can

Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology]

Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.




can

Problem Notes for SAS®9 - 66544: You cannot clear warnings for decision campaign nodes in SAS Customer Intelligence Studio

In SAS Customer Intelligence Studio, you might notice that you cannot clear warnings for decision campaign nodes by selecting either the Clear Warnings  option or the Clear All Warnin




can

Problem Notes for SAS®9 - 66542: The initial loading of a rule set and a rule flow takes significantly longer in SAS Business Rules Manager 3.3 compared with release 3.2

In SAS Business Rules Manager 3.3, the initial loading of a rule set and a rule flow takes significantly longer than it does in release 3.2. When this problem happens, long time gaps are evident in the local




can

Problem Notes for SAS®9 - 66494: A SAS Real-Time Decision Manager flow cannot be opened

In SAS Customer Intelligence, a decision campaign can become corrupted and impossible to open. When you try to open the campaign, an error message is displayed that asks you to check the SAS Customer Intel




can

Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis




can

Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer [Research Articles]

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.




can

Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching [Technological Innovation and Resources]

Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.




can

Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells [Research]

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.




can

Examining and Fine-tuning the Selection of Glycan Compositions with GlyConnect Compozitor [Research]

A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database.




can

Multiomics Reveals Ectopic ATP Synthase Blockade Induces Cancer Cell Death via a lncRNA-mediated Phospho-signaling Network [Research]

The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.




can

High-speed Analysis of Large Sample Sets - How Can This Key Aspect of the Omics Be Achieved? [Perspective]

High-speed analysis of large (prote)omics sample sets at the rate of thousands or millions of samples per day on a single platform has been a challenge since the beginning of proteomics. For many years, ESI-based MS methods have dominated proteomics because of their high sensitivity and great depth in analyzing complex proteomes. However, despite improvements in speed, ESI-based MS methods are fundamentally limited by their sample introduction, which excludes off-line sample preparation/fractionation because of the time required to switch between individual samples/sample fractions, and therefore being dependent on the speed of on-line sample preparation methods such as liquid chromatography. Laser-based ionization methods have the advantage of moving from one sample to the next without these limitations, being mainly restricted by the speed of modern sample stages, i.e. 10 ms or less between samples. This speed matches the data acquisition speed of modern high-performing mass spectrometers whereas the pulse repetition rate of the lasers (>1 kHz) provides a sufficient number of desorption/ionization events for successful ion signal detection from each sample at the above speed of the sample stages. Other advantages of laser-based ionization methods include the generally higher tolerance to sample additives and contamination compared with ESI MS, and the contact-less and pulsed nature of the laser used for desorption, reducing the risk of cross-contamination. Furthermore, new developments in MALDI have expanded its analytical capabilities, now being able to fully exploit high-performing hybrid mass analyzers and their strengths in sensitivity and MS/MS analysis by generating an ESI-like stable yield of multiply charged analyte ions. Thus, these new developments and the intrinsically high speed of laser-based methods now provide a good basis for tackling extreme sample analysis speed in the omics.




can

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target [Research]

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.




can

Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis [13. Other]

Colorectal cancer (CRC) arises as the consequence of progressive changes from normal epithelial cells through polyp to tumor, and thus is an useful model for studying metabolic shift. In the present study, we studied the metabolomic profiles using high analyte specific gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) to attain a systems-level view of the shift in metabolism in cells progressing along the path to CRC. Colonic tissues including tumor, polyps and adjacent matched normal mucosa from 26 patients with sporadic CRC from freshly isolated resections were used for this study. The metabolic profiles were obtained using GC/MS and LC/MS/MS. Our data suggest there was a distinct profile change of a wide range of metabolites from mucosa to tumor tissues. Various amino acids and lipids in the polyps and tumors were elevated, suggesting higher energy needs for increased cellular proliferation. In contrast, significant depletion of glucose and inositol in polyps revealed that glycolysis may be critical in early tumorigenesis. In addition, the accumulation of hypoxanthine and xanthine, and the decrease of uric acid concentration, suggest that the purine biosynthesis pathway could have been substituted by the salvage pathway in CRC. Further, there was a step-wise reduction of deoxycholic acid concentration from mucosa to tumors. It appears that to gain a growth advantage, cancer cells may adopt alternate metabolic pathways in tumorigenesis and this flexibility allows them to adapt and thrive in harsh environment.




can

Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays [Technology]

Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring (PRM)-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor (EGF)-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported upregulation of MET, but also with upregulation of FLK2 and downregulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with PRM data. Multiplexed PRM assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706.




can

Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation [Review]

Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.




can

Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review [Review]

This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), on-line separations and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.




can

Systematic Proteome and Lysine Succinylome Analysis Reveals the Enhanced Cell Migration by Hyposuccinylation in Esophageal Squamous Cell Cancer [Research]

Esophageal squamous cell cancer (ESCC) is an aggressive malignancy with poor therapeutic outcomes. However, the alterations in proteins and post-translational modifications (PTMs) leading to the pathogenesis of ESCC remains unclear. Here, we provide the comprehensive characterization of the proteome, phosphorylome, lysine acetylome and succinylome for ESCC and matched control cells using quantitative proteomic approach. We identify abnormal protein and post-translational modification (PTM) pathways, including significantly downregulated lysine succinylation sites in cancer cells. Focusing on hyposuccinylation, we reveal that this altered PTM was enriched on enzymes of metabolic pathways inextricably linked with cancer metabolism. Importantly, ESCC malignant behaviors such as cell migration are inhibited once the level of succinylation was restored in vitro or in vivo. This effect was further verified by mutations to disrupt succinylation sites in candidate proteins. Meanwhile, we found that succinylation has a negative regulatory effect on histone methylation to promote cancer migration. Finally, hyposuccinylation is confirmed in primary ESCC specimens. Our findings together demonstrate that lysine succinylation may alter ESCC metabolism and migration, providing new insights into the functional significance of PTM in cancer biology.




can

N-glycomic signature of stage II colorectal cancer and its association with the tumor microenvironment [Research]

The choice for adjuvant chemotherapy in stage II colorectal cancer (CRC) is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high-risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II CRC tissue samples. The cancer cells, compared to normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.




can

The complexity and dynamics of the tissue glycoproteome associated with prostate cancer progression [Research]

The complexity and dynamics of the immensely heterogeneous glycoproteome of the prostate cancer (PCa) tumour micro-environment remain incompletely mapped, a knowledge gap that impedes our molecular-level understanding of the disease. To this end, we have used sensitive glycomics and glycoproteomics to map the protein-, cell- and tumour grade-specific N- and O-glycosylation in surgically-removed PCa tissues spanning five histological grades (n = 10/grade) and tissues from patients with benign prostatic hyperplasia (n = 5). Quantitative glycomics revealed PCa grade-specific alterations of the oligomannosidic-, paucimannosidic- and branched sialylated complex-type N-glycans, and dynamic remodelling of the sialylated core 1- and core 2-type O-glycome. Deep quantitative glycoproteomics identified ~7,400 unique N-glycopeptides from 500 N-glycoproteins and ~500 unique O-glycopeptides from nearly 200 O-glycoproteins. With reference to a recent Tissue and Blood Atlas, our data indicate that paucimannosidic glycans of the PCa tissues arise mainly from immune cell-derived glycoproteins. Further, the grade-specific PCa glycosylation arises primarily from dynamics in the cellular makeup of the PCa tumour microenvironment across grades involving increased oligomannosylation of prostate-derived glycoproteins and decreased bisecting GlcNAcylation of N-glycans carried by the extracellular matrix proteins. Further, elevated expression of several oligosaccharyltransferase subunits and enhanced N-glycoprotein site occupancy were observed associated with PCa progression. Finally, correlations between the protein-specific glycosylation and PCa progression were observed including increased site-specific core 2-type O-glycosylation of collagen VI. In conclusion, integrated glycomics and glycoproteomics have enabled new insight into the complexity and dynamics of the tissue glycoproteome associated with PCa progression generating an important resource to explore the underpinning disease mechanisms.




can

Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis [Research]

Protease activity has been associated with pathological processes that can lead to cancer development and progression. However, understanding the pathological unbalance in proteolysis is challenging since changes can occur simultaneously at protease, their inhibitor and substrate levels. Here, we present a pipeline that combines peptidomics, proteomics and peptidase predictions for studying proteolytic events in the saliva of seventy-nine patients and their association with oral squamous cell carcinoma (OSCC) prognosis. Our findings revealed differences in the saliva peptidome of patients with (pN+) or without (pN0) lymph node metastasis and delivered a panel of ten endogenous peptides correlated with poor prognostic factors plus five molecules able to classify pN0 and pN+ patients (ROC-AUC>0.85). In addition, endo- and exopeptidases putatively implicated in the processing of differential peptides were investigated using cancer tissue gene expression data from publicly repositories reinforcing their association with poorer survival rates and prognosis in oral cancer. The dynamics of the OSCC-related proteolysis was further explored via the proteomic profiling of saliva. This revealed that peptidase/endopeptidase inhibitors exhibited reduced levels in the saliva of pN+ patients, as confirmed by SRM-MS, whilst minor changes were detected in the level of saliva proteases. Taken together, our results indicated that proteolytic activity is accentuated in the saliva of OSCC patients with lymph node metastasis and, at least in part, this is modulated by reduced levels of salivary peptidase inhibitors. Therefore, this integrated pipeline provided better comprehension and discovery of molecular features with implications in the oral cancer metastasis prognosis.




can

Proteome analysis reveals a significant host-specific response in Rhizobium leguminosarum bv viciae endosymbiotic cells [Research]

The Rhizobium-legume symbiosis is a beneficial interaction in which the bacterium converts atmospheric nitrogen into ammonia and delivers it to the plant in exchange for carbon compounds. This symbiosis implies the adaptation of bacteria to live inside host plant cells. In this work we apply RP-LC-MS/MS and  iTRAQ techniques to study the proteomic profile of endosymbiotic cells (bacteroids) induced by Rhizobium leguminosarum bv viciae strain UPM791 in legume nodules. Nitrogenase subunits, tricarboxylic acid cycle enzymes, and stress response proteins are amongst the most abundant from over one thousand rhizobial proteins identified in pea (Pisum sativum) bacteroids. Comparative analysis of bacteroids induced in pea and in lentil (Lens culinaris)nodules revealed the existence of a significant host-specific differential response affecting dozens of bacterial proteins, including stress-related proteins, transcriptional regulators, and proteins involved in the carbon and nitrogen metabolisms. A mutant affected in one of these proteins, homologous to a GntR-like transcriptional regulator, showed a symbiotic performance significantly  impaired in symbiosis with pea, but not with lentil plants. Analysis of the proteomes of bacteroids isolated from both hosts also revealed the presence of different sets of plant-derived nodule-specific cysteine rich (NCR) peptides, indicating that the endosymbiotic bacteria find a host-specific cocktail of chemical stressors inside the nodule. By studying variations of the bacterial response to different plant cell environments we will be able to identify specific limitations imposed by the host that might give us clues for the improvement of rhizobial performance.




can

Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues [Research]

The early detection of pancreatic ductal adenocarcinoma is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers CA19-9 and sTRA are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and non-cancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry approach was utilized to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of PDAC patients represented by tissue microarrays and whole tissue sections. Orthogonally, these same tissues were characterized by multi-round immunofluorescence which defined expression of CA19-9 and sTRA as well as other lectins towards carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated bi-antennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9 expressing tissues tended to be bi-, tri- and tetra-antennary structures with both core and terminal fucose residues and bisecting N-acetylglucosamines. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored tri- and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-IHC and IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.




can

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia [Research]

Extracellular vesicle (EV) proteins from acute myeloid leukemia (AML) cell lines were analyzed using mass spectrometry. The analyses identified 2450 proteins, including 461 differentially expressed proteins (290 upregulated and 171 downregulated). CD53 and CD47 were upregulated and were selected as candidate biomarkers. The association between survival of patients with AML and the expression levels of CD53 and CD47 at diagnosis was analyzed using mRNA expression data from The Cancer Genome Atlas database. Patients with higher expression levels showed significantly inferior survival than those with lower expression levels. Enzyme-linked immunosorbent assay results of the expression levels of CD53 and CD47 from EVs in the bone marrow of patients with AML at diagnosis and at the time of complete remission with induction chemotherapy revealed that patients with downregulated CD53 and CD47 expression appeared to relapse less frequently. Network model analysis of EV proteins revealed several upregulated kinases, including LYN, CSNK2A1, SYK, CSK, and PTK2B. The potential cytotoxicity of several clinically applicable drugs that inhibit these kinases was tested in AML cell lines. The drugs lowered the viability of AML cells. The collective data suggest that AML-derived EVs could reflect essential leukemia biology.




can

Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings [Research]

The goal of clinical proteomics is to identify, quantify, and characterize proteins in body fluids or tissue to assist diagnosis, prognosis, and treatment of patients. In this way, it is similar to more mature omics technologies, such as genomics, that are increasingly applied in biomedicine. We argue that, similar to those fields, proteomics also faces ethical issues related to the kinds of information that is inherently obtained through sample measurement, although their acquisition was not the primary purpose. Specifically, we demonstrate the potential to identify individuals both by their characteristic, individual-specific protein levels and by variant peptides reporting on coding single nucleotide polymorphisms. Furthermore, it is in the nature of blood plasma proteomics profiling that it broadly reports on the health status of an individual – beyond the disease under investigation. Finally, we show that private and potentially sensitive information, such as ethnicity and pregnancy status, can increasingly be derived from proteomics data. Although this is potentially valuable not only to the individual, but also for biomedical research, it raises ethical questions similar to the incidental findings obtained through other omics technologies. We here introduce the necessity of - and argue for the desirability for - ethical and human rights-related issues to be discussed within the proteomics community. Those thoughts are more fully developed in our accompanying manuscript. Appreciation and discussion of ethical aspects of proteomic research will allow for deeper, better-informed, more diverse, and, most importantly, wiser guidelines for clinical proteomics.




can

Separation and identification of permethylated glycan isomers by reversed phase nanoLC-NSI-MS [Research]

High performance liquid chromatography has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line MSn fragmentation to assign structural features independent of standards, would significantly enhance the depth of knowledge obtainable from biological samples. Here, we report an optimized workflow for LC-MS analysis of permethylated glycans that includes sample preparation, mobile phase optimization, and MSn method development to resolve structural isomers on-the-fly. We report baseline separation and MSn fragmentation of isomeric N- and O-glycan structures, aided by supplementing mobile phases with Li+, which simplifies adduct heterogeneity and facilitates cross-ring fragmentation to obtain valuable monosaccharide linkage information. Our workflow has been adapted from standard proteomics-based workflows and, therefore, provides opportunities for laboratories with expertise in proteomics to acquire glycomic data with minimal deviation from existing buffer systems, chromatography media, and instrument configurations. Furthermore, our workflow does not require a mass spectrometer with high-resolution/accurate mass capabilities. The rapidly evolving appreciation of the biological significance of glycans for human health and disease requires the implementation of high-throughput methods to identify and quantify glycans harvested from sample sets of sufficient size to achieve appropriately powered statistical significance. The LC-MSn approach we report generates glycan isomeric separations, robust structural characterization, and is amenable to auto-sampling with associated throughput enhancements.




can

A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins [DNA and Chromosomes]

The origin recognition complex (ORC), composed of six subunits, ORC1–6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2–7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9–mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2–7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2–7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2–7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2–7 to origins independent of ORC.




can

Phillies can still win the offseason

We're reluctant to finalize our list of offseason winners because, as you may have heard, there are some prominent unsigned free agents. Not just Bryce Harper and Manny Machado, either.




can

HIV: Breakthrough study raises hopes of effective prevention if drug’s cost can be lowered




can

Correction: Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. [Additions and Corrections]

VOLUME 279 (2004) PAGES 33438–33446For Fig. 1B, the second, third, and fifth panels were mistakenly duplicated during article preparation as no yeast colonies were observed in these conditions. The corrected images are presented in the revised Fig. 1B. This correction does not affect the results or conclusions of the work. The authors apologize for the error.jbc;295/50/17382/F1F1F1Figure 1B.




can

Overdiagnosis of thyroid cancer




can

Preserving fertility in girls and young women with cancer




can

Ramaphosa Has Won the Battle. But Can He Win the War?

Ramaphosa Has Won the Battle. But Can He Win the War? Expert comment sysadmin 21 December 2017

Cyril Ramaphosa is taking charge of South Africa’s ruling party, the ANC, at its weakest point in post-apartheid history. Expectations couldn’t be higher.

Cyril Ramaphosa during the announcement of new party leadership at the 5th African National Congress (ANC) national conference. Photo by Alet Pretorius/Gallo Images/Getty Images

Ramaphosa ran for the leadership of the ANC on a platform of party renewal, economic recovery, and building the capacity of the state. But Jacob Zuma remains the President of South Africa and, under the constitution, can stay in office until elections in 2019. Therefore, meeting expectations on economic recovery will depend on Ramaphosa taking the presidency – and he has a number of political battles to face before that becomes reality.

To begin with, Ramaphosa and his supporters did not win a total victory at the elective conference. The presidency was only one position in the senior cadre – the co-called ‘top six’ – that was elected. This body is now split evenly between Ramaphosa and his allies, and those that supported his opponent Dr Nkosazana Dlamini-Zuma - Jacob Zuma’s preferred successor. This creates two centres of power in the ANC, limiting what Ramaphosa will be able to achieve from within the party.

Although there is significant pressure from the electorate to remove Zuma from national office, actually doing so will be difficult. Zuma’s predecessor Thabo Mbeki was removed from the national presidency before his term was up when the National Executive Committee (NEC) of the party recalled him from office following Zuma’s assumption of party leadership. But this option may not be available to Ramaphosa. The split within the ‘top six’ and new NEC will make it difficult to present an ultimatum to Zuma. His loyalists will not want a witch hunt within the party.

Corruption and elitism within the party

Much of the tension centres on questions of corruption, the dominant political issue in South Africa at the moment. In the build up to the elective conference Gwede Mantashe - now national chairperson - admitted that “The biggest challenge from where we’re sitting is the image and the reputation of the ANC. The ANC is seen as equal to corruption and looting.” Ramaphosa made anti-corruption initiatives a centrepiece of his campaign, including the establishment of a judicial commission and rapid action to investigate and prosecute the guilty.

But the split within the party may undermine the credibility of these promises. Ramaphosa’s problem is that some of the new ‘top six’ - including Deputy President David Mabuza, and Secretary General Ace Magashule – would be high on the list of those the electorate want to see investigated. Party resistance may restrict the extent to which Ramaphosa can demonstrate a comprehensive break from the past.

Corruption within the party goes far deeper than the headline cases of ‘state capture’ and expropriation. At a branch level, access to political power has become the primary means of access to economic resource. It is a process of selective patronage that differentiates between those who are ‘in’ from those who aren’t. At its broadest, this type of corruption has created a mistrust of the ANC and the new economic elite that the party has created around it – including Ramaphosa himself.

Having lost out to Mbeki in the fight to succeed Mandela despite being the favourite for the job, Ramaphosa spearheaded the ANC’s deployment of cadres in business. He has become one of the country’s richest men, and a highly sought after board member by South Africa’s largest companies across mining, telecoms, and logistics.

One of his biggest challenges will be to remove the perception of elitism as his senior position within the party and economy has given rise to mistrust from a grass roots level. The political tussle at the conference was also largely driven by a small number of the party elite being able to control large groups of delegate votes. The nature of political competition within the party is symptomatic of the ANCs electoral dominance in the early days of the nation’s democracy. But this support is now far less certain, and the party cannot afford to become complacent.

Resetting the relationship with business

Ramaphosa’s business dealings may mean he has to walk a fine line in censuring his colleagues for making money from politics. But it may also be a significant opportunity for the party to reset its relationship with the private sector. Under Mbeki, relations between the ANC and business were distant, but characterized by recognition of mutual dependence.

Under Zuma this relationship deteriorated, and the President demonstrated he was willing to make decisions to boost his political power irrespective of economic consequences. Ramaphosa could, for the first time, truly align the interests of business and government, without abandoning his transformative policy agenda.

At an ANC regional economic colloquium in Johannesburg in November Ramaphosa outlined his ten-point economic plan. It would deliver the party’s adopted mantra of ‘radical economic transformation’, but through broadly neo-liberal policies on private business development and state-owned enterprise reform to allow private capital to co-invest.

He took the ethos and principles of the Freedom Charter – the 1955 statement of core ANC principles – and applied them to a modernising economy. Talk of a ‘new deal’, productive partnerships in the mining sector, and an emphasis on job creation in manufacturing will woo investors. The rand surged upon his election.

But Ramaphosa will not be able to deliver on the economic demands of the country until he is in the office of the presidency - and Zuma still holds many of the cards. Ramaphosa can promise his followers potential power and government positions in future, but Zuma can still offer them now.

Removing Zuma will require skilful internal party politicking, and Ramaphosa will need to limit the fallout – he cannot afford to further damage the credibility of the party before it faces the electorate in 2019. He has won the battle, but the outcome of the war is far from certain.




can

Can Liberation Movements Really Rid Southern Africa of Corruption?

Can Liberation Movements Really Rid Southern Africa of Corruption? Expert comment sysadmin 16 December 2019

Southern Africa’s national liberation movements have survived ‘end of decade’ elections across the region. Combating corruption has been at the heart of many of the campaigns, but the question is can they succeed?

Supporters of the Namibian incumbent president and ruling party South West Africa People’s Organisation (SWAPO) presidential candidate Hage Geingob cheer and dance. Photo by GIANLUIGI GUERCIA/AFP via Getty Images.

Swapo’s victory in Namibia two weeks ago was the last in a series of recent ‘end of decade’ elections that have returned dominant parties to power across Southern Africa. However, the “enduring appeal of liberation” is wearing thin.

Experiences across the region show that if governments are to deliver on their electoral promises, they must empower institutions, actively promote a culture of accountability and transparency within their party ranks and pursue economic reforms that untangle the web of party-state-business alliances. Such actions are critical for the survival of national liberation movements as the dominant force in the politics of Southern Africa – but will be difficult to implement.

Avoid political factionalism

South Africa, Botswana, Angola and Zimbabwe all saw new presidents take over just before elections. All used the rhetoric of anti-corruption to distance themselves from the tainted image of their predecessors. But acting on this requires a shift in mind-set in parties that have always preferred to deal with their problems behind closed doors. High profile adversaries from past regimes make tempting targets but could also drive party divisions.

In Angola, the transition of power was safeguarded by an agreement that former president José Eduardo dos Santos would be immune from prosecution. But this week his son faced corruption charges before the country’s supreme court, a high-profile example of a wave of anti-corruption cases across Southern Africa, driven by dominant parties wary of their future.

The allegations against José Filemino De Sousa Dos Santos, nickname ‘Zenu’, include a $500-million fraud involving the country’s central bank. Pressure is also mounting on Zenu’s sister Isabel — once prominent in Angola, she is now absent from public life.

Other leaders have had to tread more carefully. Immunity was a luxury Cyril Ramaphosa was neither willing nor politically able to grant Jacob Zuma in South Africa. Reliant on a few close allies at the top of the party, Ramaphosa lacks foot soldiers at the grassroots level, and his campaign against corruption within the ANC has faced persistent opposition.

Rebuilding institutions and empowering authorities takes time, and with few high-profile cases to point to, people are getting restless. This is also the case in Zimbabwe, where a worsening economic situation has left policy reformers politically isolated.

Party, state, and business

Long term incumbency has blurred the distinction between the party and the state. Liberation movements have created vast party-linked business empires. Political allegiance grants access to economic resources through appointments to lucrative positions in state-owned enterprises, preferential bids for tenders and licenses, and direct access to decision makers.

In Angola, this was fuelled by oil revenues. In South Africa, state capture flourished in an environment where the ANC and its constituent elements had significant power on the panels that chose leaders for state-owned enterprises (SOEs). In Namibia, an Icelandic fishing company paid backhanders to officials for fishing rights in what has become known as the ‘Fishrot’ scandal. Zanu-PF officials’ access to preferential foreign exchange rates present them with lucrative opportunities in Zimbabwe.

Ending this bureaucratic rent seeking goes beyond appointing ‘clean’ officials, which has been central to the anti-corruption campaigns in Angola and South Africa. Governments must also allow scrutiny of the state and empower those institutions designed for that role, such as the National Prosecuting Authority and the Public Protector in South Africa. Zimbabwe’s auditor general has published an in-depth report of the state of corruption in the country’s SOEs.

Companies must also be held to account for their role in aiding, and at worst directly benefitting, from state graft. International businesses have actively sought to benefit from corruption. They are now starting to face the consequences. A former Credit Suisse banker has pleaded guilty in the US over handling alleged kickbacks in Mozambique’s $2-billion “tuna bond” scandal. Global banks and consultancies continue to feel the squeeze for their complicity in state capture in South Africa.

Competition and pluralism

National liberation movements may only have a limited window within which to act. Across the region civil society campaigns and investigative journalists have shed light on some of the worst abuses of power. Anti-corruption campaigns are starting to bite. The state will continue to play a central role in Southern African economies, an important arbiter of economic transformation able to balance the region’s highly unequal and resource-dependent economies.

But opposition, civil society and the media are also critical for the progression towards democratic competition and pluralism in Southern Africa. Parliaments remain vital for holding rulers to account. Long used to unchallenged dominance, liberation movements have significant adjustments to make to rise to the challenge of a new era.

This article was originally published in the Mail and Guardian.




can

POSTPONED: Pursuing Economic Reform and Growth in South Africa: the view from the African National Congress

POSTPONED: Pursuing Economic Reform and Growth in South Africa: the view from the African National Congress 18 March 2020 — 10:30AM TO 11:30AM Anonymous (not verified) 3 March 2020 Chatham House | 10 St James's Square | London | SW1Y 4LE

The government of South Africa is pursuing a programme of reform to revitalize the economy, strengthen institutions and combat corruption. The State of the Nation Address (SONA) on 13 February and the budget speech of 26 February represent the most significant articulation of the government’s economic strategy. Central to this is the government’s plans for the energy sector, which is fundamental for reviving the economy, and the reform of State Owned Enterprises (SOEs). But questions remain about possible divergence of the approach taken by government ministers from the policy position of the ruling party, the African National Congress (ANC), and what this might mean for the sustainability and progress of reform.

At this event, Paul Mashatile, Treasurer General of the ANC, will discuss the party’s assessment of reform efforts to date and priorities for delivering on inclusive growth.

PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE.




can

South Africa’s foreign policy: Reflections on the United Nations Security Council and the African Union

South Africa’s foreign policy: Reflections on the United Nations Security Council and the African Union 20 January 2021 — 2:00PM TO 3:00PM Anonymous (not verified) 8 January 2021 Online

HE Dr Naledi Pandor, South Africa’s Minister of International Relations and Cooperation, discusses South Africa’s role in pursuing its regional and global goals.

To receive joining instructions, please finalise your registration by clicking the link below. Once you have registered you will receive a confirmation email from Zoom, which will include the unique joining link you will need to attend.

In 2019-2020, South Africa served its third term as a non-permanent member of the UN Security Council, seeking to strengthen its role as a bridge-builder and further justify a more permanent role for the country and continent on the body.

In February 2021, South Africa will also conclude its time as Chair of the African Union, having used its tenure to promote peace and security issues, including closer cooperation with the UNSC, and advance regional economic integration.

South Africa took up these roles at a time of global and regional upheaval. As COVID-19 tested countries’ commitment to cooperation over isolation, South Africa coordinated regional responses to address the challenges of stressed public health systems, vaccine strategies, and economic stimulus and debt support across Africa.

Its leadership has been further tested by ongoing and emerging insecurity in the Sahel, and in Cabo Delgado in neighbouring Mozambique. The crux of its regional strategy remains squaring the circle between promoting regional economic cooperation while protecting its own domestic economic priorities.

At this event, HE Dr Naledi Pandor, Minister of International Relations and Cooperation of the Republic of South Africa, reflects on the country’s two years on the UNSC and one year of chairing the AU, and discuss South Africa’s role in pursuing regional and global goals.

This event will also be broadcast live on the Chatham House Africa Programme’s Facebook page.

Read event transcript. 




can

Cancer drugs remain FDA approved despite lack of benefit, study finds




can

Thrombectomy can be considered up to 24 hours after onset of stroke, says NICE




can

US food manufacturer can say that eating yogurt reduces risk of type 2 diabetes, says FDA




can

American democracy in 2022: Trump, insurrection, and midterm elections

American democracy in 2022: Trump, insurrection, and midterm elections 31 October 2022 — 2:00PM TO 3:00PM Anonymous (not verified) 7 October 2022 Online

How much has Donald Trump changed US politics and democracy, and will Trump and ‘Trumpism’ be more or less significant in the years ahead?

America’s democracy is divided, polarized and fragmenting. Inequality and internal division have a long history. But Trump’s lasting influence on the Republican party, and politics more broadly, continues to leave a mark. Repeated denials of President Joe Biden’s 2020 election win, wrapped in claims of electoral fraud, have eroded faith in the democratic institutions.

The memories of 6 January are still fresh, reminding all of the dangers posed by such actions. All told, America’s democracy has taken a beating in recent years.

To help make sense of the events over recent years and consequences for the coming mid-terms, Peter Baker and Susan Glasser (authors of The Divider: Trump in the White House 2017–2021) walk through in detail how the American politics of today has been arrived at.

Key questions discussed include:

  • What has been learned from the January 6 Committee?

  • Is there a likelihood of a similar event in the future?

  • When and how will Trump lose his influence over the Republican party? 

  • What are the broader ramifications of the Trump era?

  • What did the events of 6 January mean for America’s relationships globally?

 As with all Chatham House member events, questions from members drive the conversation.

Read the transcript. 




can

Can diplomacy advance human rights?

Can diplomacy advance human rights? 25 April 2023 — 4:00PM TO 5:00PM Anonymous (not verified) 7 March 2023 Chatham House and Online

How is diplomacy contributing to advancing human rights through the multilateral system?

The international human rights system has come under significant pressure in recent years. Russia’s invasion of Ukraine and the US-China rivalry have created difficult political pressures, while major global challenges including climate change and global inequality demand answers. Effective diplomacy on human rights has become increasingly difficult, with incentives stacked against bold action.

The relationship between diplomacy and human rights is an uneasy one. Diplomacy is an art of negotiation, persuasion and compromise. Human rights are tightly defined and universal. The relationship between the two may seem paradoxical, but in the context of an unstable world order, it has never been more important.

In the 75th anniversary year of the Universal Declaration of Human Rights, this discussion will explore the critical role of diplomacy in advancing human rights in the future.

  • What are the critical human rights challenges today? What is the role of diplomacy in addressing them?

  • What is the impact of intensifying competition between the US and China on the human rights system?

  • Is there an opening for more leadership emerging from the Global South?

  • What is the future of the human rights system in the context of this polarized world?

As with all member events, questions from the audience drive the conversation.




can

Can rhetoric match reality? Britain’s international development future

Can rhetoric match reality? Britain’s international development future 27 April 2023 — 9:00AM TO 10:00AM Anonymous (not verified) 12 April 2023 Chatham House and Online

In conversation with Andrew Mitchell, minister of state, UK Foreign, Commonwealth and Development Office. 

Last month’s updated Integrated Review positioned international development as a key pillar of British foreign policy which sets out the importance of the UK’s efforts to shape the ‘global strategic environment’.

Focusing heavily on Africa and the Indo-Pacific, international development will be central to the ambition of a ‘Global Britain’.

The Integrated Review outlines seven priority areas to revitalize the drive to meet the Global Goals, with a climate security strategy at its heart, while seeking to go beyond official development assistance (ODA).

However, there are major challenges ahead. Since 2021, the UK’s ODA has been cut from 0.7 per cent to 0.5 per cent gross national income (GNI). Some are concerned that since being subsumed by the UK Foreign Office, the UK Foreign, Commonwealth and Development Office has diluted the effectiveness of UK international development. Then there is the question of the strength of British public support for development assistance at a time of domestic economic hardship.

Can rhetoric match reality?

This event tackles questions including:

  • What does the UK’s vision for international development mean in practice?
  • Will aid and development help push Britain’s influence around the world?
  • Can policymakers and politicians garner domestic support for international aid in times of economic uncertainty, and if so, how?
  • Can the UK rebuild its reputation in the world while it doesn’t meet its 0.7 per cent GNI target?

This event will be balloted for in-person attendance. Register your interest to join and a confirmation email will be sent to you on Tuesday 25 May at 12:00 BST to confirm your place at the event.

As with all member events, questions from the audience drive the conversation.

A coffee reception will immediately follow this event.




can

All women with suspected endometriosis should be offered ultrasound scans, says NICE

The National Institute for Health and Care Excellence (NICE) has recommended that all women with suspected endometriosis be offered an early transvaginal ultrasound scan, even if the pelvic or abdominal examination is normal.In its updated guideline1 on the diagnosis and management of endometriosis, NICE recommends specialist ultrasound as an alternative to magnetic resonance imaging for investigating suspected cases of the condition in secondary care.The updated guideline follows recent reports from both the National Confidential Enquiry into Patient Outcome and Death2 and Endometriosis UK which highlighted problems with delayed diagnoses, partly owing to a lack of awareness among healthcare professionals of the condition and how it presents. Such delays can result in prolonged suffering, ill health, and risks to fertility, the reports warned.Other new and updated recommendations include asking women with suspected endometriosis if any first degree relatives have a history of the condition, and considering neurodiversity when taking into account...




can

Rammya Mathew: GPs have to be able to request MRI scans for patients in primary care

At a recent clinical meeting, I heard that GPs local to me are about to lose the ability to request magnetic resonance imaging (MRI) scans for patients presenting with musculoskeletal symptoms. We’re instead advised to refer our patients to a musculoskeletal clinical assessment and triage service (CATS)—staffed largely by musculoskeletal advanced practitioners, who will assess our patients and determine whether imaging is warranted.The hope is that fewer patients will have unnecessary imaging and that this will reduce the potential harms of overdiagnosis. Radiologists rarely report musculoskeletal MRI scans as entirely normal, and it can be hard to know what to do with abnormal findings on an MRI. More often than not, patients with abnormal scans are referred to orthopaedic teams, even though there may not necessarily be a surgical target.At a population level, this is problematic on two fronts. Firstly, MRI scans are expensive and need to be used judiciously....




can

War in Ukraine: Can the EU survive without Russian oil and gas?

War in Ukraine: Can the EU survive without Russian oil and gas? Audio NCapeling 5 May 2022

The fourth episode of our podcast mini-series examines how reliant the European Union (EU) is on Russian energy.

What would an all-out ban on Russian oil look like? Which countries would be most affected? Does this offer an opportunity for renewable energy?

Clips used: Bloomberg News

This episode was produced by Anouk Millet of Earshot Strategies on behalf of Chatham House.




can

Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT

Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first—to our knowledge—method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non–p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse–derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.




can

[68Ga]Ga-RAYZ-8009: A Glypican-3-Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging--A First-in-Human Case Series

To date, the imaging and diagnosis of hepatocellular carcinoma (HCC) rely on CT/MRI, which have well-known limitations. Glypican-3 (GPC3) is a cell surface receptor highly expressed by HCC but not by normal or cirrhotic liver tissue. Here we report initial clinical results of GPC3-targeted PET imaging with [68Ga]Ga-DOTA-RYZ-GPC3 (RAYZ-8009), a peptide-based GPC3 ligand in patients with known or suspected HCC. Methods: [68Ga]Ga-RAYZ-8009 was obtained after labeling the peptide precursor with 68Ga from a 68Ge/68Ga generator and heating at 90°C for 10 min followed by sterile filtration. After administration of [68Ga]Ga-RAYZ-8009, a dynamic or static PET/CT scan was acquired between 45 min and 4 h after administration. Radiotracer uptake was measured by SUVs for the following tissues: suspected or actual HCC or hepatoblastoma lesions, non–tumor-bearing liver, renal cortex, blood pool in the left ventricle, and gastric fundus. Additionally, tumor–to–healthy-liver ratios (TLRs) were calculated. Results: Twenty-four patients (5 patients in the dynamic protocol; 19 patients in the static protocol) were scanned. No adverse events occurred. Two patients had no lesion detected and did not have HCC during follow-up. In total, 50 lesions were detected and analyzed. The mean SUVmax of these lesions was 19.6 (range, 2.7–95.3), and the mean SUVmean was 10.1 (range, 1.0–49.2) at approximately 60 min after administration. Uptake in non–tumor-bearing liver and blood pool rapidly decreased over time and became negligible 45 min after administration (mean SUVmean, <1.6), with a continuous decline to 4 h after administration (mean SUVmean, 1.0). The opposite was observed for HCC lesions, for which SUVs and TLRs continuously increased for up to 4 h after administration. In individual lesion analysis, TLR was the highest between 60 and 120 min after administration. Uptake in the gastric fundus gradually increased for up to 45 min (to an SUVmax of 31.3) and decreased gradually afterward. Conclusion: [68Ga]Ga-RAYZ-8009 is safe and allows for high-contrast imaging of GPC3-positive HCC, with rapid clearance from most normal organs. Thereby, [68Ga]Ga-RAYZ-8009 is promising for HCC diagnosis and staging. Further research is warranted.




can

Composite Prediction Score to Interpret Bone Focal Uptake in Hormone-Sensitive Prostate Cancer Patients Imaged with [18F]PSMA-1007 PET/CT

Unspecific bone uptake (UBU) related to [18F]PSMA-1007 PET/CT imaging represents a clinical challenge. We aimed to assess whether a combination of clinical, biochemical, and imaging parameters could predict skeletal metastases in patients with [18F]PSMA-1007 bone focal uptake, aiding in result interpretation. Methods: We retrospectively analyzed [18F]PSMA-1007 PET/CT performed in hormone-sensitive prostate cancer (PCa) patients at 3 tertiary-level cancer centers. A fourth center was involved in performing an external validation. For each, a volume of interest was drawn using a threshold method to extract SUVmax, SUVmean, PSMA tumor volume, and total lesion PSMA. The same volume of interest was applied to CT images to calculate the mean Hounsfield units (HUmean) and maximum Hounsfield units. Clinical and laboratory data were collected from electronic medical records. A composite reference standard, including follow-up histopathology, biochemistry, and imaging data, was used to distinguish between PCa bone metastases and UBU. PET readers with less (n = 2) or more (n = 2) experience, masked to the reference standard, were asked to visually rate a subset of focal bone uptake (n = 178) as PCa metastases or not. Results: In total, 448 bone [18F]PSMA-1007 focal uptake specimens were identified in 267 PCa patients. Of the 448 uptake samples, 188 (41.9%) corresponded to PCa metastases. Ongoing androgen deprivation therapy at PET/CT (P < 0.001) with determination of SUVmax (P < 0.001) and HUmean (P < 0.001) independently predicted bone metastases. A composite prediction score, the bone uptake metastatic probability (BUMP) score, achieving an area under the receiver-operating-characteristic curve (AUC) of 0.87, was validated through a 10-fold internal and external validation (n = 89 bone uptake, 51% metastatic; AUC, 0.92). The BUMP score’s AUC was significantly higher than that of HUmean (AUC, 0.62) and remained high among lesions with HUmean in the first tertile (AUC, 0.80). A decision-curve analysis showed a higher net benefit with the score. Compared with the visual assessment, the BUMP score provided added value in terms of specificity in less-experienced PET readers (88% vs. 54%, P < 0.001). Conclusion: The BUMP score accurately distinguished UBU from bone metastases in PCa patients with [18F]PSMA-1007 focal bone uptake at PET imaging, offering additional value compared with the simple assessment of the osteoblastic CT correlate. Its use could help clinicians interpret imaging results, particularly those with less experience, potentially reducing the risk of patient overstaging.




can

Clinical Factors That Influence Repeat 68Ga-PSMA-11 PET/CT Scan Positivity in Patients with Recurrent Prostate Cancer Under Observation After a Negative 68Ga-PSMA-11 PET/CT Scan: A Single-Center Retrospective Study

This analysis aimed to identify clinical factors associated with positivity on repeat 68Ga-PSMA-11 PET/CT after a negative scan in patients with recurrent prostate cancer (PCa) under observation. Methods: This single-center, retrospective analysis included patients who underwent at least 2 68Ga-PSMA-11 PET/CT scans (PET1 and PET2) at UCLA between October 2016 and June 2021 for recurrent PCa with negative PET1 and no PCa-related treatments between the 2 scans. Using Prostate Cancer Molecular Imaging Standardized Evaluation criteria to define negative and positive scans, the final cohort was divided into PET2-negative (PET2-Neg) and PET2-positive (PET2-Pos). The same PET1 was used twice in the more than 2 PET cases with inclusion criteria fulfilled. Patient characteristics and clinical parameters were compared between the 2 cohorts using Mann–Whitney U test and Fisher exact test. Areas under the curve (AUCs) of the receiver operating characteristic and the Youden index were computed to determine the discrimination ability of statistically significant factors and specific cut points that maximized sensitivity and specificity, respectively. Results: The final analysis included 83 sets of 2 PET/CT scans from 70 patients. Thirty-nine of 83 (47%) sets were PET2-Neg, and 44 of 83 (53%) sets were PET2-Pos. Prostate-specific antigen (PSA) increased from PET1 to PET2 for all 83 (100%) sets of scans. Median PSA at PET1 was 0.4 ng/mL (interquartile range, 0.2–1.0) and at PET2 was 1.6 ng/mL (interquartile range, 0.9–3.8). We found higher serum PSA at PET2 (median, 1.8 vs. 1.1 ng/mL; P = 0.015), absolute PSA difference (median, 1.4 vs. 0.7 ng/mL; P = 0.006), percentage of PSA change (median, +270.4% vs. +150.0%: P = 0.031), and median PSA velocity (0.044 vs. 0.017 ng/mL/wk, P = 0.002) and shorter PSA doubling time (DT; median, 5.1 vs. 8.3 mo; P = 0.006) in the PET2-Pos cohort than in the PET2-Neg cohort. Receiver operating characteristic curves showed cutoffs for PSA at PET2 of 4.80 ng/mL (sensitivity, 34%; specificity, 92%; AUC, 0.66), absolute PSA difference of 0.95 ng/mL (sensitivity, 62%; specificity, 71%; AUC, 0.68), percentage of PSA change of a positive 289.50% (sensitivity, 48%; specificity, 82%; AUC, 0.64), PSA velocity of 0.033 ng/mL/wk (sensitivity, 57%; specificity, 80%; AUC, 0.70), and PSA DT of 7.91 mo (sensitivity, 71%; specificity, 62%; AUC, 0.67). Conclusion: Patients with recurrent PCa under observation after a negative 68Ga-PSMA-11 PET/CT scan with markedly elevated serum PSA levels and shorter PSA DT are more likely to have positive findings on repeat 68Ga-PSMA-11 PET/CT.




can

Evaluating the Utility of 18F-FDG PET/CT in Cancer of Unknown Primary

Cancer of unknown primary (CUP) represents a heterogeneous group of metastatic tumors for which standardized diagnostic work-up fails to identify the primary site. We aimed to describe the Peter MacCallum Cancer Centre experience with 18F-FDG PET/CT in extracervical CUP with respect to detection of a primary site and its impact on management. A secondary aim was to compare overall survival (OS) in patients with and without a detected primary site. Methods: CUP patients treated between 2014 and 2020 were identified from medical oncology clinics and 18F-FDG PET/CT records. Information collated from electronic medical records included the suspected primary site and treatment details before and after 18F-FDG PET/CT. Clinicopathologic details and genomic analysis were used to determine the clinically suspected primary site and compared against 2 independent masked reads of 18F-FDG PET/CT images by nuclear medicine specialists to determine sensitivity, specificity, accuracy, and the rate of detection of the primary site. Results: We identified 147 patients, 65% of whom had undergone molecular profiling. The median age at diagnosis was 61 y (range, 20–84 y), and the median follow-up time was 74 mo (range, 26–83 mo). Eighty-two percent were classified as having an unfavorable CUP subtype as per international guidelines.18F-FDG PET/CT demonstrated a primary site detection rate of 41%, resulted in a change in management in 22%, and identified previously occult disease sites in 37%. Median OS was 16.8 mo for all patients and 104.7 and 12.1 mo for favorable and unfavorable CUP subtypes, respectively (P < 0.0001). Median OS in CUP patients when using 18F-FDG PET/CT, clinicopathologic, and genomic information was 19.8 and 8.5 mo when a primary site was detected and not detected, respectively (P = 0.016). Multivariable analysis of survival adjusted for age and sex remained significant for identification of a potential primary site (P < 0.001), a favorable CUP (P < 0.001), and an Eastern Cooperative Oncology Group status of 1 or less (P < 0.001). Conclusion: 18F-FDG PET/CT plays a complementary role in CUP diagnostic work-up and was able to determine the likely primary site in 41% of cases. OS is improved with primary site identification, demonstrating the value of access to diagnostic 18F-FDG PET/CT for CUP patients.




can

Predicting Pathologic Complete Response in Locally Advanced Rectal Cancer with [68Ga]Ga-FAPI-04 PET, [18F]FDG PET, and Contrast-Enhanced MRI: Lesion-to-Lesion Comparison with Pathology

Neoadjuvant therapy in patients with locally advanced rectal cancer (LARC) has achieved good pathologic complete response (pCR) rates, potentially eliminating the need for surgical intervention. This study investigated preoperative methods for predicting pCR after neoadjuvant short-course radiotherapy (SCRT) combined with immunochemotherapy. Methods: Treatment-naïve patients with histologically confirmed LARC were enrolled from February 2023 to July 2023. Before surgery, the patients received neoadjuvant SCRT followed by 2 cycles of capecitabine and oxaliplatin plus camrelizumab. 68Ga-labeled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI-04) PET/MRI, [18F]FDG PET/CT, and contrast-enhanced MRI were performed before treatment initiation and before surgery in each patient. PET and MRI features and the size and number of lesions were also collected from each scan. Each parameter’s sensitivity, specificity, and diagnostic cutoff were derived via receiver-operating-characteristic curve analysis. Results: Twenty eligible patients (13 men, 7 women; mean age, 60.2 y) were enrolled and completed the entire trial, and all patients had proficient mismatch repair or microsatellite-stable LARC. A postoperative pCR was achieved in 9 patients (45.0%). In the visual evaluation, both [68Ga]Ga-FAPI-04 PET/MRI and [18F]FDG PET/CT were limited to forecasting pCR. Contrast-enhanced MRI had a low sensitivity of 55.56% to predict pCR. In the quantitative evaluation, [68Ga]Ga-FAPI-04 change in SULpeak percentage, where SULpeak is SUVpeak standardized by lean body mass, had the largest area under the curve (0.929) with high specificity (sensitivity, 77.78%; specificity, 100.0%; cutoff, 63.92%). Conclusion: [68Ga]Ga-FAPI-04 PET/MRI is a promising imaging modality for predicting pCR after SCRT combined with immunochemotherapy. The SULpeak decrease exceeding 63.92% may provide valuable guidance in selecting patients who can forgo surgery after neoadjuvant therapy.