nc

Comparison between 18F-FDG-PET- and CT-based criteria in non-small cell lung cancer (NSCLC) patients treated with Nivolumab

Due to their peculiar mechanism of action, the evaluation of radiological response to immune checkpoint inhibitors (ICI) presents many challenges in solid tumors. We aimed to compare the evaluation of first response to Nivolumab by means of CT-based criteria with respect to fluorodeoxyglucose positron emission tomography (FDG-PET) response criteria in non-small-cell lung cancer (NSCLC) patients. Methods: 72 patients with advanced NSCLC were recruited in a mono-institutional ancillary trial within the expanded access program (EAP; NCT02475382) for Nivolumab. Patients underwent CT scan and FDG-PET at baseline and after 4 cycles (first evaluation). In case of progressive disease (PD), an additional evaluation was performed after two further cycles in order to confirm progression. We evaluated the response to treatment with CT scan by means of response evaluation criteria in solid tumors (RECIST) 1.1 and Immuno-related Response Criteria (IrRC) and with FDG-PET by means of PERCIST and immunotherapy-modified-PERCIST (imPERCIST) criteria. The concordance between CT- and PET-based criteria and the capability of each method to predict overall survival (OS) were evaluated. Results: 48/72 patients were evaluable for first response assessment with both PET- and CT-based criteria. We observed low concordance between CT- and PET-based criteria (Kappa value of 0.346 and 0.355 and Kappa value of 0.128 and 0.198 between PERCIST and imPERCIST versus RECIST and irRC respectively). Looking at OS, IrRC were more reliable to distinguish responders from non-responders. However thanks to the prognostic value of partial metabolic response assessed by both PERCIST and Immuno-PERCIST, PET-based response maintained prognostic significant in patients classified as progressive disease on the basis of irRC. Conclusion: Even though the present study did not support the routine use of FDG-PET in the general population of NSCLC patients treated with ICI, it suggests the added prognostic value of the metabolic response assessment, potentially improving the therapeutic decision-making.




nc

Label-free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-guided Surgery by Photoacoustic Imaging

Objectives: The detection of cancer micrometastasis for early diagnosis and treatment poses a great challenge for conventional imaging techniques. The aim of study is to evaluate the performance of photoacoustic imaging (PAI) in detecting hepatic micrometastases from melanoma in a very early stage and perform tumor resection by intraoperative photoacoustic image-guidance. Methods: In vivo studies were performed by following protocols approved by the Ethical Committee for Animal Research at Xiamen University. First, a B16 melanoma hepatic metastasis mouse model (n = 10) was established to study the development of micrometastases in vivo. Next, the hepatic metastasis mice models were imaged by scalable PAI instrument, ultrasound, 9.4 T high-resolution magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT), and bioluminescence imaging. Photoacoustic images acquired with optical wavelengths spanning from 680 to 850 nm were spectrally unmixed by using a linear least-squares method to differentiate various components. Differences in the signal-to-background ratios among different modalities were determined with the two-tailed paired t test. The diagnosis results were assessed with histologic examinations. Excised liver samples from patients diagnosed with hepatic cancer were also examined to identify tumor boundary. In vivo metastatic melanoma removal in surgery was precisely guided by the portable PAI system. Results: PAI achieved as small as ~400 µm hepatic melanoma detection at a depth up to 7 mm in vivo, which could early detect small melanoma compared with ultrasound and MRI in mouse models. The signal ratio of tumor-to-liver acquired with PAI in micrometastases at 8 days (4.2 ± 0.2, n = 6) and 14 days (9.2 ± 0.4, n = 5) were significantly higher than those obtained with PET/CT (1.8 ± 0.1, n = 5 and 4.5 ± 0.2, n = 5, P <0.001 for both). Functional PAI provided dynamic oxygen saturation changes during tumor growth. The limit of detection was measured to be approximately 219 cells per microliter in vitro. We successfully performed intraoperative photoacoustic image-guided surgery in vivo using the rapid portable PAI system. Conclusion: Our findings offer a rapid and effective tool to noninvasively detect micrometastases and guide intraoperative resection as a complementary clinical imaging application.




nc

Mapping prostate cancer lesions pre/post unsuccessful salvage lymph node dissection using repeat PSMA-PET

Introduction: The aim of this study was to analyze patterns of persistent versus recurrent or new PET lesions in a selected patient cohort with PSA persistence following salvage lymph node dissection (SLND) and pre/post procedure prostate-specific membrane antigen ligand positron emission tomography (PSMA-PET). Material and Methods: 16 patients were included in this multicenter study. Inclusion criteria were: a) PSMA-PET performed for biochemical recurrence before SLND (pre-SLND PET) and b) repeat PSMA-PET performed for persistently elevated PSA level (≥0.1 ng/mL) ≥6 weeks after SLND (post-SLND PET). Image analysis was performed by three independent nuclear medicine physicians applying the molecular imaging TNM system PROMISE. Lesions were confirmed by histopathology, presence on correlative CT/MRI/bone scan or PSA response after focal therapy. Results: post-SLND PET identified PCa-lesions in 88% (14/16) of patients with PSA persistence after SLND. Median PSA was 1.2 ng/mL (IQR, 0.6-2.8 ng/mL). Disease was confined to the pelvis in 56% of patients (9/16) and most of these men had common iliac (6/16, 38%) and internal iliac lymph node metastases (6/16, 38%). Extrapelvic disease was detected in 31% of patients (5/16). In pre- and post-SLND PET comparison, 10/16 had at least one lesion already detected at baseline (63% PET persistence); 4/16 had new lesions only (25% PET recurrence); 2 had no disease on post-SLND PET. All validated regions (11 regions in 9 patients) were true positive. 9/14 (64%) patients underwent repeat local therapies after SLND (7/14 radiotherapy, 2/14 surgery). Conclusion: SLND of pelvic nodal metastases was often not complete according to PSMA-PET. About two thirds of patients had PET positive nodal disease after SLND already seen on pre-SLND PSMA-PET. Notably, about one quarter of patients had new lesions, not detected by pre-surgical PSMA-PET.




nc

Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients

Background: Targeting cancer-associated fibroblasts (CAFs) has become an attractive goal for diagnostic imaging and therapy as they can constitute as much as 90% of tumor mass. The serine protease fibroblast activation protein (FAP) is overexpressed selectively in CAFs, drawing interest in FAP as a stromal target. The quinoline-based FAP-inhibitor PET tracer, 68Ga-FAPI-04, has been previously shown to yield high tumor-to-background ratios (TBR) in patients with various cancers. Recent developments towards an improved compound for therapeutic application have identified FAPI-46 as a promising agent due to a longer tumor retention time in comparison with FAPI-04. Here we present a PET biodistribution and radiation dosimetry study of 68Ga-FAPI-46 in cancer patients. Methods: Six patients with different cancers underwent serial 68Ga-FAPI-46 PET/CT scans at three time points following radiotracer injection: 10 minutes, 1 hour, and 3 hours. The source organs consisted of the kidneys, bladder, liver, heart, spleen, bone marrow, uterus, and body remainder. OLINDA/EXM v.1.1 software was used to fit and integrate the kinetic organ activity data to yield total body and organ time-integrated activity coefficients/residence times and finally organ absorbed doses. Standardized uptake values (SUV) and TBR were generated from the contoured tumor and source organ volumes. Spherical volumes in muscle and blood pool were also obtained for TBR (Tumor SUVmax / Organ SUVmean). Results: At all timepoints, the highest organ SUVmax was observed in the liver. Tumor and organ mean SUVs decreased whereas TBRs in all organs but the uterus increased with time. The highest TBRs at 3 hours were observed with the bone marrow (31.1), muscle (22.8), heart (19.1), and spleen (19.0). Organs with the highest effective doses were the bladder wall (2.41E-03 mSv/MBq), followed by ovaries (1.15E-03 mSv/MBq) and red marrow (8.49E-04mSv/MBq). The average effective total body dose was 7.80E-03 mSv/MBq. Thus for administration of 200 MBq 68Ga-FAPI-46 the effective total body dose is 1.56 mSv ± 0.26 mSv, in addition to approximately 3.7 mSv from one low-dose CT scan done for attenuation correction. Conclusion: 68Ga-FAPI-46 PET/CT has a favorable dosimetry profile with an estimated whole body dose of 5.3 mSv for an administration of 200 MBq (5.4 mCi) of 68Ga-FAPI-46 (1.56± 0.26 mSv from the PET tracer and 3.7 mSv from one low-dose CT scan). The biodistribution study showed high TBRs increasing over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications.




nc

11C-choline PET/CT in recurrent prostate cancer: retrospective analysis in a large US patient series

Purpose: To evaluate 11C-choline PET/CT detection performance for biochemically recurrent prostate cancer (PCa) in a large non-European cohort in the context of emerging evidence for PSMA PET in this setting, and to map patterns of PCa recurrence. Methods: We retrospectively analyzed 11C-choline PET/CT scans from 287 patients who were enrolled onto an imaging protocol based on rising prostate-specific antigen (PSA) levels (mean:3.43 ng/mL, median:0.94 ng/mL, range:0.15–89.91) and suspected recurrent PCa. A total of 187 patients had undergone primary radical prostatectomy (RP; 79/187 had secondary radiotherapy), 30 had undergone primary radiotherapy (RT), and 70 had persistent PSA elevation after receiving initial treatment (69 post-RP, 1 post-RT). The level of suspicion for recurrence on 11C-choline PET/CT was scored (0:negative, 1:equivocal, 2:positive) by two readers. The correlation between 11C-choline PET/CT positivity and initial treatment, Gleason score, NCCN stage, PSA level, PSA doubling time, PSA velocity, and time between initial treatment and PET imaging was evaluated. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria were used to map 11C-choline recurrence patterns. Results: Considering scores 1 and 2 as positives, consensus between the two readers deemed 66% of the 11C-choline PET/CT scans as positive. When sorted by PSA level, 45% of patients with PSA<0.5 ng/mL, 56% of patients with PSA 0.5–0.99 ng/mL, 70% of patients with PSA 1.0–1.99 ng/mL, and 90% of patients with PSA ≥2.0 ng/mL scored either 1 or 2 on 11C-choline PET/CT scans. When considering scores of 2 only, 11C-choline PET/CT positivity was 54% (28%, 46%, 62%, and 81%, respectively, for patients with PSA <0.5 ng/mL, 0.5–0.99 ng/mL, 1.0–1.99 ng/mL, and ≥2.0 ng/mL). In multivariate analysis, only the PSA level was significantly associated with scan positivity. Pattern analysis showed that pelvic lymph nodes were the most common site of recurrence, and 28% of patients had 11C-choline-positive suspected recurrences outside the initial treatment field. Conclusion: 11C-choline PET/CT can detect PCa recurrence even among patients with low PSA levels when interpretation accounts for the clinical context, providing a certain pre-test probability. Until PSMA agents are fully approved for PCa, choline PET/CT may provide clinical utility.




nc

Quantitative 3D assessment of 68Ga-DOTATOC PET/MRI with diffusion-weighted imaging to assess imaging markers for gastroendopancreatic neuroendocrine tumors: Preliminary results

68Ga-DOTATOC-PET/MRI (68Gallium-DOTATOC-positron emission tomography/magnetic resonance imaging) combines the advantages of PET in the acquisition of metabolic-functional information with the high soft tissue contrast of MRI. Standardized uptake values (SUV) in tumors were suggested as a measure of somatostatin receptor expression. A challenge with receptor ligands is, that the distribution volume is confined to tissues with tracer-uptake, potentially limiting SUV quantification. In this study, different functional, three-dimensional (3D) SUV, apparent diffusion coefficient (ADC) parameters and arterial tumor enhancement were tested for the characterization of gastroendopancreatic neuroendocrine tumors (GEP-NET). Methods: For this single-center, cross-sectional study, 22 patients with 24 histologically confirmed GEP-NET lesions (15 men/7 women; median, 61 years, range, 43-81 years), who received hybrid 68Ga-DOTA-PET/MRI examinations at 3T between January 2017 and July 2019 met eligibility criteria. SUVs, tumor-to-background ratios (TBR), the total functional tumor volume (TFTV), ADCmean and ADCmin were measured based on volumes of interest (VOI) and examined with receiver operating characteristic analysis to determine cut-off values for differentiation between low and intermediate grade GEP-NET. Spearman’s rank correlation coefficients were used to assess correlations between functional imaging parameters. Results: The ratio of PET-derived SUVmean and diffusion-weighted imaging (DWI)-derived ADCmin was introduced as a combined variable to predict tumor grade, outperforming single predictors. Based on a threshold ratio of 0.03 to be exceeded, tumors could be classified as grade 2 with a sensitivity of 86% and specificity of 100%. SUV and functional ADC values as well as arterial contrast enhancement parameters showed non-significant and mostly negligible correlations. Conclusion: As receptor density and tumor cellularity appear to be independent, potentially complementary phenomena, the combined PET/MRI ratio SUVmean/ADCmin may be used as a novel biomarker, allowing to differentiate between grade 1 and 2 GEP-NET.




nc

Early Detection in a Mouse Model of Pancreatic Cancer by Imaging DNA Damage Response Signalling

Rationale: Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualisation of high-grade pancreatic intraepithelial neoplasias (PanIN-3), generally regarded as the non-invasive precursors of PDAC. The DNA damage response is known to be hyper-activated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent, 111In-anti-H2AX-TAT, allows visualisation of the DNA damage repair marker H2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC mice (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) were imaged with 18F-FDG and 111In-anti-H2AX-TAT. PanIN/PDAC presence visualised by histology was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-H2AX-TAT was evaluated. Results: In KPC mouse pancreata, H2AX expression was increased in high-grade PanINs, but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-H2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas was positively correlated with the age of KPC mice, which was correlated with the number of high-grade PanINs. 111In-anti-H2AX-TAT localises preferentially in high-grade PanIN lesions, but not in established PDAC. Younger, non-tumour-bearing KPC mice that show uptake of 111In-anti-H2AX-TAT in the pancreas survive significantly shorter than mice with physiological 111In-anti-H2AX-TAT uptake. Conclusion: 111In-anti-H2AX-TAT imaging allows non-invasive detection of DNA damage repair signalling upregulation in pre-invasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer.




nc

Head to head prospective comparison of quantitative lung scintigraphy and segment counting in predicting pulmonary function of lung cancer patients undergoing video-assisted thoracoscopic lobectomy

Prediction of post-operative pulmonary function in lung cancer patients before tumor resection is essential for patient selection for surgery and is conventionally done with a non-imaging segment counting method (SC) or a two-dimensional planar lung perfusion scintigraphy (PS). The purpose of this study was to compare quantitative analysis of PS to single photon emission computed tomography/computed tomography (SPECT/CT) and to estimate the accuracy of SC, PS and SPECT/CT in predicting post-operative pulmonary function in patients undergoing lobectomy. Methods: Seventy-five non-small cell lung cancer (NSCLC) patients planned for lobectomy were prospectively enrolled (68% males, average age 68.1±8 years ). All patients completed pre-operative forced expiratory volume capacity (FEV1), diffusing capacity of the lung for carbon monoxide (DLCO), Tc99m-MAA lung perfusion scintigraphy with PS and SPECT/CT quantification. A subgroup of 60 patients underwent video-assisted thoracoscopic (VATS) lobectomy and measurement of post-operative FEV1 and DLCO. Relative uptake of the lung lobes estimated by PS and SPECT/CT were compared. Predicted post-operative FEV1 and DLCO were derived from SC, PS and SPECT/CT. Prediction results were compared between the different methods and the true post-operative measurements in patients who underwent lobectomy. Results: Relative uptake measurements differed significantly between PS and SPECT/CT in right lung lobes, with a mean difference of -8.2±3.8, 18.0±5.0 and -11.5±6.1 for right upper, middle and lower lobes respectively (p<0.001). The differences between the methods in the left lung lobes were minor with a mean difference of -0.4±4.4 (p>0.05) and -2.0±4.0 (p<0.001) for left upper and lower lobes respectively. No significant difference and strong correlation (R=0.6-0.76, p<0.001) were found between predicted post-operative lung function values according to SC, PS, SPECT/CT and the actual post-operative FEV1 and DLCO. Conclusion: Although lobar quantification parameters differed significantly between PS and SPECT/CT, no significant differences were found between the predicted post-operative lung function results derived from these methods and the actual post-operative results. The additional time and effort of SPECT/CT quantification may not have an added value in patient selection for surgery. SPECT/CT may be advantageous in patients planned for right lobectomies but further research is warranted.




nc

177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer

Triple negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer leading to the worst prognosis. Because current therapeutic approaches lack efficacy, there is a clinically unmet need for effective treatment alternatives. Herein, we demonstrate a promising strategy utilizing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 177Lu for targeted radionuclide therapy (TRT) of TNBC. In two murine syngeneic models of TNBC, we confirmed excellent tumor targeting and rapid normal tissue clearance of the PET imaging analog 86Y-NM600. Based on longitudinal PET/CT data acquired with 86Y-NM600, we estimated the dosimetry of therapeutic 177Lu-NM600, which showed larger absorbed doses in the tumor compared to normal tissues. Administration of 177Lu-NM600 resulted in significant tumor growth inhibition and prolonged overall survival in mice bearing syngeneic 4T07 and 4T1 tumors. Complete response was attained in 60% of 4T07 bearing mice, but animals carrying aggressive 4T1 tumor grafts succumbed to metastatic progression. The injected activities used for treatment (9.25 and 18.5 MBq) were well tolerated, and only mild transient cytopenia was noted. Overall, our results suggest that 177Lu-NM600 TRT has potential for treatment of TNBC and merits further exploration in a clinical setting.




nc

Hyper-progressive Disease in Patients With Non-Small Cell Lung Cancer Treated With Checkpoint Inhibitors: The Role of 18F-FDG PET/CT

Introduction: A new pattern of response, so-called hyper-progressive disease (HPD), is emerging during treatment with immune checkpoint inhibitors (ICI). Our aim was to investigate the prevalence of such phenomenon and to assess its association with clinical variables and metabolic parameters by 18F-fludeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Methods: Data from 50 patients (34 male, 16 female, median age 73) with non-small cell lung carcinoma (NSCLC) and treated with ICI were prospectively collected. All patients underwent contrast-enhanced CT, 18F-FDG PET/CT, and complete peripheral blood sample at baseline before ICI. HPD was defined according to clinical and radiologic criteria. Because of the rapid disease progression or worsening of clinic conditions, radiologic response assessment was available for 46 patients. OS were analyzed using the Kaplan–Meier method and the log-rank test. A Cox proportional hazards regression analysis was used to evaluate factors independently associated with OS. Median follow-up was 12.4 months (9.7-15.2 months). Results: We identified the following response categories: 10 cases as complete/partial response (CR/PR), 17 cases with stable disease (SD), 5 patients with progressive disease (PD), and 14 with HPD. Among metabolic parameters we observed a statistically significant association between HPD status and tumor burden, expressed by both MTV (756.1ml for HPD vs 475.6ml for non-HPD, P = 0.011) and TLG (287.3 for HPD vs 62.1 for non-HPD, P = 0.042). Among clinical variables, 12/14 patients (85.7%) within the HPD group compared with 8/32 patients (25%) in the non-HDP group had more than two metastatic sites (p<0.001). In addition, the derived neutrophil-to-lymphocyte ratio (dNLR) and platelet counts was significantly associated with HPD status (P = 0.038, P = 0.025, respectively). Survival analysis showed a median OS of 4 months for HPD group compared with 15 months within non-HPD patients (P = 0.003). Likewise, median OS was significantly different when we considered all the response categories: CR/PR, SD, PD, and HPD (P = 0.001). Finally, Multivariate analysis identified MTV and dNLR as independent predictors for OS. Conclusion: Our results suggest that the use of ICI might represent a concern in patients with high metabolic tumor burden and inflammatory indexes at baseline. However Additional studies are needed.




nc

Positron lymphography via intracervical 18F-FDG injection for pre-surgical lymphatic mapping in cervical and endometrial malignancies

Rationale: The presence of metastasis in local lymph nodes (LNs) is a key factor influencing choice of therapy and prognosis in cervical and endometrial cancers; therefore, the exploration of sentinel LNs (SLNs) is highly important. Currently, however, SLN mapping requires LN biopsy for pathologic evaluation, since there are no clinical imaging approaches that can identify tumor-positive LNs in early stages. Staging lymphadenectomy poses risks, such as leg lymphedema or lymphocyst formation. Furthermore, in 80% to 90% of patients, the explored LNs are ultimately tumor free, meaning the vast majority of patients are unnecessarily subjected to lymphadenectomy. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG except one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG, except for one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Conclusion: This first-in-human study of PLG in women with uterine and cervical cancer demonstrates its feasibility and its ability to identify patients with nodal metastases, and warrants further evaluation in additional studies.




nc

Management of patients with renal failure undergoing dialysis during 131I therapy for thyroid cancer

Objectives: Radioactive iodine (131I) therapy may be used to treat thyroid cancer in end-stage renal disease patients who undergo hemodialysis. Because iodine predominantly utilizes renal clearance, treatment management in hemodialysis patients may be problematic, and no formal recommendations on hemodialysis currently exist. This work details our experience with treating thyroid cancer with iodine in chronic renal failure patients who require hemodialysis and details the therapeutic dosimetry results obtained during treatment to ensure that the dose to the bone marrow (BM) was acceptable. Methods: We treated 6 patients in the metabolic radiotherapy unit after thyroid stimulation. Two hemodialysis sessions in the metabolic radiotherapy unit were performed at 42 and 90 hours after radiopharmaceutical administration. BM toxicity was estimated with activity measurements from blood samples and with whole-body measurements that were regularly repeated during hospitalization and measured with a gamma counter. The patients underwent thyroid and hematologic monitoring to assess treatment efficacy and therapeutic toxicity in the short, medium and long term. Results: Whole-body activity was reduced on average by 66.7% [60.1-71.5] after the first dialysis session and by 53.3% [30.4-67.8] after the second. The mean estimated total absorbed dose to the BM was 0.992 Gy for all patients [0.431 – 2.323]. We did not observe any significant hematologic toxicity, and the clinical, biological and ultrasound test results confirmed the success of ablative treatment for the majority of patients. Conclusion: An approximately 30% reduction from the nominal dose in the amount of 131I activity for hemodialysis patients with thyroid cancer appears to strike an appropriate balance between the absence of BM toxicity and therapeutic efficacy. To avoid overirradiation, we recommend pretherapeutic dosimetry studies for metastatic patients to calculate the amount of activity to be administered as well as dosimetry monitoring during the hemodialysis sessions performed after therapeutic dose administration and under the same conditions.




nc

Repeatability of Quantitative 18F-DCFPyL PET/CT Measurements in Metastatic Prostate Cancer.

Quantitative evaluation of radiolabeled Prostate-Specific Membrane Antigen (PSMA) PET scans may be used to monitor treatment response in patients with prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim of this study was to investigate the repeatability of quantitative 18F-DCFPyL (a second generation 18F-PSMA-ligand) PET/CT measurements in patients with PCa. Methods: Twelve patients with metastatic PCa were prospectively included, of which 2 were excluded from final analyses. Patients received two whole-body 18F-DCFPyL PET/CT scans (median dose 317 MBq; uptake time 120 min), within median 4 days (range 1-11 days). After semi-automatic (isocontour-based) tumor delineation, the following lesion-based metrics were derived: Tumor-to-Blood ratio (TBRmean, TBRpeak, and TBRmax), Standardized Uptake Value (SUVmean, SUVpeak, SUVmax, normalized to bodyweight), tumor volume, and total lesion tracer uptake (TLU). Additionally, patient-based Total Tumor Volume (sum of PSMA-positive tumor volumes; TTV) and Total Tumor Burden (sum of all lesion TLUs; TTB) were derived. Repeatability was analyzed using repeatability coefficients (RC) and intra-class correlations (ICC). Additionally, the effect of point spread function (PSF) image reconstruction on the repeatability of uptake metrics was evaluated. Results: In total, 36 18F-DCFPyL PET positive lesions were analyzed (up to 5 lesions per patient). RCs of TBRmean, TBRpeak, and TBRmax were 31.8%, 31.7%, and 37.3%, respectively. For SUVmean, SUVpeak, SUVmax the RCs were 24.4%, 25.3% and 31.0%, respectively. All ICC were ≥0.97. Tumor volume delineations were well repeatable, with RC 28.1% for individual lesion volumes and RC 17.0% for TTV. TTB had a RC of 23.2% and 33.4%, when based on SUVmean and TBRmean, respectively. Small lesions (<4.2mL) had worse repeatability for volume measurements. The repeatability of SUVpeak, TLU, and all patient-level metrics were not affected by PSF-reconstruction. Conclusion: 18F-DCFPyL uptake measurements are well repeatable and can be used for clinical validation in future treatment response assessment studies. Patient-based TTV may be preferred for multicenter studies since its repeatability was both high and robust to different image reconstructions.




nc

Impact of 68Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single Center Study

The impact of prostate specific membrane antigen (PSMA) PET/CT on management of prostate cancer (PCa) patients with biochemical recurrence (BCR) is well-established. However, whether and how PSMA PET/CT affects the management of patients undergoing scans for other clinical indications remains unknown. The goal of this study was to determine the impact of 68Ga-PSMA-11 PET/CT on initial and subsequent management decisions in a cohort of PCa patients referred for various indications ("basket trial") excluding the two main classical indications: BCR and presurgical staging. Methods: This was a prospective study of 197 patients that aimed to determine the impact of 68Ga-PSMA-11 PET/CT on PCa stage and management. Indications for PSMA PET/CT were: initial staging of non-surgical candidates (30 patients) and re-staging after definitive treatment (n = 168). The re-staging cohort comprised: patients re-staged with known advanced metastatic disease (n = 103), after androgen deprivation therapy only (n = 16), after surgery with serum PSA levels <0.2 ng/ml (n = 13), after radiation therapy (RT) not meeting the Phoenix criteria (n = 22) and after other primary local treatments [i.e. high-intensity focused ultrasound (HIFU), focal laser ablation, cryoablation, hyperthermia or irreversible electroporation] (n = 13). Patients with BCR and candidates for curative surgery were excluded. Impact on management was assessed using pre- and post-PET questionnaires completed by referring physicians, electronic chart review and/or patient telephone encounters. Results: PSMA PET/CT changed disease stage in 135/197 (69%) patients (38% up-stage, 30% down-stage and no changes in stage in 32%). Management was affected in 104/182 (57%) patients. Specifically, PSMA PET/CT impacted management of patients who were re-staged after RT without meeting the Phoenix criteria for BCR, after other definitive local treatments and with advanced metastatic disease in 13/18 (72%), 8/12 (67%) and 59/96 (61%), respectively. Conclusion: PSMA PET/CT has a profound impact on stage and management of PCa patients outside of the two main classical indications (BCR and presurgical staging) across all examined clinical scenarios.




nc

Immune checkpoint imaging in oncology - a game changer towards personalized immunotherapy?

Immune checkpoint blockade represents a promising approach in oncology, showing anti-tumor activities in various cancers. However, although being generally far more well-tolerated than classical cytotoxic chemotherapy, this treatment, too, may be accompanied by considerable side effects and not all patients benefit equally. Therefore, careful patient selection and monitoring of the treatment response is mandatory. At present, checkpoint-specific molecular imaging is increasingly investigated as a tool for patient selection and response evaluation. Here, an overview of the current developments in immune checkpoint imaging is provided.




nc

Projection-space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image-space

Purpose: To assess the performance of full dose (FD) positron emission tomography (PET) image synthesis in both image and projection space from low-dose (LD) PET images/sinograms without sacrificing diagnostic quality using deep learning techniques. Methods: Clinical brain PET/CT studies of 140 patients were retrospectively employed for LD to FD PET conversion. 5% of the events were randomly selected from the FD list-mode PET data to simulate a realistic LD acquisition. A modified 3D U-Net model was implemented to predict FD sinograms in the projection-space (PSS) and FD images in image-space (PIS) from their corresponding LD sinograms/images, respectively. The quality of the predicted PET images was assessed by two nuclear medicine specialists using a five-point grading scheme. Quantitative analysis using established metrics including the peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), region-wise standardized uptake value (SUV) bias, as well as first-, second- and high-order texture radiomic features in 83 brain regions for the test and evaluation dataset was also performed. Results: All PSS images were scored 4 or higher (good to excellent) by the nuclear medicine specialists. PSNR and SSIM values of 0.96 ± 0.03, 0.97 ± 0.02 and 31.70 ± 0.75, 37.30 ± 0.71 were obtained for PIS and PSS, respectively. The average SUV bias calculated over all brain regions was 0.24 ± 0.96% and 1.05 ± 1.44% for PSS and PIS, respectively. The Bland-Altman plots reported the lowest SUV bias (0.02) and variance (95% CI: -0.92, +0.84) for PSS compared with the reference FD images. The relative error of the homogeneity radiomic feature belonging to the Grey Level Co-occurrence Matrix category was -1.07 ± 1.77 and 0.28 ± 1.4 for PIS and PSS, respectively Conclusion: The qualitative assessment and quantitative analysis demonstrated that the FD PET prediction in projection space led to superior performance, resulting in higher image quality and lower SUV bias and variance compared to FD PET prediction in the image domain.




nc

Will SPECT/CT Cameras soon be able to display Absorbed Doses? Dosimetry from Single Activity Concentration Measurements.




nc

SUVmax-V for assessing treatment response in FDG-PET Imaging of Patient-Derived Tumor Xenografts involving Triple-Negative Breast Cancer




nc

PET/CT imaging with a 18F-labeled galactodendritic unit in a galectin-1 overexpressing orthotopic bladder cancer model

Galectins are carbohydrate-binding proteins overexpressed in bladder cancer (BCa) cells. Dendritic galactose moieties have a high affinity for galectin-expressing tumor cells. We radiolabeled a dendritic galactose carbohydrate with fluorine-18 – 18F-labeled galactodendritic unit 4 – and examined its potential in imaging urothelial malignancies. Methods: The 18F-labeled 1st generation galactodendritic unit 4 was obtained from its tosylate precursor. We conducted in vivo studies in galectin-expressing UMUC3 orthotopic BCa model to determine the ability of 18F-labeled galactodendritic unit 4 to image BCa. Results: Intravesical administration of 18F-labeled galactodendritic unit 4 allowed specific accumulation of the carbohydrate radiotracer in galectin-1 overexpressing UMUC3 orthotopic tumors when imaged with PET. The 18F-labeled galactodendritic unit 4 was not found to accumulate in non-tumor murine bladders. Conclusion: The 18F-labeled galactodendritic unit 4 and similar analogs may be clinically relevant and exploitable for PET imaging of galectin-1 overexpressing bladder tumors.




nc

PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies

The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population.




nc

FDG-PET/CT identifies predictors of survival in patients with locally advanced cervical carcinoma and para-aortic lymph node involvement to increase treatment

Introduction: To use positron emission tomography coupled with computed tomography (18FDG-PET/CT) to identify a high-risk subgroup requiring therapeutic intensification among patients with locally advanced cervical cancer (LACC) and para-aortic lymph node (PALN) involvement. Methods: In this retrospective multicentric study, patients with LACC and PALN involvement concurrently treated with chemoradiotherapy and extended-field radiotherapy (EFR) between 2006 and 2016 were included. A senior nuclear medicine specialist in PET for gynaecologic oncology reviewed all 18FDG-PET/CT scans. Metabolic parameters including maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were determined for the primary tumour, pelvic lymph nodes and PALN. Associations between these parameters and overall survival (OS) were assessed with Cox's proportional hazards model. Results: Sixty-eight patients were enrolled in the study. Three-year OS was 55.5% (95% CI (40.8-68.0)). When adjusted for age, stage and histology, pelvic lymph node TLG, PALN TLG and PALN SUVmax were significantly associated with OS (p<0.005). Conclusion: FDG-PET/CT was able to identify predictors of survival in the homogeneous subgroup of patients with LACC and PALN involvement, thus allowing therapeutic intensification to be proposed.




nc

Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer

Targeting tumor-expressed receptors using selective molecules for diagnostic, therapeutic or both diagnostic and therapeutic (theragnostic) purposes is a promising approach in oncological applications. Such approaches have increased significantly over the past decade. Peptides such as gastrin-releasing peptide receptors (GRPR) targeting radiopharmaceuticals are small molecules with fast blood clearance and urinary excretion. They demonstrate good tissue diffusion, low immunogenicity, and highly selective binding to their target cell-surface receptors. They are also easily produced. GRPR, part of the bombesin (BBN) family, are overexpressed in many tumors, including breast and prostate cancer, and therefore represent an attractive target for future development.




nc

The role of FAPI-PET/CT for patients with malignancies of the lower gastrointestinal tract - first clinical experience

For oncological management or radiotherapy planning, reliable staging tools are essential. Recent development of quinoline-based ligands targeting cancer-associated fibroblasts demonstrated promising preclinical and clinical results. The current study aimed to evaluate the role of fibroblast activation protein inhibitors (FAPI)-positron-emission tomography (PET)/computed tomography (CT) for primary malignancies located within the lower gastrointestinal tract (LGT) as a very first clinical analysis. Methods: 68Ga-FAPI-PET/CT was performed in a cohort of 22 patients with LGT including 15 patients with metastatic disease, 1 patient with suspected local relapse and 6 treatment-naïve patients. 68Ga-FAPI-04 and 68Ga-FAPI-46 uptake was quantified by standardized uptake values (SUV)max and (SUV)mean. After comparison with standard imaging, changes in tumor stage/ localization and (radio)oncological management were recorded. Results: The highest uptake of FAPI tracer was observed in liver metastases and anal cancer with a SUVmax of 9.1 and 13.9, respectively. Due to a low background activity in normal tissue, there was a high tumor-to-background ratio of more than 3 in most lesions. In treatment-naïve patients, TNM was changed in 50% while for patients with metastases new findings occurred in 47%. In total, FAPI-imaging caused a high, medium and low change of (radio)oncological management in 19%, 33% and 29%, respectively. For almost every patient undergoing irradiation, target volume delineation was improved by 68Ga-FAPI-PET/CT. Conclusion: The present study demonstrated that both primary and metastatic LGT were reliably detected by 68Ga-FAPI-PET/CT leading to relevant changes in TNM status and (radio)oncological management. 68Ga-FAPI-PET/CT seems to be a highly promising imaging agent for the diagnosis and management of LGT, potentially opening new applications for tumor (re-)staging.




nc

Multi-phasic 68Ga-PSMA PET/CT in detection of early recurrence in prostate cancer patients with PSA < 1 ng/ml: a prospective study of 135 cases.

Purpose: The main objective of this prospective study was to determine the impact of multi-phasic acquisition of 68Ga-PSMA PET/CT in the detection of recurrent prostate cancer (PCa) in the early stage of biochemical recurrence (BR) with prostate-serum-antigen (PSA) level <1ng/ml. Also, 68Ga-PSMA PET/CT positivity was correlated with clinical parameters for the assessment of predictive markers. Methods: A prospective monocentric study was conducted on 135 PCa patients with BR and PSA<1ng/ml. All patients have undergone initial prostatectomy with additional radiation therapy in 19.3% and androgen-deprivation therapy (ADT) in 7.4% of patients. Dynamic acquisition [1–8min. post-injection (p.i.)] from the prostate bed, standard whole-body (60min. p.i.) and limited bed positions of delayed studies (120-150min. p.i.), were performed. Studies were reviewed by two board-certified nuclear medicine specialists, independently. A combination of visual and semi-quantitative analyses and correlation with morphological (e.g. MRI) and/or clinical follow-up findings was used for the final interpretation of abnormal lesions as benign or malignant. 68Ga-PSMA PET/CT positivity was also correlated with primary clinical findings. Results: Incorporating the information of all phases, 116 lesions were detected in 49.6% of patients (22 local recurrences, 63 lymph nodes, and 31 distant metastases). The detection rates were 31.8%, 44.9%, and 71.4% for PSA<0.2ng/ml, 0.2≤PSA<0.5, and 0.5≤PSA<1, respectively. Additional dynamic and/or delayed phases resulted in better determination of equivocal lesions and a higher diagnostic performance in 25.9% of patients. Stand-alone dynamic and delayed images led to better interpretation of equivocal findings in the prostate bed (31.4%) and other (lymph node/bone) lesions (20%), respectively. Conclusion: 68Ga-PSMA PET/CT revealed promising results for the early detection of recurrent disease in patients with PSA level of 0.5-1.0ng/ml. However, it showed limited value in cases with PSA<0.5ng/ml. Multi-phasic 68Ga-PSMA PET/CT led to better determination of equivocal findings. Although, dynamic images may provide helpful information in assessment of the prostate bed; however, delayed acquisitions seem to have higher impact in clarifying of the equivocal findings.




nc

Performance of digital PET compared to high-resolution conventional PET in patients with cancer

Recently introduced PET systems using silicon photomultipliers with digital readout (dPET) have an improved timing and spatial resolution, aiming at a better image quality, over conventional PET (cPET) systems. We prospectively evaluated the performance of a dPET system in patients with cancer, as compared to high-resolution (HR) cPET imaging. Methods: After a single FDG-injection, 66 patients underwent dPET (Vereos, Philips Healthcare) and cPET (Ingenuity TF, Philips Healthcare) imaging in a randomized order. We used HR-reconstructions (2x2x2 mm3 voxels) for both scanners and determined SUVmax, SUVmean, lesion-to-background ratio (LBR), metabolic tumor volume (MTV) and lesion diameter in up to 5 FDG-positive lesions per patient. Furthermore, we counted the number of visible and measurable lesions on each PET scan. Two nuclear medicine specialists blindly determined the Tumor Node Metastasis (TNM) score from both image sets in 30 patients referred for initial staging. For all 66 patients, these specialists separately and blindly evaluated image quality (4-point scale) and determined the scan preference. Results: We included 238 lesions that were visible and measurable on both PET scans. We found 37 additional lesions on dPET in 27 patients (41%), which were unmeasurable (n = 14) or invisible (n = 23) on cPET. SUVmean, SUVmax, LBR and MTV on cPET were 5.2±3.9 (mean±SD), 6.9±5.6, 5.0±3.6 and 2991±13251 mm3, respectively. On dPET SUVmean, SUVmax and LBR increased 24%, 23% and 27%, respectively (p<0.001) while MTV decreased 13% (p<0.001) compared to cPET. Visual analysis showed TNM upstaging with dPET in 13% of the patients (4/30). dPET images also scored higher in image quality (P = 0.003) and were visually preferred in the majority of cases (65%). Conclusion: Digital PET improved the detection of small lesions, upstaged the disease and images were visually preferred as compared to high-resolution conventional PET. More studies are necessary to confirm the superior diagnostic performance of digital PET.




nc

Intraoperative 68Gallium-PSMA Cerenkov Luminescence Imaging for surgical margins in radical prostatectomy - a feasibility study

Objective: To assess the feasibility and accuracy of Cerenkov Luminescence Imaging (CLI) for assessment of surgical margins intraoperatively during radical prostatectomy (RPE). Methods: A single centre feasibility study included 10 patients with high-risk primary prostate cancer (PC). 68Ga-PSMA PET/CT scans were performed followed by RPE and intraoperative CLI of the excised prostate. In addition to imaging the intact prostate, in the first two patients the prostate gland was incised and imaged with CLI to visualise the primary tumour. We compared the tumour margin status on CLI to postoperative histopathology. Measured CLI intensities were determined as tumour to background ratio (TBR). Results: Tumour cells were successfully detected on the incised prostate CLI images as confirmed by histopathology. 3 of 10 men had histopathological positive surgical margins (PSMs), and 2 of 3 PSMs were accurately detected on CLI. Overall, 25 (72%) out of 35 regions of interest (ROIs) proved to visualize a tumour signal according to standard histopathology. The median tumour radiance in these areas was 11301 photons/s/cm2/sr (range 3328 - 25428 photons/s/cm2/sr) and median TBR was 4.2 (range 2.1 – 11.6). False positive signals were seen mainly at the prostate base with PC cells overlaid by benign tissue. PSMA-immunohistochemistry (PSMA-IHC) revealed strong PSMA staining of benign gland tissue, which impacts measured activities. Conclusion: This feasibility showed that 68Ga-PSMA CLI is a new intraoperative imaging technique capable of imaging the entire specimen’s surface to detect PC tissue at the resection margin. Further optimisation of the CLI protocol, or the use of lower-energetic imaging tracers such as 18F-PSMA, are required to reduce false positives. A larger study will be performed to assess diagnostic performance.




nc

Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer

The aim of this work was to quantify the uptake of [18F]BMS-986192, a PD-L1 adnectin PET tracer, in patients with non-small-cell lung cancer (NSCLC). To this end, plasma input kinetic modeling of dynamic tumor uptake data with online arterial blood sampling was performed. In addition, the accuracy of simplified uptake metrics such as standardized uptake value (SUV) was investigated. Methods: Data from a study with [18F]BMS-986192 in patients with advanced stage NSCLC eligible for nivolumab treatment were used if a dynamic scan was available and lesions were present in the field of view of the dynamic scan. After injection of [18F]BMS-986192, a 60-minutes dynamic PET-CT scan was started, followed by a 30-min whole body PET-CT scan. Continuous arterial and discrete arterial and venous blood sampling were performed to determine a plasma input function. Tumor time activity curves were fitted by several plasma input kinetic models. Simplified uptake parameters included tumor to blood ratio as well as several SUV measures. Results: Twenty two tumors in nine patients were analyzed. The arterial plasma input single-tissue reversible compartment model with fitted blood volume fraction seems to be the most preferred model as it best fitted 11 out of 18 tumor time activity curves. The distribution volume VT ranged from 0.4 to 4.8 mL·cm-3. Similar values were obtained with an image derived input function. From the simplified measures, SUV normalized for body weight (SUVBW) at 50 and 67 minutes post injection correlated best with VT, with an R2 > 0.9. Conclusion: A single tissue reversible model can be used for the quantification of tumor uptake of the PD-L1 PET tracer [18F]BMS-986192. SUVBW at 60 minutes post injection, normalized for body weight, is an accurate simplified parameter for uptake assessment of baseline studies. In order to assess its predictive value for response evaluation during PD-(L)1 immune checkpoint inhibition further validation of SUV against VT based on an image derived input function is recommended.




nc

Interim PET assessment of advanced Hodgkin Lymphoma: is it sufficient?




nc

Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer

The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.




nc

High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter).




nc

Digital Solid-State SPECT/CT Quantitation of Absolute 177Lu-Radiotracer Concentration: In Vivo/In Vitro Validation

The accuracy of lutetium-177 (177Lu) radiotracer concentration measurements using quantitative clinical software was determined by comparing in vivo results for a digital solid-state cadmium-zinc-telluride SPECT/CT (single photon emission computed tomography / x-ray computed tomography) system to in vitro sampling. First, image acquisition parameters were assessed for an International Electrotechnical Commission (IEC) body phantom emulating clinical count rates loaded with a "lung" insert and 6 hot spheres with a 12:1 target-to-background ratio of 177Lu solution. Then, the data of 28 whole-body SPECT/CT scans of 7 patients who underwent 177Lu prostate membrane antigen (177Lu-PSMA) radioligand therapy was retrospectively analyzed. Three users analyzed SPECT/CT images for in vivo urinary bladder radiotracer uptake using quantitative software (Q.Metrix, GE Healthcare). In vitro radiopharmaceutical concentrations were calculated using urine sampling obtained immediately after each scan, scaled to standardized uptake values (SUVs). Any in vivo/in vitro identity relations were determined by linear regression (ideally slope=1, intercept=0), within a 95 % confidence interval (CI). Phantom results demonstrated lower quantitative error for acquisitions using the 113 keV 177Lu energy peak rather than including the 208 keV peak, given that only low-energy collimation was available in this camera configuration. In the clinical study, 24 in vivo/in vitro pairs were eligible for further analysis, having rejected 4 as outliers (via Cook’s distance calculations). All linear regressions (R2 ≥ 0.92, P<0.0001) provided identity in vivo/in vitro relations (95 % CI), with SUV averages from all users giving a slope of 1.03±0.09, an intercept of –0.25±0.64 g/mL, and an average residual difference of 20.4 %. Acquiring with the lower energy 177Lu energy peak, solid-state SPECT/CT imaging provides an accuracy to within ~20 % for in vivo urinary bladder radiotracer concentrations. This non-invasive in vivo quantitation method can potentially improve diagnosis, improve patient management and treatment response assessment, and provide data essential to 177Lu dosimetry.




nc

Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer

Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA.




nc

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




nc

Initial Clinical Results of a Novel Immuno-PET Theranostic Probe in HER2-negative Breast Cancer

Purpose: This prospective study evaluated the imaging performance of a novel immunological pretargeting positron-emission tomorgraphy (immuno-PET) method in patients with HER2-negative, carcinoembryonic antigen (CEA)-positive, metastatic breast cancer (BC), compared to computed tomography (CT), bone magnetic resonance imaging (MRI), and 18Fluorodeoxyglucose PET (FDG-PET). Patients and Methods: Twenty-three patients underwent whole-body immuno-PET after injection of 150 MBq 68Ga-IMP288, a histamine-succinyl-glycine peptide given following initial targeting of a trivalent anti-CEA, bispecific, anti-peptide antibody. The gold standards were histology and imaging follow-up. Tumor standard uptake values (SUVmax and SUVmean) were measured, and tumor burden analyzed using Total Tumor Volume (TTV) and Total Lesion Activity (TLA). Results: Total lesion sensitivity of immuno-PET and FDG-PET was 94.7% (1116/1178) and 89.6% (1056/1178), respectively. Immuno-PET had a somewhat higher sensitivity than CT and FDG-PET in lymph nodes (92.4% vs 69.7% and 89.4%, respectively) and liver metastases (97.3% vs 92.1% and 94.8%, respectively), whereas sensitivity was lower for lung metastases (48.3% vs 100% and 75.9%, respectively). Immuno-PET showed higher sensitivity than MRI and FDG-PET for bone lesions (95.8% vs 90.7% and 89.3%, respectively). In contrast to FDG-PET, immuno-PET disclosed brain metastases. Despite equivalent tumor SUVmax, SUVmean, and TTV, TLA was significantly higher with immuno-PET compared to FDG PET (P = 0.009). Conclusion: Immuno-PET using anti-CEA/anti-IMP288 bispecific antibody, followed by 68Ga-IMP288, is a potentially sensitive theranostic imaging method for HER2-negative, CEA-positive, metastatic BC patients, and warrants further research.




nc

Prognostic Value of 18F-FDG PET/CT in a Large Cohort of 495 Patients with Advanced Metastatic Neuroendocrine Neoplasms (NEN) Treated with Peptide Receptor Radionuclide Therapy (PRRT)

The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- and/or 90Y- DOTATOC/DOTATATE PRRT between 2/2002 and 7/2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT prior to treatment and were followed 3-189 months. Kaplan-Meier analysis, log-rank test (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: 199 patients (40.2%) presented with pancreatic NEN, 49 with CUP (cancer of unknown primary), 139 with midgut NEN, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8 and other locations in 42 patients. FDG-PET/CT was positive in 382 (77.2%) patients and 113 (22.8%) were FDG-negative before PRRT, while 100% were 68Ga-DOTATOC/TATE/NOC positive. For all patients, the median PFS and OS, defined from start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive FDG predicted shorter PFS (18.5 mo vs 24.1 mo; P = 0.0015) and OS (53.2 mo vs 83.1 mo; P < 0.001) than negative FDG. Amongst the pancreatic NEN, the median OS was 52.8 mo in FDG positive and 114.3 mo in FDG negative subjects (P = 0.0006). For all patients with positive 18F-FDG uptake, and a ratio of the highest SUVmax on 68Ga-SSTR PET to the most 18F-FDG-avid tumor lesions >2, the median OS was 53.0 mo, compared to 43.4 mo in those patients with a ratio <2 (P = 0.030). For patients with no 18F-FDG uptake (complete "mismatch" imaging pattern), the median OS was 108.3 mo vs 76.9 mo for SUVmax >15.0 and ≤15.0 on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NEN treated with PRRT. Metabolic imaging with 18F-FDG PET/CT compliments the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT imaging is associated with the most favorable long-term prognosis.




nc

68Ga-PSMA guided bone biopsies for molecular diagnostics in metastatic prostate cancer patients

For individual treatment decisions in patients with metastatic prostate cancer (mPC), molecular diagnostics are increasingly used. Bone metastases are frequently the only source for obtaining metastatic tumor tissue. However, the success rate of computed tomography (CT)-guided bone biopsies for molecular analyses in mPC patients is only ~40%. Positron emission tomography (PET) using Gallium-68 prostate specific membrane antigen (68Ga-PSMA) is a promising tool to improve the harvest rate of bone biopsies for molecular analyses. Aim of this study was to determine the success rate of 68Ga-PSMA guided bone biopsies for molecular diagnostics in mPC patients. Methods: Within a prospective multicenter whole-genome sequencing trial (NCT01855477), 69 mPC patients underwent 68Ga-PSMA PET/CT prior to bone biopsy. Primary endpoint was success rate (tumor percentage ≥30%) of 68Ga-PSMA guided bone biopsies. At biopsy sites, 68Ga-PSMA uptake was quantified using rigid body image registration of 68Ga-PSMA PET/CT and interventional CT. Actionable somatic alterations were identified. Results: Success rate of 68Ga-PSMA guided biopsies for molecular analyses was 70%. At biopsy sites categorized as positive, inconclusive, or negative for 68Ga-PSMA uptake, 70%, 64%, and 36% of biopsies were tumor positive (≥30%), respectively (P = 0.0610). In tumor positive biopsies, 68Ga-PSMA uptake was significantly higher (P = 0.008), whereas radiodensity was significantly lower (P = 0.006). With an area under the curve of 0.84 and 0.70, both 68Ga-PSMA uptake (maximum standardized uptake value) and radiodensity (mean Hounsfield Units) were strong predictors for a positive biopsy. Actionable somatic alterations were detected in 73% of the sequenced biopsies. Conclusion: In patients with mPC, 68Ga-PSMA PET/CT improves the success rate of CT-guided bone biopsies for molecular analyses, thereby identifying actionable somatic alterations in more patients. Therefore, 68Ga-PSMA PET/CT may be considered for guidance of bone biopsies in both clinical practice and clinical trials.




nc

Neuroendocrine Differentiation and Response toPSMA-Targeted Radioligand Therapy in Advanced Metastatic Castration-Resistant Prostate Cancer: a Single-Center Retrospective Study

Introduction: Neuroendocrine differentiation is associated with treatment failure and poor outcome in metastatic castration-resistant prostate cancer (mCRPC). We investigated the effect of circulating neuroendocrine biomarkers on the efficacy of PSMA-targeted radioligand therapy (RLT). Methods: Neuroendocrine biomarker profiles (progastrin-releasing peptide, neuron-specific enolase, and chromogranin-A) were analyzed in 50 patients commencing 177Lu-PSMA-617 RLT. The primary endpoint was PSA response in relation to baseline neuroendocrine marker profiles. Additional endpoints included progression-free survival. Tumor uptake on post-therapeutic scans, a known predictive marker for response, was used as control-variable. Results: Neuroendocrine biomarker profiles were abnormal in the majority of patients. Neuroendocrine biomarker levels did not predict treatment failure or early progression (P ≥ 0.13). By contrast, intense PSMA-ligand uptake in metastases predicted both treatment response (P = 0.0030) and reduced risk of early progression (P = 0.0111). Conclusion: Neuroendocrine marker profiles do not predict adverse outcome of RLT. By contrast, high ligand uptake was confirmed to be crucial for achieving tumor-response.




nc

The optimal imaging window for dysplastic colorectal polyp detection using c-Met targeted fluorescence molecular endoscopy

Rationale: Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met targeted fluorescent peptide, in a population at high-risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multi-diameter single-fiber reflectance, single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13mg/kg) at a one-, two- or three-hour dose-to-imaging interval (N = 3 patients per cohort). Two cohorts were expanded to six patients based on target-to-background ratios (TBR). Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly increased fluorescence in the colorectal lesions compared to surrounding tissue, with a TBR of 1.53, 1.66 and 1.74 respectively (mean intrinsic fluorescence (Q·μfa,x) = 0.035 vs. 0.023mm-1, P<0.0003; 0.034 vs. 0.021mm-1, P<0.0001; 0.033 vs. 0.019mm-1, P<0.0001). Fluorescence correlated to histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a one-to-three hour dose-to-imaging interval. No clinically significant differences were observed between the cohorts, although a one-hour dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies.




nc

11C-PABA as a Novel PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Studies

para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-hour urine sampling. Therefore, we hypothesized that radiolabeled PABA with 11C could allow high-quality dynamic PET of the kidneys while reducing the radiation exposure due to its short biological and physical half-lives. We evaluated if 11C-PABA could visualize renal anatomy and quantify function in healthy rats, rabbits, and first-in-human studies in healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, a dynamic PET was performed, followed by post-mortem tissue biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-MAG3 in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then renal pelvis with high spatiotemporal resolution. Conclusion: 11C-PABA demonstrated fast renal excretion with very low background signal in animals and humans. These results suggest that 11C-PABA could be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure.




nc

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




nc

Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology

Latest digital whole-body PET scanners provide a combination of higher sensitivity and improved spatial and timing resolution. We performed a lesion detectability study on two generations of Siemens Biograph PET/CT scanners, the mCT and Vision, to study the impact of improved physical performance on clinical performance. Our hypothesis is that the improved performance of the Vision will result in improved lesion detectability, allowing shorter imaging times or equivalently, lower injected dose. Methods: Data were acquired with the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network torso phantom combined with a 20-cm diameter cylindrical phantom. Spherical lesions were emulated by acquiring spheres-in-air data, and combining it with the phantom data to generate combined datasets with embedded lesions of known contrast. Two sphere sizes and uptakes were used: 9.89 mm diameter spheres with 6:1 (lung) and 3:1 (cylinder) and 4.95 mm diameter spheres with 9.6:1 (lung) and 4.5:1 (cylinder) local activity concentration uptakes. Standard image reconstruction was performed: ordinary Poisson ordered subsets expectation maximization algorithm with point spread function and time-of-flight modeling and post-reconstruction smoothing with a 5 mm Gaussian filter. The Vision images were also generated without any post-reconstruction smoothing. Generalized scan statistics methodology was used to estimate the area under the localization receiver operating characteristic curve (ALROC). Results: Higher sensitivity and improved TOF performance of Vision leads to reduced contrast in the background noise nodule distribution. Measured lesion contrast is also higher on the Vision due to its improved spatial resolution. Hence, the ALROC values are noticeably higher for the Vision relative to the mCT. Conclusion: Improved overall performance of the Vision provides a factor of 4-6 reduction in imaging time (or injected dose) over the mCT when using the ALROC metric for lesions >9.89 mm in diameter. Smaller lesions are barely detected in the mCT, leading to even higher ALROC gains with the Vision. Improved spatial resolution of the Vision also leads to a higher measured contrast that is closer to the real uptake, implying improved quantification. Post-reconstruction smoothing, however, reduces this improvement in measured contrast, thereby reducing the ALROC values for small, high uptake lesions.




nc

177Lu-lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-Hodgkins lymphoma

Background: Patients with NHL who are treated with rituximab may develop resistant disease, often associated with changes in expression of CD20. The next generation β-particle emitting radioimmunoconjugate 177Lu-lilotomab-satetraxetan (Betalutin®) was shown to up-regulate CD20 expression in different rituximab-sensitive NHL cell lines and to act synergistically with rituximab in a rituximab-sensitive NHL animal model. We hypothesized that 177Lu-lilotomab-satetraxetan may be used to reverse rituximab-resistance in NHL. Methods: The rituximab-resistant Raji2R and the parental Raji cell lines were used. CD20 expression was measured by flow cytometry. ADCC was measured by a bioluminescence reporter assay. The efficacies of combined treatments with 177Lu-lilotomab-satetraxetan (150MBq/kg or 350MBq/kg) and rituximab (4x10mg/kg) were compared with those of single agents or saline in a Raji2R-xenograft model. Cox-regression and the Bliss independence model were used to assess synergism. Results: Rituximab-binding in Raji2R cells was 36±5% of that in the rituximab-sensitive Raji cells. 177Lu-lilotomab-satetraxetan treatment of Raji2R cells increased the binding to 53±3% of the parental cell line. Rituximab ADCC-induction in Raji2R cells was 20±2% of that induced in Raji cells, while treatment with 177Lu-lilotomab-satetraxetan increased the ADCC-induction to 30±3% of the Raji cells, representing a 50% increase (p<0.05). The combination of rituximab with 350MBq/kg 177Lu-lilotomab-satetraxetan synergistically suppressed Raji2R tumor growth in athymic Foxn1nu mice. Conclusion: 177Lu-lilotomab-satetraxetan has the potential to reverse rituximab-resistance; it increases binding and ADCC-activity in-vitro and can synergistically improve anti-tumor efficacy in-vivo.




nc

Assessing the Activity of Multidrug Resistance-Associated Protein 1 at the Lung Epithelial Barrier

Multidrug resistance-associated protein 1 (ABCC1) is abundantly expressed at the lung epithelial barrier, where it may influence the pulmonary disposition of inhaled drugs and contribute to variability in therapeutic response. Aim of this study was to assess the impact of ABCC1 on the pulmonary disposition of 6-bromo-7-11C-methylpurine (11C-BMP), a prodrug radiotracer which is intracellularly conjugated with glutathione to form the ABCC1 substrate S-(6-(7-11C-methylpurinyl))glutathione (11C-MPG). Methods: Groups of Abcc1(-/-) rats, wild-type rats pretreated with the ABCC1 inhibitor MK571 and wild-type control rats underwent dynamic PET scans after administration of 11C-BMP intravenously (i.v.) or by intratracheal aerosolization (i.t.). In vitro transport experiments were performed with unlabeled BMP in the human distal lung epithelial cell line NCI-H441. Results: Pulmonary kinetics of radioactivity were significantly different between wild-type and Abcc1(-/-) rats, but differences were more pronounced after i.t. than after i.v. administration. After i.v. administration lung exposure (AUClung) was 77% higher and the elimination slope of radioactivity washout from the lungs (kE,lung) was 70% lower, whereas after i.t. administration AUClung was 352% higher and kE,lung was 86% lower in Abcc1(-/-) rats. Pretreatment with MK571 decreased kE,lung by 20% after i.t. radiotracer administration. Intracellular accumulation of MPG in NCI-H441 cells was significantly higher and extracellular efflux was lower in presence than in absence of MK571. Conclusion: PET with pulmonary administered 11C-BMP can measure ABCC1 activity at the lung epithelial barrier and may be applicable in humans to assess the effects of disease, genetic polymorphisms or concomitant drug intake on pulmonary ABCC1 activity.




nc

Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery

Gone are the days when medical imaging was used primarily to visualize anatomical structures. The emergence of molecular imaging, championed by radiolabeled fluorodeoxyglucose positron emission tomography (18FDG PET) has expanded the information content derived from imaging to include pathophysiological and molecular processes. Cancer imaging, in particular, has leveraged advances in molecular imaging agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of molecular imaging and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice.




nc

Factors predicting metastatic disease in 68Ga-PSMA-11 PET positive osseous lesions in prostate cancer

Bone is the most common site of distant metastatic spread in prostate adenocarcinoma. Prostate-specific membrane antigen uptake has been described in both benign and malignant bone lesions, which can lead to false-positive findings on 68Ga-prostate-specific membrane antigen-11 positron emission tomography (68Ga-PSMA-11 PET). The purpose of this study was to evaluate the diagnostic accuracy of 68Ga-PSMA-11 PET for osseous prostate cancer metastases and improve bone uptake interpretation using semi-quantitative metrics. METHODS: 56 prostate cancer patients (18 pre-prostatectomy, 38 biochemical recurrence) who underwent 68Ga-PSMA-11 PET/MRI or PET/CT examinations with osseous PSMA-ligand uptake were included in the study. Medical records were reviewed retrospectively by board-certified nuclear radiologists to determine true or false positivity based on a composite endpoint. For each avid osseous lesion, biological volume, size, PSMA-RADS rating, maximum standardized uptake value (SUVmax), and ratio of lesion SUVmax to liver, blood pool, and background bone SUVmax were measured. Differences between benign and malignant lesions were evaluated for statistical significance, and cut-off values for these parameters were determined to maximize diagnostic accuracy. RESULTS: Among 56 participants, 13 patients (22.8%) had false-positive osseous 68Ga-PSMA-11 findings and 43 patients (76.8%) had true-positive osseous 68Ga-PSMA-11 findings. Twenty-two patients (39%) had 1 osseous lesion, 18 (32%) had 2-4 lesions, and 16 (29%) had 5 or more lesions. Cut-off values resulting in statistically significant (p<0.005) differences between benign and malignant lesions were: PSMA-RADS ≥4, SUVmax ≥4.1, SUVmax ratio of lesion to blood pool ≥2.11, to liver ≥0.55, and to bone ≥4.4. These measurements corresponded to lesion-based 68Ga-PSMA-11 PET lesion detection rate for malignancy of 80%, 93%, 89%, 21%, 89%, and a specificity of 73%, 73%, 73%, 93%, 60%, respectively. CONCLUSION: PSMA-RADS rating, SUVmax, and SUVmax ratio of lesion to blood pool can help differentiate benign from malignant lesions on 68Ga-PSMA-11 PET. SUVmax ratio to blood pool above 2.2 is a reasonable parameter to support image interpretation and presented superior lesion detection rate and specificity when compared to visual interpretation by PSMA RADS. These parameters hold clinical value by improving diagnostic accuracy for metastatic prostate cancer on 68Ga-PSMA-11 PET/MRI and PET/CT.




nc

Semi-automatically quantified tumor volume using Ga-68-PSMA-11-PET as biomarker for survival in patients with advanced prostate cancer

Prostate specific membrane antigen (PSMA) targeting Positron Emission Tomography (PET) imaging is becoming the reference standard for prostate cancer (PC) staging, especially in advanced disease. Yet, the implications of PSMA-PET derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be due to the fact that (semi-) automated quantification of whole-body tumor volume as PSMA-PET biomarker is an unmet clinical challenge. Therefore, a novel semi-automated software is proposed and evaluated by the present study, which enables the semi-automated quantification of PSMA-PET biomarkers such as whole-body tumor volume. Methods: The proposed quantification is implemented as a research prototype (MI Whole Body Analysis Suite, v1.0, Siemens Medical Solutions USA, Inc., Knoxville, TN). PSMA accumulating foci were automatically segmented by a percental threshold (50% of local SUVmax). Neural networks were trained to segment organs in PET-CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semi-automatically excluded from the analysis. Pretherapeutic PSMA-PET-CTs of 40 consecutive patients treated with 177Lu-PSMA-617 therapy were evaluated in this analysis. The volumetric whole-body tumor volume (PSMATV50), SUVmax, SUVmean and other whole-body imaging biomarkers were calculated for each patient. Semi-automatically derived results were compared with manual readings in a sub-cohort (by one nuclear medicine physician using syngo.MM Oncology software, Siemens Healthineers, Knoxville, TN). Additionally, an inter-observer evaluation of the semi-automated approach was performed in a sub-cohort (by two nuclear medicine physicians). Results: Manually and semi automatically derived PSMA metrics were highly correlated (PSMATV50: R2=1.000; p<0.001; SUVmax: R2=0.988; p<0.001). The inter-observer agreement of the semi-automated workflow was also high (PSMATV50: R2=1.000; p<0.001; ICC=1.000; SUVmax: R2=0.988; p<0.001; ICC=0.997). PSMATV50 [ml] was a significant predictor of overall survival (HR: 1.004; 95%CI: 1.001-1.006, P = 0.002) and remained so in a multivariate regression including other biomarkers (HR: 1.004; 95%CI: 1.001-1.006 P = 0.004). Conclusion: PSMATV50 is a promising PSMA-PET biomarker that is reproducible and easily quantified by the proposed semi-automated software. Moreover, PSMATV50 is a significant predictor of overall survival in patients with advanced prostate cancer that receive 177Lu-PSMA-617 therapy.




nc

Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis.

Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences.




nc

PET imaging quantifying 68Ga-PSMA-11 uptake in metastatic colorectal cancer

At diagnosis 22% of colorectal cancer (CRC) patients have metastases and 50% later develop metastasis. Peptide receptor radionuclide therapy (PRRT) with lutetium-177 (177Lu)-PSMA-617 is employed to treat metastatic prostate cancer (PC). 177Lu-PSMA-617 targets Prostate Specific Membrane Antigen (PSMA) a cell surface protein enriched in PC and the neovasculature of other solid tumors including CRC. We performed gallium-68 (68Ga)-PSMA-11 PET-CT imaging of ten metastatic CRC patients to assess metastasis avidity. Eight patients had lesions lacking avidity and two had solitary metastases exhibiting very low avidity. Despite expression of PSMA in CRC neovasculature, none of the patients exhibited tumor avidity sufficient to be considered for 177Lu-PSMA-617 PRRT.




nc

The Impact of Radiobiologically-Informed Dose Prescription on the Clinical Benefit of Yttrium-90 SIRT in Colorectal Cancer Patients

The purpose of this study was to establish the dose-response relationship of selective internal radiation therapy (SIRT) in patients with metastatic colorectal cancer (mCRC), when informed by radiobiological sensitivity parameters derived from mCRC cell lines exposed to yttrium-90 (90Y). Methods: 23 mCRC patients with liver metastases refractory to chemotherapy were included. 90Y bremsstrahlung SPECT images were transformed into dose maps assuming the local dose deposition method. Baseline and follow-up CT scans were segmented to derive liver and tumor volumes. Mean, median, and D70 (minimum dose to 70% of tumor volume) values determined from dose maps were correlated with change in tumor volume and vRECIST response using linear and logistic regression, respectively. Radiosensitivity parameters determined by clonogenic assays of mCRC cell lines HT-29 and DLD-1 after exposure to 90Y or external beam radiotherapy (EBRT; 6MV photons) were used in biological effective dose (BED) calculations. Results: Mean administered radioactivity was 1469±428 MBq (847-2185 MBq), achieving a mean radiation absorbed tumor dose of 35.5±9.4 Gy and mean normal liver dose of 26.4±6.8 Gy. A 1.0 Gy increase in mean, median, and D70 absorbed dose was associated with reduction in tumor volume of 1.8%, 1.8%, and 1.5%, respectively, and increased probability of vRECIST response (odds ratio: 1.09, 1.09, and 1.10 respectively). Threshold mean, median and D70 doses for response were 48.3, 48.8, and 41.8 Gy respectively. EBRT-equivalent BEDs for 90Y are up to 50% smaller than those calculated by applying protraction-corrected radiobiological parameters derived from EBRT alone. Conclusion: Dosimetric studies have assumed equivalence between 90Y SIRT and EBRT, leading to inflation of BED for SIRT and possible under-treatment. Radiobiological parameters for 90Y were applied to a BED model, providing a calculation method that has the potential to improve assessment of tumor control.




nc

177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer

Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted.