of

Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading

A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments using a 20 kHz ultrasonic fatigue machine mounted on the six-circle diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2) was triggered by the strain gage signal in a synchronous data acquisition scheme (pump–probe-like). The method enables studying loading cycles with a period of 50 µs, achieving a temporal resolution of 1 µs. This allows a precise reconstruction of the diffraction patterns during the loading cycles. From the diffraction patterns, the position of the peaks, their shifts and their respective broadening can be deduced. The diffraction peak shift allows the elastic lattice strain to be estimated with a resolution of ∼10−5. Stress is calculated by the self-consistent scale-transition model through which the elastic response of the material is estimated. The amplitudes of the cyclic stresses range from 40 to 120 MPa and vary linearly with respect to the displacement applied by the ultrasonic machine. Moreover, the experimental results highlight an increase of the diffraction peak broadening with the number of applied cycles.




of

Coherent Bragg imaging of 60 nm Au nanoparticles under electrochemical control at the NanoMAX beamline

Nanoparticles are essential electrocatalysts in chemical production, water treatment and energy conversion, but engineering efficient and specific catalysts requires understanding complex structure–reactivity relations. Recent experiments have shown that Bragg coherent diffraction imaging might be a powerful tool in this regard. The technique provides three-dimensional lattice strain fields from which surface reactivity maps can be inferred. However, all experiments published so far have investigated particles an order of magnitude larger than those used in practical applications. Studying smaller particles quickly becomes demanding as the diffracted intensity falls. Here, in situ nanodiffraction data from 60 nm Au nanoparticles under electrochemical control collected at the hard X-ray nanoprobe beamline of MAX IV, NanoMAX, are presented. Two-dimensional image reconstructions of these particles are produced, and it is estimated that NanoMAX, which is now open for general users, has the requisites for three-dimensional imaging of particles of a size relevant for catalytic applications. This represents the first demonstration of coherent X-ray diffraction experiments performed at a diffraction-limited storage ring, and illustrates the importance of these new sources for experiments where coherence properties become crucial.




of

An enlightening procedure to explain the extreme power of synchrotron radiation

A simple approach exploits quantum properties to justify the dependence on γ4 of the total synchrotron emitted power. It also clarifies some apparent puzzles and brings to light the underlying, multiple relativistic phenomena.




of

Performance of nearly fixed offset asymmetric channel-cut crystals for X-ray monochromators

X-ray double-crystal monochromators face a shift of the exit beam when the Bragg angle and thus the transmitted photon energy changes. This can be compensated for by moving one or both crystals accordingly. In the case of monolithic channel-cut crystals, which exhibit utmost stability, the shift of the monochromated beam is inevitable. Here we report performance tests of novel, asymmetrically cut, channel-cut crystals which reduce the beam movements by more than a factor of 20 relative to the symmetric case over the typical energy range of an EXAFS spectrum at the Cu K-edge. In addition, the presented formulas for the beam offset including the asymmetry angle directly indicate the importance of this value, which has been commonly neglected so far in the operation of double-crystal monochromators.




of

Progress in HAXPES performance combining full-field k-imaging with time-of-flight recording

An alternative approach to hard-X-ray photoelectron spectroscopy (HAXPES) has been established. The instrumental key feature is an increase of the dimensionality of the recording scheme from 2D to 3D. A high-energy momentum microscope detects electrons with initial kinetic energies up to 8 keV with a k-resolution of 0.025 Å−1, equivalent to an angular resolution of 0.034°. A special objective lens with k-space acceptance up to 25 Å−1 allows for simultaneous full-field imaging of many Brillouin zones. Combined with time-of-flight (ToF) parallel energy recording this yields maximum parallelization. Thanks to the high brilliance (1013 hν s−1 in a spot of <20 µm diameter) of beamline P22 at PETRA III (Hamburg, Germany), the microscope set a benchmark in HAXPES recording speed, i.e. several million counts per second for core-level signals and one million for d-bands of transition metals. The concept of tomographic k-space mapping established using soft X-rays works equally well in the hard X-ray range. Sharp valence band k-patterns of Re, collected at an excitation energy of 6 keV, correspond to direct transitions to the 28th repeated Brillouin zone. Measured total energy resolutions (photon bandwidth plus ToF-resolution) are 62 meV and 180 meV FWHM at 5.977 keV for monochromator crystals Si(333) and Si(311) and 450 meV at 4.0 keV for Si(111). Hard X-ray photoelectron diffraction (hXPD) patterns with rich fine structure are recorded within minutes. The short photoelectron wavelength (10% of the interatomic distance) `amplifies' phase differences, making full-field hXPD a sensitive structural tool.




of

Coherence properties of the high-energy fourth-generation X-ray synchrotron sources

An analysis of the coherence properties of the fourth-generation high-energy storage rings with emittance values of 10 pm rad is performed. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and an analytical approach for different photon energies from 500 eV to 50 keV. It was demonstrated that a minimum photon emittance (diffraction limit) reached at such storage rings is λ/2π. Using mode decomposition it is shown that, for the parameters of the storage ring considered in this work, the diffraction limit will be reached for soft X-ray energies of 500 eV. About ten modes will contribute to the radiation field at 12 keV photon energy and even more modes give a contribution at higher photon energies. Energy spread effects of the electron beam in a low-emittance storage ring were analysed in detail. Simulations were performed at different relative energy spread values from zero to 2 × 10−3. A decrease of the degree of coherence with an increase of the relative energy spread value was observed. This analysis shows that, to reach the diffraction limit for high photon energies, electron beam emittance should go down to 1 pm rad and below.




of

Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL

The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline.




of

Improved calibration of area detectors using multiple placements

Calibration of area detectors from powder diffraction standards is widely used at synchrotron beamlines. From a single diffraction image, it is not possible to determine both the sample-to-detector distance and the wavelength, but, with images taken from multiple positions along the beam direction and where the relative displacement is known, the sample-to-detector distance and wavelength can both be determined with good precision. An example calibration using the GSAS-II software package is presented.




of

X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III

A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s−1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.




of

Characterization of the soft X-ray spectrometer PEAXIS at BESSY II

The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.




of

Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera

Multilayer monochromator devices are commonly used at (imaging) beamlines of synchrotron facilities to shape the X-ray beam to relatively small bandwidth and high intensity. However, stripe artefacts are often observed and can deteriorate the image quality. Although the intensity distribution of these artefacts has been described in the literature, their spectral distribution is currently unknown. To assess the spatio-spectral properties of the monochromated X-ray beam, the direct beam has been measured for the first time using a hyperspectral X-ray detector. The results show a large number of spectral features with different spatial distributions for a [Ru, B4C] strip monochromator, associated primarily with the higher-order harmonics of the undulator and monochromator. It is found that their relative contributions are sufficiently low to avoid an influence on the imaging data. The [V, B4C] strip suppresses these high-order harmonics even more than the former, yet at the cost of reduced efficiency.




of

A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence

Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating.




of

A five-axis parallel kinematic mirror unit for soft X-ray beamlines at MAX IV

With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17–35 µrad angularly depending on the mirror chamber dimensions.




of

ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data

The high temporal resolution in data acquisition, possible in the quick-scanning EXAFS (QEXAFS) mode of operation, provides new challenges in efficient data processing methods. Here a new approach is developed that combines an easy to use interactive graphical interface with highly optimized and fully parallelized Python-based routines for extracting, normalizing and interpolating oversampled time-resolved XAS spectra from a raw binary stream of data acquired during operando QEXAFS studies. The programs developed are freely available via a Github repository.




of

X-ray absorption linear dichroism at the Ti K-edge of rutile (001) TiO2 single crystal

X-ray absorption linear dichroism of rutile TiO2 at the Ti K-edge provides information about the electronic states involved in the pre-edge transitions. Here, linear dichroism with high energy resolution is analyzed in combination with ab initio finite difference method calculations and spherical tensor analysis. It provides an assignment of the three pre-edge peaks beyond the octahedral crystal field splitting approximation and estimates the spatial extension of the corresponding final states. It is then discussed for the first time the X-ray absorption (XAS) of pentacoordinated titanium atoms due to oxygen vacancies and it is found that, similarly to anatase TiO2, rutile is expected to exhibit a transition on the low-energy side of peak A3. Its apparent absence in the experiment is related to the degree of p–d orbital mixing which is small in rutile due to its centrosymmetric point group. A recent XAS linear dichroism study on anatase TiO2 single crystals has shown that peak A2 has an intrinsic origin and is due to a quadrupolar transition to the 3d energy levels. In rutile, due to its centrosymmetric point group, the corresponding peak A2 has a small dipole moment explaining the weak transition. The results are confronted with recent picosecond X-ray absorption spectroscopy on rutile TiO2 nanoparticles.




of

Understanding the mechanical limitations of the performance of soft X-ray monochromators at MAX IV laboratory

MAX IV is a fourth-generation, or diffraction-limited, synchrotron light source with a number of state-of-the-art beamlines. The performance of a beamline is, to a high degree, set by the energy resolution it can achieve, which in turn is governed to a large extent by the monochromator. During the design phase of a monochromator, the mechanical requirements must be fully understood and met with margin. During commissioning, the performance must be verified and optimized. In this paper, six soft X-ray monochromators at MAX IV beamlines (Bloch, Veritas, HIPPIE, SPECIES, FinEstBeAMS and SoftiMAX) are examined with a focus on their resolving power, energy range and the time required to change measurement range, as those parameters are dependent on each other. The monochromators have a modern commercial design, planned and developed in close collaboration with the vendors. This paper aims to present the current status of the commissioning at MAX IV with emphasis on elucidating the mechanical limitations on the performance of the monochromators. It contains analysis of the outcome and our approach to achieve fast and high-resolution monochromators.




of

Foreword to the special virtual issue dedicated to the proceedings of the PhotonDiag2018 workshop on FEL Photon Diagnostics, Instrumentation, and Beamlines Design




of

Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

The time evolution of the electron density and the resulting time dependence of the X-ray polarizability of a crystal irradiated by highly intense XFEL femtosecond pulses is investigated theoretically. Rate equations for bound electrons and the Boltzmann equation for the unbound electron gas are used in calculations.




of

Contributions of charge-density research to medicinal chemistry

Contributions of experimental and selected theoretical charge-density research to medicinal chemistry are reviewed; combining experimental methods from high-resolution small-molecule and macromolecular crystallography with theory proves to be fruitful.




of

Correlated changes in structure and viscosity during gelatinization and gelation of tapioca starch granules

Melting of the semicrystalline structure of native tapioca starch granules is correlated to solution viscosity for elucidating gelatinization and gelation processes.




of

Molecular self-assembly of nylon-12 nanorods cylindrically confined to nanoporous alumina

It has been revealed that in cylindrical nano-confinement, the hydrogen-bonding direction of nylon-12 crystals in the rod could self-assemble to be parallel to the long axis of the rod. The dominant growth direction and hydrogen-bonding direction of the γ-form crystal in the long axis of the rod has been revealed by TEM–SAED and WAXD.




of

Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method

Rietveld/MEM analysis applied to synchrotron powder X-ray diffraction data of dehydrated CHA zeolites with catalytically active Cu2+ reveals Cu2+ in both the six- and eight-membered rings in the CHA framework, providing the first complete structural model that accounts for all Cu2+. Density functional theory calculations are used to corroborate the experimental structure and to discuss the Cu2+ coordination in terms of the Al distribution in the framework.




of

Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly

Mammalian Munc18 proteins are essential for membrane fusion and human health. Here, we review the literature describing structural and in vitro data, and identify a possible explanation for the conflicting functional roles that have been reported.




of

Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation

The structure and function of dioxygenases in histone demethylation and DNA/RNA dimethylation are discussed.




of

EXAFS and XANES analysis of oxides at the nanoscale

This work presents a discussion of the possibilities offered by X-ray absorption spectroscopy (XAS) to study the local structure of nanomaterials. The current state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS), including an advanced approach based on the use of classical molecular dynamics, is described and exemplified in the case of NiO nanoparticles. In addition, the limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) in determining several effects associated with the nanocrystalline nature of materials are also discussed in connection with the development of ZnO-based dilute magnetic semiconductors and iron oxide nanoparticles.




of

Capability of X-ray diffraction for the study of microstructure of metastable thin films

PLEASE REDUCE TO 1-2 SENTENCES. The capability of X-ray diffraction for the microstructure investigations of metastable systems is illustrated on the example of thin films of titanium aluminium nitrides with high aluminium content, which are supersaturated and partially decomposed. In addition to the chemical composition, the surface mobility of the deposited species was employed as a factor influencing the microstructure of the thin films. It is shown how the micromechanical properties of the partially decomposed (Ti,Al)N thin films, which were deduced from the synchrotron diffraction experiments, are related to the thin film microstructure and to the decomposition mechanism. The prominent role of the crystallographic anisotropy of the macroscopic and microscopic lattice deformations in the understanding of the micromechanical properties is addressed.




of

In-depth analysis of subclass-specific conformational preferences of IgG antibodies

An extended analysis of structural ensembles obtained from small-angle X-ray scattering data reveals subclass-specific conformational preferences of IgG antibodies, which are largely determined by the hinge-region structure.























of

Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum

Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved.




of

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.




of

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.




of

Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa

Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix–turn–helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence.