trans

Webinar: Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

Research Event

12 May 2020 - 2:00pm to 3:00pm
Add to Calendar

Haid Haid, Senior Consulting Fellow, Middle East and North Africa Programme, Chatham House
Sara Kayyali, Syria Researcher, Middle East and North Africa Division, Human Rights Watch
Moderator: Lina Khatib, Director, Middle East and North Africa Programme, Chatham House

You can register your interest here. Alternatively, you can watch the webinar live on the MENA Programme Facebook page.

Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.

In a recent research paper, author Haid Haid argues that this approach to justice is deeply flawed as it raises concerns about due process and lacks the precise instruments to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. The paper proposes that a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members.

In this webinar, part of the MENA Programme’s Online Event Series, speakers will examine the benefits of such an approach to justice for overcoming the limitations of the current, counterterrorism-focused framework. Panelists will discuss the alternative mechanisms local authorities and their key foreign backers can use to hold local ISIS members to account while contributing to the healing of communities.
 
The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




trans

Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors

Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake.




trans

Tobacco smoking in people is not associated with altered 18 kDa-translocator protein levels: A Positron Emission Tomography study

Rationale: The effects of tobacco smoking on the brain’s immune system are not well elucidated. While nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. Positron Emission Tomography (PET) imaging of the 18-kDa translocator protein (TSPO) provide a biomarker for microglia, the brain’s primary immunocompetent cells. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 hours) and 20 nonsmokers using a fully quantitative modeling approach for the first time. Methods: [11C]PBR28 PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. [11C]PBR28 volumes of distribution (VT) were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence for significant differences in regional [11C]PBR28 VT between smokers and non-smokers (whole-brain Cohen’s d=0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in brain (measured as standardized uptake value, SUV) of tobacco smokers compared to nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that compared to nonsmokers, smokers have comparable TSPO levels in brain. Additional work with other biomarkers is needed to fully characterize effects of tobacco smoking on the brain’s immune system.




trans

18F-FDG PET/CT in the Diagnostic and Treatment Evaluation of Pediatric Post-transplant Lymphoproliferative Disorders

We aimed to evaluate the diagnostic performance of 18F-FDG PET/CT for the detection of post-transplantation lymphoproliferative disorder (PTLD) in a pediatric population and explore its feasibility during response assessment. Methods: This retrospective study included 28 pediatric transplant recipients who underwent a total of 32 18F-FDG PET/CT scans due to clinical suspicion of PTLD within an 8-year period. Pathology reports and 2-year follow-up were used as reference standard. Twenty-one response assessment 18F-FDG PET/CT scans were re-evaluated according to the Lugano criteria. Results: The diagnosis of PTLD was established in 14 patients (49%). Sensitivity, specificity, positive predictive value, and negative predictive value of 18F-FDG PET/CT for the detection of PTLD in children with a clinical suspicion of this disease, was 50% (7/14), 100% (18/18), 100% (7/7), and 72% (18/25), respectively. False-negative results occurred in patients with PTLD in the Waldeyer’s ring, cervical lymph nodes or small bowel with either non-destructive or polymorphic PTLD. Two of 5 interim 18F-FDG PET/CT scans and 3 of 9 end-of-treatment 18F-FDG PET/CT scans were false-positive. Conclusion: 18F-FDG PET/CT had good specificity and positive predictive value but low to moderate sensitivity and negative predictive value for the detection of PTLD in a 28 pediatric patient cohort with a clinical suspicion of this disease. False-negative results were confirmed in the Waldeyer’s ring, cervical lymph nodes and small bowel with either non-destructive or polymorphic PTLD subtypes. 18F-FDG PET/CT appears to have a limited role in the response assessment setting of pediatric PTLD, given the observed high proportions of false-positives both at interim and end-of-treatment evaluations.




trans

Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer

The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.




trans

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




trans

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




trans

The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism]

Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues.




trans

Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism]

The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver.




trans

Digital Transformation Office chief executive Paul Shetler announces public service work schedule

Paul Shetler reveals the digital projects about to hit the federal bureaucracy. Starting with Canberra.




trans

How Australian public service's digital reforms will happen, according to the Digital Transformation Office

The millions of customers, the short deadline: how the public service's digital revolution will start.




trans

Troubled myGov website to be taken from Human Services and given to Digital Transformation Office for streamlining

Malcolm Turnbull's DTO has been critical of myGov, now it has the chance to show it can do better.




trans

Digital Transformation Agency boss Paul Shetler resigns

Agile government takes a stumble as digital pioneer logs off after just six weeks.




trans

China's 2020: Economic Transition, Sustainability and the Coronavirus

Corporate Members Event

10 March 2020 - 12:15pm to 2:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Dr Yu Jie, Senior Research Fellow on China, Asia-Pacific Programme, Chatham House
David Lubin, Associate Fellow, Global Economy and Finance Programme, Chatham House; Managing Director and Head of Emerging Markets Economics, Citi
Jinny Yan, Managing Director and Chief China Economist, ICBC Standard
Chair: Creon Butler, Director, Global Economy and Finance Programme, Chatham House

Read all our analysis on the Coronavirus Response

The coronavirus outbreak comes at a difficult time for China’s ruling party. A tumultuous 2019 saw the country fighting an economic slowdown coupled with an increasingly hostile international environment. As authorities take assertive steps to contain the virus, the emergency has - at least temporarily - disrupted global trade and supply chains, depressed asset prices and forced multinational businesses to make consequential decisions with limited information. 

Against this backdrop, panellists reflect on the country’s nascent economic transition from 2020 onward. What has been China’s progress towards a sustainable innovation-led economy so far? To what extent is the ruling party addressing growing concerns over job losses, wealth inequality and a lack of social mobility? And how are foreign investors responding to these developments in China?

Members Events Team




trans

Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination

Deanna L. Davis
Apr 1, 2020; 61:505-522
Research Articles




trans

Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells

Kotaro Hama
Apr 1, 2020; 61:523-536
Patient-Oriented and Epidemiological Research




trans

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation

Henry J. Pownall
May 1, 2020; 61:595-597
Commentary




trans

Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes.

Björn Morén
Apr 15, 2020; 0:jlr.ILR120000808v1-jlr.ILR120000808
Images in Lipid Research




trans

Lipid-tuned Zinc Transport Activity of Human ZnT8 Protein Correlates with Risk for Type-2 Diabetes [Molecular Bases of Disease]

Zinc is a critical element for insulin storage in the secretory granules of pancreatic beta cells. The islet-specific zinc transporter ZnT8 mediates granular sequestration of zinc ions. A genetic variant of human ZnT8 arising from a single nonsynonymous nucleotide change contributes to increased susceptibility to type-2 diabetes (T2D), but it remains unclear how the high risk variant (Arg-325), which is also a higher frequency (>50%) allele, is correlated with zinc transport activity. Here, we compared the activity of Arg-325 with that of a low risk ZnT8 variant (Trp-325). The Arg-325 variant was found to be more active than the Trp-325 form following induced expression in HEK293 cells. We further examined the functional consequences of changing lipid conditions to mimic the impact of lipid remodeling on ZnT8 activity during insulin granule biogenesis. Purified ZnT8 variants in proteoliposomes exhibited more than 4-fold functional tunability by the anionic phospholipids, lysophosphatidylcholine and cholesterol. Over a broad range of permissive lipid compositions, the Arg-325 variant consistently exhibited accelerated zinc transport kinetics versus the Trp-form. In agreement with the human genetic finding that rare loss-of-function mutations in ZnT8 are associated with reduced T2D risk, our results suggested that the common high risk Arg-325 variant is hyperactive, and thus may be targeted for inhibition to reduce T2D risk in the general populations.




trans

Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. [Images in Lipid Research]




trans

Russia’s Uncertain Regime Transformation

11 March 2020

Professor Nikolai Petrov

Senior Research Fellow, Russia and Eurasia Programme, Chatham House

Dr Ben Noble

Lecturer in Russian Politics, University College London; Senior Research Fellow, HSE, Moscow
Despite the drama, Vladimir Putin’s announcement endorsing a constitutional change allowing him to remain president from 2024 does surprisingly little to change the status quo.

2020-03-11-Putin-Constitution.jpg

Russian President Vladimir Putin addresses lawmakers debating on the second reading of the constitutional reform bill during a session of the State Duma, Russia's lower house of parliament March 10, 2020. Photo by ALEXANDER NEMENOV/AFP via Getty Images.

With Putin’s current term as head of state due to run out in 2024, the question everybody has been asking is what he will do to remain in power. The Russian president’s recent speech, made in person in the State Duma during the second reading of his own constitutional reform bill, has been interpreted by many as a clear answer. Summaries such as “Putin forever” and “perpetual Putin” abound. But the reality is not so clear.

Putin has not committed to standing for re-election in 2024, never mind staying in power until 2036, when two additional six-year terms from 2024 would run out. What he has done is provide the constitutional grounds to retain power as president. It creates a highly credible option without committing him to it.

And the uncertainty matters. Because as long as members of the elite are unsure whether Putin will take up the option to remain president, they are kept in check.

Broader constitutional reform

With the flurry of interest around Putin’s announcement, we should not lose sight of his moves to further strengthen the presidency. As part of the broader constitutional reform package, Russia’s existing “super-presidency” will gain additional powers, such as the authority to fire top-tier judges and to block legislation when the legislature has overridden a presidential veto (in other words, a “super-veto”).

The proposals also put the autonomy of local self-government at risk, with Moscow and regional executives gaining the constitutional power to hire and fire officials who are not even technically part of the state. And the president now has a formalised role as “general leader” of the government. Putin is creating the “Great Presidency”.

However, the majority of constitutional changes do not relate to the presidency – they have different purposes. Firstly, to revitalise support for the regime which took a hit following unpopular pension reforms in 2018. Secondly, to distract or appease those worried by Putin remaining in a strengthened presidency. And perhaps most significantly, to boost turnout in the nationwide vote on reforms.

This desire to re-energise popular support becomes apparent as the changes – some of which will have to be inserted rather awkwardly into the constitution’s structure – focus on three elements aimed squarely at improving the regime’s appeal: increased material support from the state for citizens, including indexing state pensions; an emphasis on “traditional values”, including a declaration that marriage can only be a union between a man and a woman; and increased Russian sovereignty, including a “nationalisation” of the elite, with a constitutional ban on top-level officials having bank accounts abroad. 

Constitutional reform is, moreover, the most visible part of a broader political transformation already underway, including a major propaganda drive. Putin has promised a significant increase in resources for its “maternity capital” programme, putting more money in the pockets of young Russian families.

And he has instructed Prime Minister Mikhail Mishustin’s government to focus on delivering his “national projects” – goals aimed at improving Russians’ lives across a range of areas, from infrastructure to education and healthcare.

Taking advantage of several imminent historical milestones is also on the cards. It has been reported Putin will sign the constitutional reform bill on March 18 – the anniversary of Russia’s annexation of Crimea. And May 9 is the 75th anniversary of the end of the Great Patriotic War (the Russian term for the Second World War), with foreign dignitaries invited to attend events in Moscow.

Putin has also been filling the airwaves with a high-production-values series called “20 Questions for Vladimir Putin”, as well as holding public meetings with citizens in provinces such as Cherepovets and Ivanovo. There is a clear aim to demonstrate the president is not only still in control, but also concerned with the well-being of everyday Russians.

With parliamentary elections scheduled for September 2021 the Kremlin knows that, to maintain its control of a super-majority of seats in the State Duma, its ratings-raising drive has to work – even if it does always have the option of using manifestly authoritarian methods for realising desired election results. A proposal to call early State Duma elections was made during the second reading of Putin’s reform bill, but was quickly withdrawn after Putin spoke out against the idea.

Russia’s complex architecture of “power”

Throughout this transformation, maintaining control of the elite – particularly of the siloviki – is key for Putin. A reshuffling and removal of senior officials in the Procuracy has seen Yury Chaika replaced as general prosecutor by Ivan Krasnov, previously a deputy chair of the Investigative Committee, which is widely seen as a rival structure in Russia’s complex architecture of “power” bodies.

When considered alongside the constitutional changes giving the president broader powers in appointing regional prosecutors, this is textbook “divide and rule”. Power balancing is also on display with the Security Council, as the job description for Dmitry Medvedev’s new role as its deputy chair could provide fertile ground for clashes with the body’s secretary, Nikolai Patrushev.

Pitting rival patronal networks against each other means Putin can keep rivals in check within the broader structure of the “Great Presidency”, while staying firmly in control himself.

The prospect of Putin remaining president is unlikely to be popular. According to data from independent Russian polling agency the Levada Centre, only 27 per cent of Russians want Putin to stay in the post after 2024. This figure could, of course, change in either direction as the prospect becomes more real for Russians. But if Putin’s announcement galvanises mass opposition, the authorities may well use responses to the COVID-19 outbreak to keep protesters at bay – something already on display in Moscow.

What this all means for Russia is that, despite the drama, considerable uncertainty remains following Putin’s announcement. What we can say for certain, however, is that it dashes hopes of serious political change any time soon.




trans

Fourier transform mass spectrometry [Invited]

This article provides an introduction to Fourier transform-based mass spectrometry (FTMS). The key performance characteristics of FTMS, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of FTMS technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for his/her application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.




trans

Translating Divergent Environmental Stresses into a Common Proteome Response through Hik33 in a Model Cyanobacterium [Research]

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (hik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in hik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.




trans

Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research]

Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.




trans

Promoting a Just Transition to an Inclusive Circular Economy

1 April 2020

Considerations of justice and social equity are as important for the circular economy transition as they are in the contexts of low-carbon transitions and digitalization of the economy. This paper sets out the just transition approach, and its relevance in climate change and energy transition debates.

Patrick Schröder

Senior Research Fellow, Energy, Environment and Resources Programme

2020-04-01-circular-economy.jpg

Residents of Mount Ijen take sulphur at Ijen Crater, Banyuwangi, East Java, on 2 July 2018. Photo: Getty Images.

Summary

  • Many social and political issues have so far been neglected in planning for the circular economy transition. This paper aims to redress this by considering how ‘just transition’ and social equity may be achieved through policy and practice.
  • The prevailing economic model is linear, in that resources are extracted, transformed into products, used, and finally discarded. In contrast, the circular economy recognizes that natural resources are finite, and aims to keep the materials in products in circulation for as long as possible: reusing, repairing, remanufacturing, sharing and recycling. While the concept of the circular economy is largely focused on developing new technologies and businesses to enable keeping materials in circulation, it also includes the notions of ‘designing out’ waste, substituting renewable materials for non-renewable ones, and restoring natural systems.
  • The UN 2030 Agenda demonstrates that environmental, social and economic sustainability objectives cannot be separated. As the links between the environmental issues of climate change, overconsumption of resources and waste generation, and social issues of inequality and the future of work become increasingly obvious, the urgency to connect environmental with social justice is gaining in significance. The language of ‘just transition’ – a transition that ensures environmental sustainability, decent work, social inclusion and poverty eradication – has started to penetrate debates and research on sustainability policy, particularly in the contexts of climate change and low-carbon energy transition.
  • A just transition framework for the circular economy can identify opportunities that reduce waste and stimulate product innovation, while at the same time contributing positively to sustainable human development. And a just transition is needed to reduce inequalities within and between countries, and to ensure that the commitment of the UN Sustainable Development Goals to leave no one behind is fulfilled.
  • It is important to identify the likely impacts on employment as a result of digitalization and industrial restructuring. Combining circular economy policies with social protection measures will be important in order to ensure that the burden of efforts to promote circularity will not fall on the poor through worsening working conditions and health impacts, reduced livelihoods, or job losses. Identifying potential winners and losers through participatory ‘roadmapping’ can help shape effective cooperation mechanisms and partnerships nationally and internationally.
  • Many low- and middle-income countries that rely heavily on ‘linear’ sectors such as mining, manufacturing of non-repairable fast-moving consumer goods, textiles and agriculture, and the export of these commodities to higher-income countries, are likely to be negatively affected by the shift to circularity. These countries will need support from the international community through targeted assistance programmes if international trade in established commodities and manufactures declines in the medium to long term. 
  • International cooperation to create effective and fair governance mechanisms, and policy coordination at regional, national and local levels will play an important role in shaping a just transition. Multilateral technical assistance programmes will need to be designed and implemented, in particular to support low- and middle-income countries.
  • Governments, international development finance institutions and banks are among the bodies beginning to establish circular economy investment funds and programmes. Just transition principles are yet to be applied to many of these new finance mechanisms, and will need to be integrated into development finance to support the circular economy transition.
  • New international cooperation programmes, and a global mechanism to mobilize dedicated support funds for countries in need, will be critical to successful implementation across global value chains. Transparent and accountable institutions will also be important in ensuring that just transition funds reach those affected as intended.




trans

Economic Crisis and the Delayed Arrival of a New President: Transition Trauma

1 November 2008 , Number 1

The new American president will not be inaugurated until January 20. He will certainly face the most difficult economic conditions since Franklin Roosevelt entered the White House in March 1933. The politics of presidential transition – in this year, as seventy-six years ago – seem likely only to exacerbate the global crisis.

John Dumbrell

Professor of Government, Durham University




trans

Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

28 April 2020

This paper aims to assist the region’s local authorities, and their key foreign backers, in understanding how transitional justice can provide alternative avenues for holding local ISIS members to account while contributing to the healing of communities.

Haid Haid

Senior Consulting Fellow, Middle East and North Africa Programme

2020-04-28-Syria-prison.jpg

A fighter with the Syrian Democratic Forces monitors prisoners accused of being affiliated with ISIS, at a prison in the northeastern Syrian city of Hassakeh on 25 October 2019. Photo: Getty Images.

Summary

  • Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.
  • The piecemeal approach to justice is deeply flawed, and raises particular concerns about due process. No precise instruments exist to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. In any event, the scale of the crimes and the number of victims – as well as severe shortages of resources and workers – make dispensation of justice extremely difficult through the traditional legal system.
  • Not all detained ISIS members receive prison sentences. Individuals who did not hold senior roles in the group’s apparatus and are not accused of ‘major’ crimes (in practice, largely defined as fighting for ISIS and murder) are being released under limited reconciliation deals with tribal leaders. But the involvement of local community leaders in those efforts is not enough to ensure positive results. Many victims are upset at seeing ISIS members walk free without even admitting their guilt publicly or apologizing for the pain they caused.
  • To overcome the limitations of the current, counterterrorism-focused framework, a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members. A combination of non-judicial mechanisms such as truth commissions, missing persons’ committees, and reparations and victim-healing programmes could play a vital role in providing ISIS victims with a sense of justice while contributing to peacebuilding and stability.
  • Ignoring the urgency of developing a long-term plan to serve justice and contribute to community healing will almost certainly allow ISIS to continue to prevent the recovery and development of northeastern Syria. This, in turn, risks undermining the stability of the country and the region at large.




trans

Kazakhstan: Tested by Transition

Invitation Only Research Event

28 November 2019 - 1:30pm to 3:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Annette Bohr, Associate Fellow, Russia and Eurasia Programme, Chatham House
Kassymkhan Kapparov, Founder, Economist.kz
Joanna Lillis, Reporter, The Guardian, The Economist and The Independent
Kate Mallinson, Associate Fellow, Russia and Eurasia Programme, Chatham House
Dossym Satpayev, Director, Kazakhstan Risk Assessment Group; Member of the Presidium, Kazakhstan Council on International Relations
Chair: James Nixey, Head, Russia and Eurasia Programme, Chatham House

At face value at least, Central Asia’s wealthiest state has embarked on a bold experiment following the March 2019 decision by its founding father and long-standing ruler, Nursultan Nazarbayev, to resign from the presidency and initiate a managed political succession. A generational transition of this nature, untried in other former Soviet republics, brings with it high stakes.
 
As well as seeking to secure his own legacy, having dominated the country since before independence in 1991, Nazarbayev wants to ensure Kazakhstan does not depart from the course he has set while safeguarding Kazakhstan’s stability in the context of multiple and evolving domestic and international challenges. But this is easier said than done. Is Kazakhstan ready for the challenges of the future?
 
This event marks the launch of Chatham House’s major report Kazakhstan: Tested by Transition.

Department/project

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




trans

Kazakhstan: Tested by Transition

27 November 2019

A partial handover of political power through an orchestrated transition takes Kazakhstan into uncharted territory. Will it be able to pursue modernization and reform, and break from its authoritarian past?

Annette Bohr

Associate Fellow, Russia and Eurasia Programme

Dr Nigel Gould-Davies

Associate Fellow, Russia and Eurasia Programme, Chatham House

Kate Mallinson

Associate Fellow, Russia and Eurasia Programme

James Nixey

Director, Russia and Eurasia Programme

Birgit Brauer

Analyst, Writer and Journalist Covering Central Asia

Nargis Kassenova

Senior Fellow, Davis Center for Russian and Eurasian Studies, Harvard University

Joanna Lillis

Kazakhstan-Based Journalist Reporting on Central Asia

Dosym Satpayev

Independent Political Analyst and the Director of the Kazakhstan Risks Assessment Group

Kazakhstan is at a turning point in its history. At face value, at least, Central Asia’s wealthiest state has embarked on a bold experiment following the March 2019 decision by its founding father and long-standing ruler, Nursultan Nazarbayev, to resign from the presidency and initiate a managed political succession. A generational transition of this nature, untried in other former Soviet republics, brings with it high stakes. As well as looking to secure his own legacy, having dominated the country since before independence in 1991, Nazarbayev seeks to ensure Kazakhstan does not depart from the course he has set, while safeguarding regime stability in the context of multiple and evolving domestic and international challenges. This is easier said than done.

The uncertainty around this project is substantial, especially considering a ‘rowback’ decree just seven months after Nazarbayev’s resignation, limiting the powers of his anointed successor, Kassym-Jomart Tokayev. How long can Tokayev credibly remain president considering such a transparent undermining of his authority? Is Nazarbayev, in fact, grooming his daughter, Dariga Nazarbayeva, another relative or a power player from outside the family for the leadership in the longer term? Will the ‘Kazakh tandem’ of Nazarbayev and Tokayev function effectively, or will tensions and conflicts arise between them as many claim is happening already? How will the leadership cope with the protest mood now manifest on the streets of Kazakhstan, and address the political and socio-economic grievances fuelling this discontent? How might the political transition play out if Nazarbayev were to suddenly exit the political scene altogether?And what is the long-term transition plan for the time when Nazarbayev has departed, and how effective will it be?

As Kazakhstan enters uncharted territory, the purpose of this report is twofold. First, to make the case for the West to devote more attention to Kazakhstan. The country’s relative importance in Central Asia, and as the constant focus of intense attention from China and Russia, suggests that the West is wrong to direct so little time and diplomatic effort and so few resources towards it. This is not so much a miscalculation (that would be to assume there had been a calculation in the first place) as a misstep through neglect, presupposing that the future will resemble the present – with Kazakhstan remaining stable internally, relatively inconsequential geopolitically but nevertheless a friendly ally to the West. In fact, the country’s trajectory over the next few years is of potentially strategic import. This is because even its political semi-transition presents the West with a rare opportunity to push back against the global rise of authoritarianism, in a state that is open to rational argument and economic logic.

The second function of the report is to serve as a well-intentioned message to the leadership of Kazakhstan. The research undertaken by the report’s eight authors shows that Kazakhstan is at risk of failing to achieve the goals its leadership has set for the country. As significant as it has been, the partial stepping aside of Nazarbayev by no means guarantees the modernization and renewal that he and his successor have promised. Far deeper political, economic and social reforms will be needed if Kazakhstan is to meet the growing challenges to its stability, prosperity and development. Street protests since Nazarbayev’s resignation have demonstrated a level of popular disaffection far higher than the authorities acknowledge. The leadership needs to bridge the disconnect between the rulers and the ruled and start listening to its people.

To avoid slipping into decline, and to resist external pressures and geopolitical overtures that could diminish the sovereignty that its leadership is so determined to safeguard, Kazakhstan needs new faces – innovators and reformers – throughout every level of the administration, as well as new ideas. This report is intended to help with the ‘ideas’ part of that proposition. It also includes a series of recommendations for Western governments and institutions and for the Kazakhstan government. 




trans

POSTPONED: Transitional Justice in Ukraine: What Might it Look Like?

Invitation Only Research Event

17 March 2020 - 9:30am to 1:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Kirsty Brimelow QC, Barrister, Doughty Street Chambers
Miles Jackson, Associate Professor of Law, University of Oxford
Anton Korynevych, Representative of the President of Ukraine for Crimea
Oleksandra Matviychuk, Head of the Board, Centre for Civil Liberties
Taras Tsymbrivksyy, Head, USAID Human Rights in Action Program; Ukrainian Helsinki Human Rights Union

Still grappling with the war in the east and the occupation of Crimea, Ukraine’s new leadership has announced its intention to develop its transitional justice infrastructure to respond to the human rights violations arising from Russia’s aggression. 

Numerous reports (not least ones by the UN Human Rights Monitoring Mission in Ukraine) list persecutions, illegal detentions, enforced disappearances, torture and killings among the crimes perpetrated in Crimea and parts of occupied Donbas. 

As Ukraine has only just started developing its transitional justice roadmap, this event will seek to discuss viable initial approaches, such as a ‘truth-telling commission’ or amnesties. 

The panellists will also discuss the role for civil society and those directly affected by hostilities in the transitional justice process.  

PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE.

Event attributes

Chatham House Rule

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




trans

Russia’s Uncertain Regime Transformation

11 March 2020

Professor Nikolai Petrov

Senior Research Fellow, Russia and Eurasia Programme, Chatham House

Dr Ben Noble

Lecturer in Russian Politics, University College London; Senior Research Fellow, HSE, Moscow
Despite the drama, Vladimir Putin’s announcement endorsing a constitutional change allowing him to remain president from 2024 does surprisingly little to change the status quo.

2020-03-11-Putin-Constitution.jpg

Russian President Vladimir Putin addresses lawmakers debating on the second reading of the constitutional reform bill during a session of the State Duma, Russia's lower house of parliament March 10, 2020. Photo by ALEXANDER NEMENOV/AFP via Getty Images.

With Putin’s current term as head of state due to run out in 2024, the question everybody has been asking is what he will do to remain in power. The Russian president’s recent speech, made in person in the State Duma during the second reading of his own constitutional reform bill, has been interpreted by many as a clear answer. Summaries such as “Putin forever” and “perpetual Putin” abound. But the reality is not so clear.

Putin has not committed to standing for re-election in 2024, never mind staying in power until 2036, when two additional six-year terms from 2024 would run out. What he has done is provide the constitutional grounds to retain power as president. It creates a highly credible option without committing him to it.

And the uncertainty matters. Because as long as members of the elite are unsure whether Putin will take up the option to remain president, they are kept in check.

Broader constitutional reform

With the flurry of interest around Putin’s announcement, we should not lose sight of his moves to further strengthen the presidency. As part of the broader constitutional reform package, Russia’s existing “super-presidency” will gain additional powers, such as the authority to fire top-tier judges and to block legislation when the legislature has overridden a presidential veto (in other words, a “super-veto”).

The proposals also put the autonomy of local self-government at risk, with Moscow and regional executives gaining the constitutional power to hire and fire officials who are not even technically part of the state. And the president now has a formalised role as “general leader” of the government. Putin is creating the “Great Presidency”.

However, the majority of constitutional changes do not relate to the presidency – they have different purposes. Firstly, to revitalise support for the regime which took a hit following unpopular pension reforms in 2018. Secondly, to distract or appease those worried by Putin remaining in a strengthened presidency. And perhaps most significantly, to boost turnout in the nationwide vote on reforms.

This desire to re-energise popular support becomes apparent as the changes – some of which will have to be inserted rather awkwardly into the constitution’s structure – focus on three elements aimed squarely at improving the regime’s appeal: increased material support from the state for citizens, including indexing state pensions; an emphasis on “traditional values”, including a declaration that marriage can only be a union between a man and a woman; and increased Russian sovereignty, including a “nationalisation” of the elite, with a constitutional ban on top-level officials having bank accounts abroad. 

Constitutional reform is, moreover, the most visible part of a broader political transformation already underway, including a major propaganda drive. Putin has promised a significant increase in resources for its “maternity capital” programme, putting more money in the pockets of young Russian families.

And he has instructed Prime Minister Mikhail Mishustin’s government to focus on delivering his “national projects” – goals aimed at improving Russians’ lives across a range of areas, from infrastructure to education and healthcare.

Taking advantage of several imminent historical milestones is also on the cards. It has been reported Putin will sign the constitutional reform bill on March 18 – the anniversary of Russia’s annexation of Crimea. And May 9 is the 75th anniversary of the end of the Great Patriotic War (the Russian term for the Second World War), with foreign dignitaries invited to attend events in Moscow.

Putin has also been filling the airwaves with a high-production-values series called “20 Questions for Vladimir Putin”, as well as holding public meetings with citizens in provinces such as Cherepovets and Ivanovo. There is a clear aim to demonstrate the president is not only still in control, but also concerned with the well-being of everyday Russians.

With parliamentary elections scheduled for September 2021 the Kremlin knows that, to maintain its control of a super-majority of seats in the State Duma, its ratings-raising drive has to work – even if it does always have the option of using manifestly authoritarian methods for realising desired election results. A proposal to call early State Duma elections was made during the second reading of Putin’s reform bill, but was quickly withdrawn after Putin spoke out against the idea.

Russia’s complex architecture of “power”

Throughout this transformation, maintaining control of the elite – particularly of the siloviki – is key for Putin. A reshuffling and removal of senior officials in the Procuracy has seen Yury Chaika replaced as general prosecutor by Ivan Krasnov, previously a deputy chair of the Investigative Committee, which is widely seen as a rival structure in Russia’s complex architecture of “power” bodies.

When considered alongside the constitutional changes giving the president broader powers in appointing regional prosecutors, this is textbook “divide and rule”. Power balancing is also on display with the Security Council, as the job description for Dmitry Medvedev’s new role as its deputy chair could provide fertile ground for clashes with the body’s secretary, Nikolai Patrushev.

Pitting rival patronal networks against each other means Putin can keep rivals in check within the broader structure of the “Great Presidency”, while staying firmly in control himself.

The prospect of Putin remaining president is unlikely to be popular. According to data from independent Russian polling agency the Levada Centre, only 27 per cent of Russians want Putin to stay in the post after 2024. This figure could, of course, change in either direction as the prospect becomes more real for Russians. But if Putin’s announcement galvanises mass opposition, the authorities may well use responses to the COVID-19 outbreak to keep protesters at bay – something already on display in Moscow.

What this all means for Russia is that, despite the drama, considerable uncertainty remains following Putin’s announcement. What we can say for certain, however, is that it dashes hopes of serious political change any time soon.




trans

Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles]

Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways.




trans

A nematode sterol C4{alpha}-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity [Research Articles]

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and 7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.­­




trans

Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells [Patient-Oriented and Epidemiological Research]

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder caused by deleterious mutations in the ABCD1 gene. The ABCD1 protein transports very long-chain FAs (VLCFAs) from the cytosol into the peroxisome where the VLCFAs are degraded through β-oxidation. ABCD1 dysfunction leads to VLCFA accumulation in individuals with X-ALD. FAs are activated by esterification to CoA before metabolic utilization. However, the intracellular pools and metabolic profiles of individual acyl-CoA esters have not been fully analyzed. In this study, we profiled the acyl-CoA species in fibroblasts from X-ALD patients and in ABCD1-deficient HeLa cells. We found that hexacosenoyl (26:1)-CoA, but not hexacosanoyl (26:0)-CoA, was the most abundantly concentrated among the VLCFA-CoA species in these cells. We also show that 26:1-CoA is mainly synthesized from oleoyl-CoA, and the metabolic turnover rate of 26:1-CoA was almost identical to that of oleoyl-CoA in both WT and ABCD1-deficient HeLa cells. The findings of our study provide precise quantitative and metabolic information of each acyl-CoA species in living cells. Our results suggest that VLCFA is endogenously synthesized as VLCFA-CoA through a FA elongation pathway and is then efficiently converted to other metabolites, such as phospholipids, in the absence of ABCD1.




trans

Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles]

Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.




trans

SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles]

Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.




trans

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries]




trans

Problem Notes for SAS®9 - 65939: "ERROR: Unable to transcode data to/from UCS-2 encoding" occurs when you run an SQL query using SAS/ACCESS Interface to ODBC on SAS 9.4M5 with UTF-8

When you run an SQL query using SAS/ACCESS Interface to ODBC under the following conditions, you might receive an error: You run SAS 9.4M5 (TS1M5) or SAS 9.4M6 (TS1M6)  i




trans

Problem Notes for SAS®9 - 64285: The SCD Type 2 Loader transformation in SAS Data Integration Studio generates "ERROR 22-322: Syntax error, expecting one of the following:..."

If your business key column is a name literal, like " business key "n, a syntax error occurs when that variable name does not follow standard SAS naming conventions.




trans

Problem Notes for SAS®9 - 65295: The order of columns is not maintained when you select columns for output in the Business Rules transformation

In SAS Data Integration Studio, the columns that you select to include in the target table in a Business Rules transformation appear in the Selected columns area in a random order. Th




trans

Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology]

Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.




trans

Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology]

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.




trans

MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids]

Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.




trans

Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin

Despite considerable progress, development of glucose-responsive insulins (GRI) still largely depends on empirical knowledge and tedious experimentation – especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH), built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space, and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI’s clinical translation by connecting each candidate’s efficacies in rats, mice, and humans. The resultant mapping helps find GRIs which appear promising in rodents but underperform in humans (i.e. false-positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false-negatives). We condense such information onto a translatability grid as a straightforward, visual guide for GRI development.




trans

Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis

Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure.




trans

TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration

Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration.




trans

Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates

Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n=5-8/group) and juvenile offspring (n=8/group). In vivo signaling was evaluated after an insulin bolus just prior to weaning (n=4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and post-weaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action suggesting earlier interventions may be warranted.




trans

Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to {beta}-Cell Failure in Diabetes

In type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes. In this perspective, we discuss posttranscriptional control of gene expression as a critical, but underappreciated, layer of regulation with broad importance during stress responses. Specifically, regulation of mRNA translation occurs pervasively during stress to activate gene expression programs; however, the convenience of RNA sequencing has caused translational regulation to be overlooked compared with transcriptional controls. We highlight the role of RNA binding proteins in shaping selective translational regulation during stress and the mechanisms underlying this level of regulation. A growing body of evidence indicates that RNA binding proteins control an array of processes in β-cells, including the synthesis and secretion of insulin. Therefore, systematic evaluations of translational regulation and the upstream factors shaping this level of regulation are critical areas of investigation to expand our understanding of β-cell failure in type 2 diabetes.




trans

Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices]

Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.




trans

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.