Failure

Active maintenance of β-cell identity through fine-tuned regulation of key transcription factors ensures β-cell function. Tacrolimus, a widely used immunosuppressant, accelerates onset of diabetes after organ transplantation, but underlying molecular mechanisms are unclear. Here we show that tacrolimus induces loss of human β-cell maturity and β-cell failure through activation of the BMP/SMAD signaling pathway when administered under mild metabolic stress conditions. Tacrolimus-induced phosphorylated SMAD1/5 acts in synergy with metabolic stress–activated FOXO1 through formation of a complex. This interaction is associated with reduced expression of the key β-cell transcription factor MAFA and abolished insulin secretion, both in vitro in primary human islets and in vivo in human islets transplanted into high-fat diet–fed mice. Pharmacological inhibition of BMP signaling protects human β-cells from tacrolimus-induced β-cell dysfunction in vitro. Furthermore, we confirm that BMP/SMAD signaling is activated in protocol pancreas allograft biopsies from recipients on tacrolimus. To conclude, we propose a novel mechanism underlying the diabetogenicity of tacrolimus in primary human β-cells. This insight could lead to new treatment strategies for new-onset diabetes and may have implications for other forms of diabetes.




sign

HB-EGF Signaling Is Required for Glucose-Induced Pancreatic {beta}-Cell Proliferation in Rats

The molecular mechanisms of β-cell compensation to metabolic stress are poorly understood. We previously observed that nutrient-induced β-cell proliferation in rats is dependent on epidermal growth factor receptor (EGFR) signaling. The aim of this study was to determine the role of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) in the β-cell proliferative response to glucose, a β-cell mitogen and key regulator of β-cell mass in response to increased insulin demand. We show that exposure of isolated rat and human islets to HB-EGF stimulates β-cell proliferation. In rat islets, inhibition of EGFR or HB-EGF blocks the proliferative response not only to HB-EGF but also to glucose. Furthermore, knockdown of HB-EGF in rat islets blocks β-cell proliferation in response to glucose ex vivo and in vivo in transplanted glucose-infused rats. Mechanistically, we demonstrate that HB-EGF mRNA levels are increased in β-cells in response to glucose in a carbohydrate-response element–binding protein (ChREBP)–dependent manner. In addition, chromatin immunoprecipitation studies identified ChREBP binding sites in proximity to the HB-EGF gene. Finally, inhibition of Src family kinases, known to be involved in HB-EGF processing, abrogated glucose-induced β-cell proliferation. Our findings identify a novel glucose/HB-EGF/EGFR axis implicated in β-cell compensation to increased metabolic demand.




sign

Ramdin among new Patriots signings

BASSETERRE, St Kitts (CMC): ST KITTS AND Nevis Patriots have made some significant changes to their line-up for the upcoming Caribbean Premier League (CPL) season. Captain Carlos Brathwaite has gone to the Jamaica Tallawahs, while the Patriots have...




sign

Signals from the NIHR

If you've been keeping up to day with The BMJ - online on in print, you might have noticed that we've got a new type of article - NIHR Signals - and they are here to give busy clinicians a quick overview of practice changing research that has come out of the UK's National Institute for Health Research. Tara Lamont, director of the NIHR...




sign

Are the {beta}-Cell Signaling Molecules Malonyl-CoA and Cystolic Long-Chain Acyl-CoA Implicated in Multiple Tissue Defects of Obesity and NIDDM?

Marc Prentki
Mar 1, 1996; 45:273-283
Original Article




sign

Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade

ME Griffin
Jun 1, 1999; 48:1270-1274
Articles




sign

De Novo Mutations in EIF2B1 Affecting eIF2 Signaling Cause Neonatal/Early-Onset Diabetes and Transient Hepatic Dysfunction

Permanent neonatal diabetes mellitus (PNDM) is caused by reduced β-cell number or impaired β-cell function. Understanding of the genetic basis of this disorder highlights fundamental β-cell mechanisms. We performed trio genome sequencing for 44 patients with PNDM and their unaffected parents to identify causative de novo variants. Replication studies were performed in 188 patients diagnosed with diabetes before 2 years of age without a genetic diagnosis. EIF2B1 (encoding the eIF2B complex α subunit) was the only gene with novel de novo variants (all missense) in at least three patients. Replication studies identified two further patients with de novo EIF2B1 variants. In addition to having diabetes, four of five patients had hepatitis-like episodes in childhood. The EIF2B1 de novo mutations were found to map to the same protein surface. We propose that these variants render the eIF2B complex insensitive to eIF2 phosphorylation, which occurs under stress conditions and triggers expression of stress response genes. Failure of eIF2B to sense eIF2 phosphorylation likely leads to unregulated unfolded protein response and cell death. Our results establish de novo EIF2B1 mutations as a novel cause of permanent diabetes and liver dysfunction. These findings confirm the importance of cell stress regulation for β-cells and highlight EIF2B1’s fundamental role within this pathway.




sign

Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study

Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children’s plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and -aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.




sign

L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling

Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein–coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1. L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1–dependent and serotonin-mediated mechanism.




sign

Inhibition of NFAT Signaling Restores Microvascular Endothelial Function in Diabetic Mice

Central to the development of diabetic macro- and microvascular disease is endothelial dysfunction, which appears well before any clinical sign but, importantly, is potentially reversible. We previously demonstrated that hyperglycemia activates nuclear factor of activated T cells (NFAT) in conduit and medium-sized resistance arteries and that NFAT blockade abolishes diabetes-driven aggravation of atherosclerosis. In this study, we test whether NFAT plays a role in the development of endothelial dysfunction in diabetes. NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita (Ins2+/–) mice when compared with nondiabetic littermates. Treatment of diabetic mice with the NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase transcriptional activity in skin microvessels, resulting in improved microvascular function, as assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. This improvement was abolished by pretreatment with the nitric oxide (NO) synthase inhibitor l-NG-nitro-l-arginine methyl ester, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed differences. A-285222 treatment enhanced dermis endothelial NO synthase expression and plasma NO levels of diabetic mice. It also prevented induction of inflammatory cytokines interleukin-6 and osteopontin, lowered plasma endothelin-1 and blood pressure, and improved mouse survival without affecting blood glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve endothelial function in diabetes.




sign

{beta}-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum Aminopeptidase 1

The signal peptide of preproinsulin is a major source for HLA class I autoantigen epitopes implicated in CD8 T cell (CTL)–mediated β-cell destruction in type 1 diabetes (T1D). Among them, the 10-mer epitope located at the C-terminal end of the signal peptide was found to be the most prevalent in patients with recent-onset T1D. While the combined action of signal peptide peptidase and endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) is required for processing of the signal peptide, the mechanisms controlling signal peptide trimming and the contribution of the T1D inflammatory milieu on these mechanisms are unknown. Here, we show in human β-cells that ER stress regulates ERAP1 gene expression at posttranscriptional level via the IRE1α/miR-17-5p axis and demonstrate that inhibition of the IRE1α activity impairs processing of preproinsulin signal peptide antigen and its recognition by specific autoreactive CTLs during inflammation. These results underscore the impact of ER stress in the increased visibility of β-cells to the immune system and position the IRE1α/miR-17 pathway as a central component in β-cell destruction processes and as a potential target for the treatment of autoimmune T1D.




sign

Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies




sign

Doctor alleged to have performed “designer vagina” surgery won’t be prosecuted




sign

African Countries Relax Short-Term Visa Policies for Chinese in Sign of Increased Openness to China

China has been Africa’s largest trading partner since 2009, and as commerce and investment have increased, so have flows of people in both directions. With an estimated 1 million to 2 million Chinese migrants across Africa, some countries have relaxed their short-term visa requirements in hopes of facilitating cultural and business exchanges. High levels of Chinese investment do not, however, correlate with more liberal visa policies, as this article explores.




sign

Signs Your COVID-19 Anxiety Has Become Unhealthy, and What to Do

Source:

As the coronavirus pandemic drags on, experts fear that some of us may begin to lose our ability to cope with the anxiety and stress. Here are five signs that coronavirus anxiety is becoming unhealthy, and tips on how to reduce it.






sign

Dallas Cowboys sign former first-round pick Cameron Erving

The Dallas Cowboys agreed to terms with free-agent offensive lineman Cameron Erving, the team announced Wednesday.




sign

Redesigning Primary Care to Improve Diabetes Outcomes (the UNITED Study)

OBJECTIVE

The effective redesign of primary care delivery systems to improve diabetes care requires an understanding of which particular components of delivery consistently lead to better clinical outcomes. We identified associations between common systems of care management (SysCMs) and the frequency of meeting standardized performance targets for Optimal Diabetes Care (NQF#0729) in primary care practices.

RESEARCH DESIGN AND METHODS

A validated survey of 585 eligible family or general internal medicine practices seeing ≥30 adult patients with diabetes in or near Minnesota during 2017 evaluated the presence of 62 SysCMs. From 419 (72%) practices completing the survey, NQF#0729 was determined in 396 (95%) from electronic health records, including 215,842 patients with type 1 or type 2 diabetes.

RESULTS

Three SysCMs were associated with higher rates of meeting performance targets across all practices: 1) a systematic process for shared decision making with patients (P = 0.001), 2) checklists of tests or interventions needed for prevention or monitoring of diabetes (P = 0.002), and 3) physician reminders of guideline-based age-appropriate risk assessments due at the patient visit (P = 0.002). When all three were in place, an additional 10.8% of the population achieved recommended performance measures. In subgroup analysis, 15 additional SysCMs were associated with better care in particular types of practices.

CONCLUSIONS

Diabetes care outcomes are better in primary care settings that use a patient-centered approach to systematically engage patients in decision making, remind physicians of age-appropriate risk assessments, and provide checklists for recommended diabetes interventions. Practice size and location are important considerations when redesigning delivery systems to improve performance.




sign

Panthers' Derrick Brown to become first 2020 Round 1 pick to sign rookie deal

Former Auburn defensive tackle Derrick Brown agreed to his rookie contract with the Carolina Panthers on Friday.




sign

Early Signs of Cardiovascular Disease in Youth With Obesity and Type 2 Diabetes

Neslihan Gungor
May 1, 2005; 28:1219-1221
BR Pathophysiology/Complications




sign

Liraglutide, a Long-Acting Human Glucagon-Like Peptide-1 Analog, Given as Monotherapy Significantly Improves Glycemic Control and Lowers Body Weight Without Risk of Hypoglycemia in Patients With Type 2 Diabetes

Tina Vilsbøll
Jun 1, 2007; 30:1608-1610
BR Emerging Treatments and Technologies




sign

HbA1c Levels Are Significantly Lower in Early and Late Pregnancy

Lene R. Nielsen
May 1, 2004; 27:1200-1201
Brief Reports




sign

HbA1c Levels Are Significantly Lower in Early and Late Pregnancy

Lene R. Nielsen
May 1, 2004; 27:1200-1201
Brief Reports




sign

Steroid Metabolomic Signature of Insulin Resistance in Childhood Obesity

OBJECTIVE

On the basis of urinary steroidal gas chromatography-mass spectrometry (GC-MS), we previously defined a novel concept of a disease-specific "steroid metabolomic signature" and reclassified childhood obesity into five groups with distinctive signatures. The objective of the current study was to delineate the steroidal signature of insulin resistance (IR) in obese children.

RESEARCH DESIGN AND METHODS

Urinary samples of 87 children (44 girls) aged 8.5–17.9 years with obesity (BMI >97th percentile) were quantified for 31 steroid metabolites by GC-MS. Defined as HOMA-IR >95th percentile and fasting glucose-to-insulin ratio >0.3, IR was diagnosed in 20 (of 87 [23%]) of the examined patients. The steroidal fingerprints of subjects with IR were compared with those of obese children without IR (non-IR). The steroidal signature of IR was created from the product of IR – non-IR for each of the 31 steroids.

RESULTS

IR and non-IR groups of children had comparable mean age (13.7 ± 1.9 and 14.6 ± 2.4 years, respectively) and z score BMI (2.7 ± 0.5 and 2.7 ± 0.5, respectively). The steroidal signature of IR was characterized by high adrenal androgens, glucocorticoids, and mineralocorticoid metabolites; higher 5α-reductase (An/Et) (P = 0.007) and 21-hydroxylase [(THE + THF + αTHF)/PT] activity (P = 0.006); and lower 11βHSD1 [(THF + αTHF)/THE] activity (P = 0.012).

CONCLUSIONS

The steroidal metabolomic signature of IR in obese children is characterized by enhanced secretion of steroids from all three adrenal pathways. As only the fasciculata and reticularis are stimulated by ACTH, these findings suggest that IR directly affects the adrenals. We suggest a vicious cycle model, whereby glucocorticoids induce IR, which could further stimulate steroidogenesis, even directly. We do not know whether obese children with IR and the new signature may benefit from amelioration of their hyperadrenalism.




sign

ADA Practice Transitions offering promotional trial for dentists who sign up through March 1

ADA Practice Transitions, a service offered by the ADA focused on helping dentists make the process of joining or leaving a practice successful, is offering a free three-month trial.




sign

Prognostic Significance of Long-term HbA1c Variability for All-Cause Mortality in the ACCORD Trial

OBJECTIVE

The association between high glycemic variability and all-cause mortality has been widely investigated in epidemiological studies but rarely validated in glucose-lowering clinical trials. We aimed to identify the prognostic significance of visit-to-visit HbA1c variability in treated patients in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial population.

RESEARCH DESIGN AND METHODS

We studied the risk of all-cause mortality in relation to long-term visit-to-visit HbA1c variability, expressed as coefficient of variation (CV), variability independent of the mean (VIM), and average real variability (ARV), from the 8th month to the transition. Multivariable Cox proportional hazards models were used to estimate adjusted hazard ratio (HR) and 95% CI.

RESULTS

Compared with the standard therapy group (n = 4,728), the intensive therapy group (n = 4,755) had significantly lower mean HbA1c (6.6% [49 mmol/mol] vs. 7.7% [61 mmol/mol], P < 0.0001) and lower CV, VIM, and ARV (P < 0.0001). In multivariate adjusted analysis, all three HbA1c variability indices were significantly associated with total mortality in all patients as well as in the standard- and intensive-therapy groups analyzed separately. The hazard ratios for a 1-SD increase in HbA1c variability indices for the all-cause mortality were 1.19 and 1.23 in intensive and standard therapy, respectively. Cross-tabulation analysis showed the third tertile of HbA1c mean and VIM had significantly higher all-cause mortality (HR 2.05; 95% CI, 1.17–3.61; P < 0.01) only in the intensive-therapy group.

CONCLUSIONS

Long-term visit-to-visit HbA1c variability was a strong predictor of all-cause mortality. HbA1c VIM combined with HbA1c mean conferred an increased risk for all-cause mortality in the intensive-therapy group.




sign

microRNA-21/PDCD4 Proapoptotic Signaling From Circulating CD34+ Cells to Vascular Endothelial Cells: A Potential Contributor to Adverse Cardiovascular Outcomes in Patients With Critical Limb Ischemia

OBJECTIVE

In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months after revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker.

RESEARCH DESIGN AND METHODS

The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years after revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow CD34+ cells were profiled for miRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated miRNA-21 and its proapoptotic target, PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells.

RESULTS

Multivariable regression analysis confirmed that CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than control subjects and featured miRNA-21 downregulation, modulation of several long noncoding RNAs acting as miRNA-21 sponges, and upregulation of the miRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control subject CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naïve endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/miRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging reactive oxygen species protected endothelial cells from the negative influence of T2D-CLI CD34+ cells.

CONCLUSIONS

Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signaling conveys antiangiogenic and proapoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications.




sign

Do I Have to Sign?

Parents are asked to sign paperwork when services begin, when changes are made, and if services end. Let's not stop there. Parents must sign before any assessments begin. Parents must sign that they attended meetings. Parents sign that they received a copy of special education rights. The reasoning is to protect everyone involved. It gives documentation to show who attended the meetings, shows parental consent for what is outlined in the plan, and documents what has occurred at the meeting.


Should I sign if I don't agree?
You do not have to sign what you do not agree with. That being said- if you attended the meeting, please sign where it says to sign that you attended the meeting. If you received paperwork, please sign that you received it. If you do not agree with the findings or do not agree with the services offered, then do not sign where it asks if you are in agreement. There may also be an area to sign that you do not agree with the findings and you may have an opportunity to write a dissenting opinion.

What will happen if I don't sign?
In general, the answer is nothing. Literally nothing will happen if you don't sign. Services can not begin until the parent signs. Changes can not take place until the parents sign. Services can not end (in most states) until the parent signs. In most cases if the parent refuses to sign, everything will remain basically the same. Laws vary between states on this issue, so make sure to check your own state laws.

Is it okay to think about it overnight before signing?
Absolutely. If you aren't sure, take some time to think things over or check in with an advocate. However, please do so in a timely manner, for the sake of everyone involved.

What if we do not come to an agreement?
There are times when parents and the school system do not agree. Usually, when all parties stop and listen to each other, an agreement can be made that is in the best interest of the child. Remember that schools have very strict guidelines that must be followed and there are restrictions to what a school can do.

Think about exactly what it is you disagree with. If you do not agree with the guidelines the school is following, then there is not much that can be done unless you are willing to go through an expensive and drawn out process in court that will still likely amount to no changes. In this case, it would be my best advice to work with the school to determine what can be done for your child within the guidelines.

If you disagree because you feel the school is not following state or federal guidelines, there are steps you can take. Start by discussing the area you feel is not being followed with the school or the special education administrator. Usually a resolution can be made by providing a second opinion at the cost of the school system or through the use of a mediator.

What is Erin's advice?
Try to reach an agreement, where you can feel comfortable signing as quickly as possible. You don't want to leave this open. If you need time to take it in to discuss it and then suggest some changes, that is within your right. However, I do not suggest refusing to sign for long periods of time. Those battles rarely end well for parents, the school, or the child.



  • IEP
  • Special Education Law

sign

&quot;Merit-Based&quot; Immigration: Designing Successful Selection Systems

With the U.S. administration calling for the United States to adopt a more “merit-based” immigrant selection system, this conversation focused on what policymakers should consider in designing—and managing—immigrant selection systems in a time of intense labor-market and demographic change.




sign

&quot;Merit-Based&quot; Immigration: Designing Successful Selection Systems

MPI and OECD experts discuss what policymakers should consider in designing and managing immigrant selection systems in a time of intense labor-market and demographic change.




sign

Signs of Modern Human Cognition Were Found in an Indonesian Cave

Painted images of intriguing human-animal hybrids are signs of modern thought

-- Read more on ScientificAmerican.com




sign

Preparing for the Unknown: Designing Effective Predeparture Orientation for Resettling Refugees

Refugees encounter a range of challenges after resettlement—from adjusting to a new culture and language, to finding a job. Many resettlement countries invest in predeparture orientation to help refugees develop the knowledge, skills, and attitudes to face these challenges. This report explores the many forms these programs take, highlighting important design questions and key elements that effective programs share.




sign

No-Failure Design and Disaster Recovery: Lessons from Fukushima

One of the striking aspects of the early stages of the nuclear accident at Fukushima-Daiichi last March was the nearly total absence of disaster recovery capability. For instance, while Japan is a super-power of robotic technology, the nuclear authorities had to import robots from France for probing the damaged nuclear plants. Fukushima can teach us an important lesson about technology.

The failure of critical technologies can be disastrous. The crash of a civilian airliner can cause hundreds of deaths. The meltdown of a nuclear reactor can release highly toxic isotopes. Failure of flood protection systems can result in vast death and damage. Society therefore insists that critical technologies be designed, operated and maintained to extremely high levels of reliability. We benefit from technology, but we also insist that the designers and operators "do their best" to protect us from their dangers.

Industries and government agencies who provide critical technologies almost invariably act in good faith for a range of reasons. Morality dictates responsible behavior, liability legislation establishes sanctions for irresponsible behavior, and economic or political self-interest makes continuous safe operation desirable.

The language of performance-optimization  not only doing our best, but also achieving the best  may tend to undermine the successful management of technological danger. A probability of severe failure of one in a million per device per year is exceedingly  and very reassuringly  small. When we honestly believe that we have designed and implemented a technology to have vanishingly small probability of catastrophe, we can honestly ignore the need for disaster recovery.

Or can we?

Let's contrast this with an ethos that is consistent with a thorough awareness of the potential for adverse surprise. We now acknowledge that our predictions are uncertain, perhaps highly uncertain on some specific points. We attempt to achieve very demanding outcomes  for instance vanishingly small probabilities of catastrophe  but we recognize that our ability to reliably calculate such small probabilities is compromised by the deficiency of our knowledge and understanding. We robustify ourselves against those deficiencies by choosing a design which would be acceptable over a wide range of deviations from our current best understanding. (This is called "robust-satisficing".) Not only does "vanishingly small probability of failure" still entail the possibility of failure, but our predictions of that probability may err.

Acknowledging the need for disaster recovery capability (DRC) is awkward and uncomfortable for designers and advocates of a technology. We would much rather believe that DRC is not needed, that we have in fact made catastrophe negligible. But let's not conflate good-faith attempts to deal with complex uncertainties, with guaranteed outcomes based on full knowledge. Our best models are in part wrong, so we robustify against the designer's bounded rationality. But robustness cannot guarantee success. The design and implementation of DRC is a necessary part of the design of any critical technology, and is consistent with the strategy of robust satisficing.

One final point: moral hazard and its dilemma. The design of any critical technology entails two distinct and essential elements: failure prevention and disaster recovery. What economists call a `moral hazard' exists since the failure prevention team might rely on the disaster-recovery team, and vice versa. Each team might, at least implicitly, depend on the capabilities of the other team, and thereby relinquish some of its own responsibility. Institutional provisions are needed to manage this conflict.

The alleviation of this moral hazard entails a dilemma. Considerations of failure prevention and disaster recovery must be combined in the design process. The design teams must be aware of each other, and even collaborate, because a single coherent system must emerge. But we don't want either team to relinquish any responsibility. On the one hand we want the failure prevention team to work as though there is no disaster recovery, and the disaster recovery team should presume that failures will occur. On the other hand, we want these teams to collaborate on the design.

This moral hazard and its dilemma do not obviate the need for both elements of the design. Fukushima has taught us an important lesson by highlighting the special challenge of high-risk critical technologies: design so failure cannot occur, and prepare to respond to the unanticipated.




sign

Six Simple Signs Of A Narcissist (M)

One of the most commonly believed signs of a narcissist is a myth.

Support PsyBlog for just $5 per month. Enables access to articles marked (M) and removes ads.

→ Explore PsyBlog's ebooks, all written by Dr Jeremy Dean:




sign

New Jersey Education Commissioner Resigns

With David Hespe's resignation, announced Friday, New Jersey has had five education commissioners in the last seven years.




sign

Amid Sexual Misconduct Allegations, Pennsylvania State Board Chair Resigns

Several women told local newspapers that Pennsylvania state board chair Larry Wittig pursued sexual relationships with them when they were teenagers.




sign

Atlanta Official Resigns, But Loses Out on Post in Oregon

Atlanta's top school official has resigned and is fighting to keep a report investigating his background secret.




sign

President of Delaware Teachers' Union Resigns Due to Sexist, Racist Posts

Mike Matthews wrote several sexist and racist blog posts a decade ago that were recently unearthed.




sign

Thor's Ranked UDFA Signings by Position

Thor Nystrom ranks the top UDFA signings by position, plus CFL draft picks and the best available unsigned prospects. (Getty Images)




sign

Patriots sign Louisiana Tech quarterback J’Mar Smith

The Patriots didn't draft a quarterback, but they signed two who went undrafted. Michigan State quarterback Brian Lewerke's agent revealed a week ago that Lewerke had signed with the Patriots. Patriots coach Bill Belichick wouldn't confirm the team had signed Louisiana Tech quarterback J'mar Smith as well. But Tuesday's official transactions report brought confirmation of [more]




sign

Jets sign Lamar Jackson (the undrafted DB from Nebraska)

The Jets announced on Wednesday that they have signed Lamar Jackson, but no one start frantically wondering what they missed regarding the 2019 NFL MVP. The Lamar Jackson that the Jets signed is an undrafted defensive back from Nebraska rather than the Ravens quarterback. The Jets' Jackson was second-team All-Big Ten last season after recording [more]




sign

West Virginia signs deal with brand consultant ahead of college athletes' potential ability for endorsements

The NCAA is expected to formally approve rules changes that will allow athletes to get endorsement income in 2021.




sign

South Australian Civil and Administrative Tribunal significant decisions / presented by the Hon. Justice Greg Parker PSM.




sign

Not looking for signs / Belinda Broughton.