reveal

Striking images reveal depths of Titanic's slow decay

A new expedition finds that a large part of the railing at the ship's front has fallen away.




reveal

Trump Tweets First Video Remarks Since Revealing COVID-19 Diagnosis

President Trump on Friday shared a pre-recorded video message on Twitter saying he is “doing very well” and thanked Americans for their overwhelming support following his early morning announcement of his COVID-19 diagnosis. pic.twitter.com/B4H105KVSs — Donald J. Trump (@realDonaldTrump) October 2, 2020 “I want to thank everybody for the tremendous support,” Trump said in the […]

The post Trump Tweets First Video Remarks Since Revealing COVID-19 Diagnosis appeared first on Hispolitica.




reveal

Fired FEMA Worker Reveals Discrimination Against Trump Supporters Was Even Worse Than First Reported

Just because you’re paranoid, it doesn’t mean you’re wrong. And for any supporters of President-elect Donald Trump who feel that they’ve been unfairly targeted by the government, but were summarily […]

The post Fired FEMA Worker Reveals Discrimination Against Trump Supporters Was Even Worse Than First Reported appeared first on The Western Journal.





reveal

A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching [Bioenergetics]

Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.




reveal

Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography [Enzymology]

The main protease (3CL Mpro) from SARS–CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication. 3CL Mpro possesses an unusual catalytic dyad composed of Cys145 and His41 residues. A critical question in the field has been what the protonation states of the ionizable residues in the substrate-binding active-site cavity are; resolving this point would help understand the catalytic details of the enzyme and inform rational drug development against this pernicious virus. Here, we present the room-temperature neutron structure of 3CL Mpro, which allowed direct determination of hydrogen atom positions and, hence, protonation states in the protease. We observe that the catalytic site natively adopts a zwitterionic reactive form in which Cys145 is in the negatively charged thiolate state and His41 is doubly protonated and positively charged, instead of the neutral unreactive state usually envisaged. The neutron structure also identified the protonation states, and thus electrical charges, of all other amino acid residues and revealed intricate hydrogen-bonding networks in the active-site cavity and at the dimer interface. The fine atomic details present in this structure were made possible by the unique scattering properties of the neutron, which is an ideal probe for locating hydrogen positions and experimentally determining protonation states at near-physiological temperature. Our observations provide critical information for structure-assisted and computational drug design, allowing precise tailoring of inhibitors to the enzyme's electrostatic environment.




reveal

Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics

Alfred C. O. Vertegaal
Dec 1, 2006; 5:2298-2310
Research




reveal

Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation

Boris Macek
Feb 1, 2008; 7:299-307
Research




reveal

Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation

Michal Bassani-Sternberg
Mar 1, 2015; 14:658-673
Research




reveal

Large Scale Screening for Novel Rab Effectors Reveals Unexpected Broad Rab Binding Specificity

Mitsunori Fukuda
Jun 1, 2008; 7:1031-1042
Research




reveal

Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins

Tamar Geiger
Mar 1, 2012; 11:M111.014050-M111.014050
Special Issue: Prospects in Space and Time




reveal

Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules

Yi Zhang
Sep 1, 2005; 4:1240-1250
Research




reveal

A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

Sebastian A. Wagner
Oct 1, 2011; 10:M111.013284-M111.013284
Research




reveal

AUKUS reveals much about the new global strategic context

AUKUS reveals much about the new global strategic context Expert comment NCapeling 17 September 2021

The new AUKUS partnership as well as the furore in Paris surrounding its announcement says a lot about the new geopolitical landscape.

The growing diplomatic drama surrounding the announcement of the new Australia-UK-US (AUKUS) risks concealing rather than highlighting what the deal reveals about profound changes in the global strategic context. Several elements stand out.

First, Australia’s decision to break off the $66 billion contract it signed with France in 2016 to purchase a new fleet of diesel electric submarines underscores the heightened level of concern in Canberra about China’s growing naval capabilities.

Despite all the industrial, legal, and diplomatic disruption, the Australian government has decided only the stealthy nuclear-powered submarines developed by Britain with US support can provide the genuine naval capability it needs long-term.

Next, in helping Australia resolve this conundrum, the British government has revealed the versatility of its new foreign policy. Part of the reason UK prime minister Boris Johnson eschewed the concept of a formal foreign policy and security treaty in the post-Brexit deal with the European Union (EU) was to pursue freely new ventures such as the recent ‘G7-plus’ summit in Cornwall, and enhanced cooperation among the Five Eyes allies. AUKUS reveals that this approach can produce real results.

Europe or the Indo-Pacific

During this week’s Polish-British Belvedere Forum in Warsaw, one of the main Polish concerns was that this ‘tilt’ to the Indo-Pacific could overstretch Britain’s scarce resources when it should be focusing on Europe, where they are most needed.

While the US is stepping up, the UK has shown it is in the mix, leveraging opportunities as they arise

But AUKUS does not over-extend Britain. There is no military commitment involved in the agreement. The UK also remains outside the Quad – made up of the US, India, Japan, and Australia. And the ongoing stately voyage of its new aircraft carrier from the Mediterranean into the South China Sea provides better insight into the substance of the UK’s Indo-Pacific tilt.

Much derided for not carrying enough of its own aircraft – and for depending on US and Dutch escort vessels – the UK has in fact managed to coalesce a flexible group of allies around the Queen Elizabeth while enabling it to fly the British flag in Asian waters and strengthening interoperability with its allies for future joint operations.

Despite the hype, Britain’s main defence investments and deployments remain firmly focused in Europe, as laid out by the recent Integrated Review. And the decision to draft a new NATO Strategic Concept – midwifed by Britain at the 70th anniversary NATO summit hosted in London in December 2019 and confirmed during Joe Biden’s visit to NATO headquarters in June – will give Britain’s role in European security a new purpose and focus in the coming years.

Alone on the strategic landscape

For France, of course, the cancellation of its submarine deal is a painful humiliation, and a severe blow to thousands of workers in its hi-tech defence industry. It also comes at a sensitive moment politically, with Emmanuel Macron keen to demonstrate his international standing ahead of the 2022 presidential election. Instead, France now looks rather lonely on the strategic landscape alongside the more homogeneous and collectively powerful AUKUS trio.

AUKUS does not over-extend Britain. There is no military commitment involved in the agreement

But, rather than take the high road, a furious French reaction has compared Biden to Donald Trump and argued that this defence industrial failure for France should drive an acceleration towards European – for which, read EU – strategic autonomy.

This implies France sees European strategic autonomy as protecting and extending its own sovereign power and industrial interests rather than as a process for EU members to achieve more together in security and foreign policy than they can alone – thereby undermining rather than enhancing its case.

The gap between European strategic rhetoric and practical action was further highlighted by the AUKUS partnership being announced the evening before the EU launched its own Indo-Pacific strategy, and on the same day as China refused to allow a German frigate its first planned port visit to Shanghai.

America is still back

There is still a long way to go before the new submarine deal becomes reality. Australia needs to extricate itself from the French deal, decide how to secure the highly enriched uranium to power its new nuclear submarines, decide with the US and UK the division of labour and technology transfer of production, and assuage the International Atomic Energy Agency’s concerns about the precedent this deal sets. The fruits of this dramatic announcement will, therefore, be a long time in coming.

But, however the details play out, 15 September 2021 was a consequential day. The AUKUS announcement showed that China’s growing hard power is now eliciting a genuinely tough and structural political-military reaction.

Across the Atlantic, it also allowed President Biden – flanked ‘virtually’ by the British and Australian prime ministers – to send the global message that America is indeed back, just three weeks after the ignominious retreat from Afghanistan and chaotic exit from Kabul. And it offered him the opportunity to remind the world that the Indo-Pacific is where the US will be putting its main effort in the future.

For many in China, AUKUS now confirms their belief that the US and its principal allies are determined to contain China’s rise in its own ‘backyard’, where it believes it has the right to flex its muscles. For others, it will confirm Xi Jinping has overreached and China is now paying the price of his more assertive strategy. Either way, the Chinese are on notice that the ambivalent nature of the Obama pivot to Asia has given way to a more determined pivot under Biden.

While the US is stepping up, the UK has shown it is in the mix, leveraging opportunities as they arise. For example, the goodwill the UK has generated in Tokyo with this new partnership with Australia could help its case as it pursues membership of the Transpacific Partnership trade area in 2022.

The EU looks like a bystander in comparison and ill-equipped for the geopolitical competition inherent in this new strategic context. It is essential, therefore, once the dust has settled from these fraught few days, that the US and UK reach out to find ways to involve France and its EU partners in a meaningful, shared transatlantic approach to the Indo-Pacific.




reveal

Lipidomics reveals a remarkable diversity of lipids in human plasma

Oswald Quehenberger
Nov 1, 2010; 51:3299-3305
Research Articles




reveal

FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V [Enzymology]

Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre– and post–power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.




reveal

China reveals reusable cargo shuttle design for Tiangong space station (video)




reveal

Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions [Signal Transduction]

Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell–mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell–mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1–triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1–targeting therapeutic approaches.




reveal

Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response [Glycobiology and Extracellular Matrices]

Clostridium difficile is an anaerobic and spore-forming bacterium responsible for 15–25% of postantibiotic diarrhea and 95% of pseudomembranous colitis. Peptidoglycan is a crucial element of the bacterial cell wall that is exposed to the host, making it an important target for the innate immune system. The C. difficile peptidoglycan is largely N-deacetylated on its glucosamine (93% of muropeptides) through the activity of enzymes known as N-deacetylases, and this N-deacetylation modulates host–pathogen interactions, such as resistance to the bacteriolytic activity of lysozyme, virulence, and host innate immune responses. C. difficile genome analysis showed that 12 genes potentially encode N-deacetylases; however, which of these N-deacetylases are involved in peptidoglycan N-deacetylation remains unknown. Here, we report the enzymes responsible for peptidoglycan N-deacetylation and their respective regulation. Through peptidoglycan analysis of several mutants, we found that the N-deacetylases PdaV and PgdA act in synergy. Together they are responsible for the high level of peptidoglycan N-deacetylation in C. difficile and the consequent resistance to lysozyme. We also characterized a third enzyme, PgdB, as a glucosamine N-deacetylase. However, its impact on N-deacetylation and lysozyme resistance is limited, and its physiological role remains to be dissected. Finally, given the influence of peptidoglycan N-deacetylation on host defense against pathogens, we investigated the virulence and colonization ability of the mutants. Unlike what has been shown in other pathogenic bacteria, a lack of N-deacetylation in C. difficile is not linked to a decrease in virulence.




reveal

Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging [Protein Structure and Folding]

Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.




reveal

A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis [Protein Structure and Folding]

Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)–linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.




reveal

Snapshots during the catalytic cycle of a histidine acid phytase reveal an induced-fit structural mechanism [Protein Structure and Folding]

Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.




reveal

Hydrogen/deuterium exchange memory NMR reveals structural epitopes involved in IgE cross-reactivity of allergenic lipid transfer proteins [Protein Structure and Folding]

Identification of antibody-binding epitopes is crucial to understand immunological mechanisms. It is of particular interest for allergenic proteins with high cross-reactivity as observed in the lipid transfer protein (LTP) syndrome, which is characterized by severe allergic reactions. Art v 3, a pollen LTP from mugwort, is frequently involved in this cross-reactivity, but no antibody-binding epitopes have been determined so far. To reveal human IgE-binding regions of Art v 3, we produced three murine high-affinity mAbs, which showed 70–90% coverage of the allergenic epitopes from mugwort pollen–allergic patients. As reliable methods to determine structural epitopes with tightly interacting intact antibodies under native conditions are lacking, we developed a straightforward NMR approach termed hydrogen/deuterium exchange memory (HDXMEM). It relies on the slow exchange between the invisible antigen-mAb complex and the free 15N-labeled antigen whose 1H-15N correlations are detected. Due to a memory effect, changes of NH protection during antibody binding are measured. Differences in H/D exchange rates and analyses of mAb reactivity to homologous LTPs revealed three structural epitopes: two partially cross-reactive regions around α-helices 2 and 4 as well as a novel Art v 3–specific epitope at the C terminus. Protein variants with exchanged epitope residues confirmed the antibody-binding sites and revealed strongly reduced IgE reactivity. Using the novel HDXMEM for NMR epitope mapping allowed identification of the first structural epitopes of an allergenic pollen LTP. This knowledge enables improved cross-reactivity prediction for patients suffering from LTP allergy and facilitates design of therapeutics.




reveal

Determinants of replication protein A subunit interactions revealed using a phosphomimetic peptide [Molecular Biophysics]

Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection.




reveal

MMP activation-associated aminopeptidase N reveals a bivalent 14-3-3 binding motif [Protein Structure and Folding]

Aminopeptidase N (APN, CD13) is a transmembrane ectopeptidase involved in many crucial cellular functions. Besides its role as a peptidase, APN also mediates signal transduction and is involved in the activation of matrix metalloproteinases (MMPs). MMPs function in tissue remodeling within the extracellular space and are therefore involved in many human diseases, such as fibrosis, rheumatoid arthritis, tumor angiogenesis, and metastasis, as well as viral infections. However, the exact mechanism that leads to APN-driven MMP activation is unclear. It was previously shown that extracellular 14-3-3 adapter proteins bind to APN and thereby induce the transcription of MMPs. As a first step, we sought to identify potential 14-3-3–binding sites in the APN sequence. We constructed a set of phosphorylated peptides derived from APN to probe for interactions. We identified and characterized a canonical 14-3-3–binding site (site 1) within the flexible, structurally unresolved N-terminal APN region using direct binding fluorescence polarization assays and thermodynamic analysis. In addition, we identified a secondary, noncanonical binding site (site 2), which enhances the binding affinity in combination with site 1 by many orders of magnitude. Finally, we solved crystal structures of 14-3-3σ bound to mono- and bis-phosphorylated APN-derived peptides, which revealed atomic details of the binding mode of mono- and bivalent 14-3-3 interactions. Therefore, our findings shed some light on the first steps of APN-mediated MMP activation and open the field for further investigation of this important signaling pathway.




reveal

A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications [Neurobiology]

Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.




reveal

Global lysine acetylation and 2-hydroxyisobutyrylation reveal the metabolism conversion mechanism in Giardia lamblia

Wenhe Zhu
Dec 29, 2020; 0:RA120.002353v1-mcp.RA120.002353
Research




reveal

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




reveal

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke

Alba Simats
Dec 1, 2020; 19:1921-1935
Research




reveal

Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation

Litong Nie
Dec 1, 2020; 19:2015-2029
Research




reveal

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection

Julia Knöckel
Dec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432
Research




reveal

In depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1

Nadine Prust
Dec 17, 2020; 0:RA120.002232v1-mcp.RA120.002232
Research




reveal

Proteome analysis reveals a significant host-specific response in Rhizobium leguminosarum bv viciae endosymbiotic cells

David Durán
Nov 19, 2020; 0:RA120.002276v1-mcp.RA120.002276
Research




reveal

Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production

Mingkun Yang
Nov 24, 2020; 0:RA120.002144v1-mcp.RA120.002144
Research




reveal

Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease

Qin Zhang
Nov 17, 2020; 0:RA120.002325v1-mcp.RA120.002325
Research




reveal

Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis

Leandro Xavier Neves
Nov 11, 2020; 0:RA120.002227v1-mcp.RA120.002227
Research




reveal

HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region [Molecular Bases of Disease]

The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.




reveal

A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics]

The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.




reveal

Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells [Research]

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.




reveal

Multiomics Reveals Ectopic ATP Synthase Blockade Induces Cancer Cell Death via a lncRNA-mediated Phospho-signaling Network [Research]

The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.




reveal

Serum Protein Profiling Reveals a Landscape of Inflammation and Immune Signaling in Early-stage COVID-19 Infection [Report]

Coronavirus disease 2019 (COVID-19) is a highly contagious infection and threating the human lives in the world. The elevation of cytokines in blood is crucial to induce cytokine storm and immunosuppression in the transition of severity in COVID-19 patients. However, the comprehensive changes of serum proteins in COVID-19 patients throughout the SARS-CoV-2 infection is unknown. In this work, we developed a high-density antibody microarray and performed an in-depth proteomics analysis of serum samples collected from early COVID-19 (n = 15) and influenza (n = 13) patients. We identified a large set of differentially expressed proteins (n = 132) that participate in a landscape of inflammation and immune signaling related to the SARS-CoV-2 infection. Furthermore, the significant correlations of neutrophil and lymphocyte with the CCL2 and CXCL10 mediated cytokine signaling pathways was identified. These information are valuable for the understanding of COVID-19 pathogenesis, identification of biomarkers and development of the optimal anti-inflammation therapy.




reveal

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research]

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.




reveal

Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation [Research]

Specific E3 ligases target tumor suppressors for degradation. Inhibition of such E3 ligases may be an important approach to cancer treatment. RNF146 is a RING domain and PARylation-dependent E3 ligase that functions as an activator of the β-catenin/Wnt and YAP/Hippo pathways by targeting the degradation of several tumor suppressors. Tankyrases 1 and 2 (TNKS1/2) are the only known poly-ADP-ribosyltransferases that require RNF146 to degrade their substrates. However, systematic identification of RNF146 substrates have not yet been performed. To uncover substrates of RNF146 that are targeted for degradation, we generated RNF146 knockout cells and TNKS1/2-double knockout cells and performed proteome profiling with label-free quantification as well as transcriptome analysis. We identified 160 potential substrates of RNF146, which included many known substrates of RNF146 and TNKS1/2 and 122 potential TNKS-independent substrates of RNF146. In addition, we validated OTU domain-containing protein 5 and Protein mono-ADP-ribosyltransferase PARP10 as TNKS1/2-independent substrates of RNF146 and SARDH as a novel substrate of TNKS1/2 and RNF146. Our study is the first proteome-wide analysis of potential RNF146 substrates. Together, these findings not only demonstrate that proteome profiling can be a useful general approach for the systemic identification of substrates of E3 ligases but also reveal new substrates of RNF146, which provides a resource for further functional studies.




reveal

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke [Research]

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.




reveal

Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis [13. Other]

Colorectal cancer (CRC) arises as the consequence of progressive changes from normal epithelial cells through polyp to tumor, and thus is an useful model for studying metabolic shift. In the present study, we studied the metabolomic profiles using high analyte specific gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) to attain a systems-level view of the shift in metabolism in cells progressing along the path to CRC. Colonic tissues including tumor, polyps and adjacent matched normal mucosa from 26 patients with sporadic CRC from freshly isolated resections were used for this study. The metabolic profiles were obtained using GC/MS and LC/MS/MS. Our data suggest there was a distinct profile change of a wide range of metabolites from mucosa to tumor tissues. Various amino acids and lipids in the polyps and tumors were elevated, suggesting higher energy needs for increased cellular proliferation. In contrast, significant depletion of glucose and inositol in polyps revealed that glycolysis may be critical in early tumorigenesis. In addition, the accumulation of hypoxanthine and xanthine, and the decrease of uric acid concentration, suggest that the purine biosynthesis pathway could have been substituted by the salvage pathway in CRC. Further, there was a step-wise reduction of deoxycholic acid concentration from mucosa to tumors. It appears that to gain a growth advantage, cancer cells may adopt alternate metabolic pathways in tumorigenesis and this flexibility allows them to adapt and thrive in harsh environment.




reveal

Systematic Proteome and Lysine Succinylome Analysis Reveals the Enhanced Cell Migration by Hyposuccinylation in Esophageal Squamous Cell Cancer [Research]

Esophageal squamous cell cancer (ESCC) is an aggressive malignancy with poor therapeutic outcomes. However, the alterations in proteins and post-translational modifications (PTMs) leading to the pathogenesis of ESCC remains unclear. Here, we provide the comprehensive characterization of the proteome, phosphorylome, lysine acetylome and succinylome for ESCC and matched control cells using quantitative proteomic approach. We identify abnormal protein and post-translational modification (PTM) pathways, including significantly downregulated lysine succinylation sites in cancer cells. Focusing on hyposuccinylation, we reveal that this altered PTM was enriched on enzymes of metabolic pathways inextricably linked with cancer metabolism. Importantly, ESCC malignant behaviors such as cell migration are inhibited once the level of succinylation was restored in vitro or in vivo. This effect was further verified by mutations to disrupt succinylation sites in candidate proteins. Meanwhile, we found that succinylation has a negative regulatory effect on histone methylation to promote cancer migration. Finally, hyposuccinylation is confirmed in primary ESCC specimens. Our findings together demonstrate that lysine succinylation may alter ESCC metabolism and migration, providing new insights into the functional significance of PTM in cancer biology.




reveal

Transcriptome and secretome analysis of intra-mammalian life-stages of the emerging helminth pathogen, Calicophoron daubneyi reveals adaptation to a unique host environment. [Research]

Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock which has seen a rapid rise in prevalence throughout Western Europe in recent years. Following ingestion of metacercariae (parasite cysts) by the mammalian host, newly-excysted juveniles (NEJs) emerge and invade the duodenal submucosa which causes significant pathology in heavy infections. The immature larvae then migrate upwards, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients and to avoid the host immune response. Here, transcriptome analysis of four intra-mammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic disease respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that whilst a family of cathepsins B with varying S2 sub-site residues (indicating distinct substrate specificities) are differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is up-regulated in adult worms, although they are underrepresented in the secretome. The most abundant proteins in adult fluke secretions were helminth defence molecules (HDMs) that likely establish an immune environment permissive to fluke survival and/or neutralise pathogen-associated molecular patterns (PAMPs) such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognise antigens from other helminths commonly found as co-infections with rumen fluke.




reveal

Thermal proteome profiling in zebrafish reveals effects of napabucasin on retinoic acid metabolism [Research]

Thermal proteome profiling (TPP) allows for the unbiased detection of drug – target protein engagements in vivo. Traditionally, one cell type is used for TPP studies, with the risk of missing important differentially expressed target proteins. The use of whole organisms would circumvent this problem. Zebrafish embryos are amenable to such an approach. Here, we used TPP on whole zebrafish embryo lysate to identify protein targets of napabucasin, a compound that may affect Signal transducer and activator of transcription 3 (Stat3) signaling through an ill-understood mechanism. In zebrafish embryos, napabucasin induced developmental defects consistent with inhibition of Stat3 signaling. TPP profiling showed no distinct shift in Stat3 upon napabucasin treatment, but effects were detected on the oxidoreductase, Pora, which might explain effects on Stat3 signaling. Interestingly, thermal stability of several aldehyde dehydrogenases (Aldhs) was affected. Moreover, napabucasin activated ALDH enzymatic activity in vitro. Aldhs have crucial roles in retinoic acid metabolism and functionally we validated napabucasin-mediated activation of the retinoic acid pathway in zebrafish in vivo. We conclude that TPP profiling in whole zebrafish embryo lysate is feasible and facilitates direct correlation of in vivo effects of small molecule drugs with their protein targets.




reveal

Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis [Research]

Protease activity has been associated with pathological processes that can lead to cancer development and progression. However, understanding the pathological unbalance in proteolysis is challenging since changes can occur simultaneously at protease, their inhibitor and substrate levels. Here, we present a pipeline that combines peptidomics, proteomics and peptidase predictions for studying proteolytic events in the saliva of seventy-nine patients and their association with oral squamous cell carcinoma (OSCC) prognosis. Our findings revealed differences in the saliva peptidome of patients with (pN+) or without (pN0) lymph node metastasis and delivered a panel of ten endogenous peptides correlated with poor prognostic factors plus five molecules able to classify pN0 and pN+ patients (ROC-AUC>0.85). In addition, endo- and exopeptidases putatively implicated in the processing of differential peptides were investigated using cancer tissue gene expression data from publicly repositories reinforcing their association with poorer survival rates and prognosis in oral cancer. The dynamics of the OSCC-related proteolysis was further explored via the proteomic profiling of saliva. This revealed that peptidase/endopeptidase inhibitors exhibited reduced levels in the saliva of pN+ patients, as confirmed by SRM-MS, whilst minor changes were detected in the level of saliva proteases. Taken together, our results indicated that proteolytic activity is accentuated in the saliva of OSCC patients with lymph node metastasis and, at least in part, this is modulated by reduced levels of salivary peptidase inhibitors. Therefore, this integrated pipeline provided better comprehension and discovery of molecular features with implications in the oral cancer metastasis prognosis.




reveal

Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease [Research]

Hirschsprung disease (HSCR) is a heterogeneous group of neurocristopathy characterized by the absence of the enteric ganglia along a variable length of the intestine. Genetic defects play a major role in the pathogenesis of HSCR while family studies of pathogenic variants in all the known genes (loci) only demonstrate incomplete penetrance and variable expressivity for unknown reasons. Here, we applied large-scale, quantitative proteomics of human colon tissues from 21 patients using iTRAQ method followed by bioinformatics analysis. Selected findings were confirmed by parallel reaction monitoring (PRM) verification. At last the interesting differentially expressed proteins were confirmed by western blot. A total of 5341 proteins in human colon tissues were identified. Among them, 664 proteins with >1.2-fold difference were identified in 6 groups: groups A1 and A2 pooled protein from the ganglionic and aganglionic colon of male, long-segment HSCR patients (L-HSCR, n=7); groups B1 and B2 pooled protein from the ganglionic and aganglionic colon of male, short-segment HSCR patients (S-HSCR, n=7); and groups C1 and C2 pooled protein from the ganglionic and aganglionic colon of female, S-HSCR patients (n=7). Based on these analyses, 49 proteins from 5 pathways were selected for PRM verification, including ribosome, endocytosis, spliceosome, oxidative phosphorylation and cell adhesion. The downregulation of three neuron projection development genes ARF4, KIF5B and RAB8A in the aganglionic part of the colon were verified in 15 paired colon samples using WB. The findings of this study will shed new light on the pathogenesis of HSCR and facilitate the development of therapeutic targets.