and

|+l.929.344.6502| Cash App payment and billing support




and

Android Phone running Amok.




and

PANDA CUSTOMER CARE NUMBER +1800-3081474 Phone Number




and

AOL Helpline Number 18773238313 technical issues and questions related




and

Russian E-Commerce and E-Payments Report

This free report highlights the main facts, numbers and trends of the Russian ecommerce and e-payments markets in an international perspective.





and

The Open Banking Report 2019 - Insights into the Global Open Banking Landscape

The Open Banking Report 2019 clarifies the role of key key-players in a post-September 14th world and assesses how the landscape has shifted within Europe and beyond.




and

Fraud Prevention and Online Authentication Report 2019/2020

The new edition of the Fraud Prevention and Online Authentication Report 2019/2020 offers an overview of the latest challenges, innovations, and perspectives in the fraud landscape.




and

Cross-Border Payments and Commerce Report 2019 – 2020

The new Cross-Border Payments and Commerce Report 2019 – 2020 depicts the major trends driving growth in cross-border payments, cross-border commerce, and marketplaces.




and

Digital Onboarding and KYC Report 2020

Digital onboarding begins the moment a customer wants to use your products and services and it requires a careful mix of technology and data




and

Does the PSD2 SCA mandate in payment processing prevent fraud under GDPR Recital 47?

The GDC Compliance Advisory Board (CAB) provides insight into how to interpret the Strong Consumer Authentication (SCA) mandate described in PSD 2 without jeopardizing data privacy concerns protected by GDPR. 




and

Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.




and

Crystal structure and Hirshfeld surface analysis of 1,3-diethynyladamantane

The title compound, C14H16, exhibits exceptionally weak intermolecular C—H...π hydrogen bonding of the ethynyl groups, with the corresponding H...π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding complements distal contacts of the CH (aliphatic)...π type [H...π = 3.12 (2)–3.14 (2) Å] to sustain supramolecular layers. Hirshfeld surface analysis of the title compound suggests a relatively limited significance of the C...H/H...C contacts to the crystal packing (24.6%) and a major contribution from H...H contacts accounting 74.9% to the entire surface.




and

Synthesis and crystal structure of (1,10-phenanthroline-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate with an unknown number of solvent molecules

The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenylpyrazole (ppz) cyclometallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The asymmetric unit consists of one [Ir(ppz)2(phen)]+ cation and one [PF6]− counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octahedral C2N4 coordination set. In the crystal structure, the [Ir(ppz)2(phen)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H...F hydrogen bonds. Additional C—H...π interactions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent molecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The title compound has a different space-group symmetry (C2/c) from its solvatomorph (P21/c) comprising 1.5CH2Cl2 solvent molecules per ion pair.




and

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)phenol

The asymmetric unit of the title compound, C17H14N2O, contains two independent molecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intramolecular O—H...N hydrogen bonds may help to consolidate the molecular conformations. The two independent molecules are linked through an N—H...O hydrogen bond. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.9%) and H...C/C...H (39.5%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




and

The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction.




and

Crystal structure and characterization of a new copper(II) chloride dimer with methyl(pyridin-2-ylmethylidene)amine

The new copper(II) complex, namely, di-μ-chlorido-bis{chlorido[methyl(pyridin-2-ylmethylidene)amine-κ2N,N']copper(II)}, [Cu2Cl4(C7H8N2)2], (I), with the ligand 2-pyridylmethyl-N-methylimine (L, a product of Schiff base condensation between methylamine and 2-pyridinecarbaldehyde) is built of discrete centrosymmetric dimers. The coordination about the CuII ion can be described as distorted square pyramidal. The base of the pyramid consists of two nitrogen atoms from the bidentate chelate L [Cu—N = 2.0241 (9), 2.0374 (8) Å] and two chlorine atoms [Cu—Cl = 2.2500 (3), 2.2835 (3) Å]. The apical position is occupied by another Cl atom with the apical bond being significantly elongated at 2.6112 (3) Å. The trans angles of the base are 155.16 (3) and 173.79 (2)°. The Cu...Cu separation in the dimer is 3.4346 (3) Å. In the crystal structure, the loosely packed dimers are arranged in stacks propagating along the a axis. The X-band polycrystalline 77 K EPR spectrum of (I) demonstrates a typical axial pattern characteristic of mononuclear CuII complexes. Compound (I) is redox active and shows a cyclic voltammetric response with E1/2 = −0.037 V versus silver–silver chloride electrode (SSCE) assignable to the reduction peak of CuII/CuI in methanol as solvent.




and

Redetermination and new description of the crystal structure of vanthoffite, Na6Mg(SO4)4

The crystal structure of vanthoffite {hexasodium magnesium tetrakis[sulfate(VI)]}, Na6Mg(SO4)4, was solved in the year 1964 on a synthetic sample [Fischer & Hellner (1964). Acta Cryst. 17, 1613]. Here we report a redetermination of its crystal structure on a mineral sample with improved precision. It was refined in the space group P21/c from a crystal originating from Surtsey, Iceland. The unique Mg (site symmetry overline{1}) and the two S atoms are in usual, only slightly distorted octahedral and tetrahedral coordinations, respectively. The three independent Na atoms are in a distorted octahedral coordination (1×) and distorted 7-coordinations intermediate between a `split octahedron' and a pentagonal bipyramid (2×). [MgO6] coordination polyhedra interchange with one half of the sulfate tetrahedra in <011> chains forming a (100) meshed layer, with dimers formed by edge-sharing [NaO7] polyhedra filling the interchain spaces. The other [NaO7] polyhedra are organized in a parallel layer formed by [010] and [001] chains united through edge sharing and bonds to the remaining half of sulfate groups and to [NaO6] octahedra. The two types of layers interconnect through tight bonding, which explains the lack of morphological characteristics typical of layered structures.




and

Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) pentafluoridooxidovanadate(V)

In the structure of the title salt, (C7H12N6)[VOF5], second-order Jahn–Teller distortion of the coordination octahedra around V ions is reflected by coexistence of short V—O bonds [1.5767 (12) Å] and trans-positioned long V—F bonds [2.0981 (9) Å], with four equatorial V—F distances being intermediate in magnitude [1.7977 (9)–1.8913 (9) Å]. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N–H...F interactions [N...F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms. Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly H...F/F...H, accounting for 74.4 and 36.8% of the contacts for the individual anions and cations, respectively. Weak CH...F and CH...N bonds are essential for generation of three-dimensional structure.




and

Obtaining the best results: aspects of data collection, model finalization and interpretation of results in small-molecule crystal-structure determination

In small-molecule single-crystal structure determination, we now have at our disposal an inspiring range of fantastic diffractometers with better, brighter sources, and faster, more sensitive detectors. Faster and more powerful computers provide integrated tools and software with impressive graphical user interfaces. Yet these tools can lead to the temptation not to check the work thoroughly and one can too easily overlook tell-tale signs that something might be amiss in a structure determination; validation with checkCIF is not always revealing. This article aims to encourage practitioners, young and seasoned, by enhancing their structure-determination toolboxes with a selection tips and tricks on recognizing and handling aspects that one should constantly be aware of. Topics include a pitfall when setting up data collections, the usefulness of reciprocal lattice layer images, processing twinned data, tips for disorder modelling and the use of restraints, ensuring hydrogen atoms are added to a model correctly, validation beyond checkCIF, and the derivation and interpretation of the final results.




and

Doubt about Upgrading a lenovo ideacentre 300-20ish and GPU and CPU temeperature




and

Suggestions upgrading RAM, video and sound for HP Pavilion 500-023w Win 8.1?




and

Uninstalling Garage Band




and

iMac Stand Removal




and

Understanding of magnetic ordering in Gd-rich compounds




and

Three new acid M+ arsenates and phosphates with multiply protonated As/PO4 groups

The crystal structures of caesium di­hydrogen arsenate(V) bis­[tri­hydrogen arsen­ate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium di­hydrogen arsenate(V) tri­hydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis­(di­hydrogen phosphate), Li2(H2PO4)2, were solved from single-crystal X-ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydro­thermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three-dimensional (3D) framework of PO4 tetra­hedra sharing corners with Li2O6 dimers built of edge-sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.




and

Crystallographic curiosities: polymorphism and structures with Z' > 1




and

Deciphering the hydrogen-bonding scheme in the crystal structure of tri­phenyl­methanol: a tribute to George Ferguson and co-workers

The crystal structure of tri­phenyl­methanol, C19H16O, has been redetermined using data collected at 295 and 153 K, and is compared to the model published by Ferguson et al. over 25 years ago [Ferguson et al. (1992). Acta Cryst. C48, 1272–1275] and that published by Serrano-González et al., using neutron and X-ray diffraction data [Serrano-González et al. (1999). J. Phys. Chem. B, 103, 6215–6223]. As predicted by these authors, the hy­droxy groups are involved in weak inter­molecular hydrogen bonds in the crystal, forming tetra­hedral tetra­­mers based on the two independent mol­ecules in the asymmetric unit, one of which is placed on the threefold symmetry axis of the Roverline{3} space group. However, the reliable determination of the hy­droxy H-atom positions is difficult to achieve, for two reasons. Firstly, a positional disorder affects the full asymmetric unit, which is split over two sets of positions, with occupancy factors of ca 0.74 and 0.26. Secondly, all hy­droxy H atoms are further disordered, either by symmetry, or through a positional disorder in the case of parts placed in general positions. We show that the correct description of the hydrogen-bonding scheme is possible only if diffraction data are collected at low temperature. The pro­chiral character of the hydrogen-bonded tetra­meric supra­molecular clusters leads to enanti­omorphic three-dimensional graphs in each tetra­mer. The crystal is thus a racemic mixture of supS and supR motifs, consistent with the centro­symmetric nature of the Roverline{3} space group.




and

The many flavours of halogen bonds – message from experimental electron density and Raman spectroscopy

Experimental electron-density studies based on high-resolution diffraction experiments allow halogen bonds between heavy halogens to be classified. The topological properties of the electron density in Cl⋯Cl contacts vary smoothly as a function of the inter­action distance. The situation is less straightforward for halogen bonds between iodine and small electronegative nucleophiles, such as nitro­gen or oxygen, where the electron density in the bond critical point does not simply increase for shorter distances. The number of successful charge–density studies involving iodine is small, but at least individual examples for three cases have been observed. (a) Very short halogen bonds between electron-rich nucleophiles and heavy halogen atoms resemble three-centre–four-electron bonds, with a rather symmetric heavy halogen and without an appreciable σ hole. (b) For a narrow inter­mediate range of halogen bonds, the asymmetric electronic situation for the heavy halogen with a pronounced σ hole leads to rather low electron density in the (3,−1) critical point of the halogen bond; the properties of this bond critical point cannot fully describe the nature of the associated inter­action. (c) For longer and presumably weaker contacts, the electron density in the halogen bond critical point is only to a minor extent reduced by the presence of the σ hole and hence may be higher than in the aforementioned case. In addition to the electron density and its derived properties, the halogen–carbon bond distance opposite to the σ hole and the Raman frequency for the associated vibration emerge as alternative criteria to gauge the halogen-bond strength. We find exceptionally long C—I distances for tetra­fluoro­diiodo­benzene molecules in cocrystals with short halogen bonds and a significant red shift for their Raman vibrations.




and

Phase transition and structures of the twinned low-temperature phases of (Et4N)[ReS4]

The title com­pound, tetra­ethyl­ammonium tetra­thio­rhenate, [(C2H5)4N][ReS4], has, at room temperature, a disordered structure in the space group P63mc (Z = 2, α-phase). A phase transition to the monoclinic space group P21 (Z = 2, γ-phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexa­gonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β-phase (P63, Z = 18) in addition to the γ-phase. All crystals of the β-phase are contaminated with the γ-phase. Additionally, the crystals of the β-phase are merohedrally twinned. In contrast to the α-phase, the β- and γ-phases do not show disorder.




and

Tolerance factor and phase stability of the garnet structure. Corrigendum

An error in an equation in the paper by Song et al. [Acta Cryst. (2019), C75, 1353–1358] is corrected.




and

Conversion of 3-amino-4-aryl­amino-1H-iso­chromen-1-ones to 1-aryl­iso­chromeno[3,4-d][1,2,3]triazol-5(1H)-ones: synthesis, spectroscopic characterization and the structures of four products and one ring-opened derivative

An efficient synthesis of 1-aryl­isochromeno[3,4-d][1,2,3]triazol-5(1H)-ones, involving the diazo­tization of 3-amino-4-aryl­amino-1H-isochromen-1-ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The mol­ecules of 1-phenyl­isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H9N3O2, (I), are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds, while the structures of 1-(2-methyl­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C16H11N3O2, (II), and 1-(3-chloro­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the mol­ecules into simple chains, which are further linked into sheets by π-stacking inter­actions in (II) but not in (III). In the structure of 1-(4-chloro­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (IV), isomeric with (III), a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. When com­pound (II) was exposed to a strong acid in methanol, qu­anti­tative conversion occurred to give the ring-opened transesterification product methyl 2-[4-hy­droxy-1-(2-methyl­phen­yl)-1H-1,2,3-triazol-5-yl]benzoate, C17H15N3O3, (V), where the mol­ecules are linked by paired O—H⋯O hydrogen bonds to form centrosymmetric dimers.




and

Synthesis of N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones and their conversion to N-substituted (E)-3-(2-aryl-2-oxo­ethyl­idene)indolin-2-ones: synthetic sequence, spectroscopic characterization and structures of

An operationally simple and time-efficient approach has been developed for the synthesis of racemic N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones by a piperidine-catalysed aldol reaction between aryl methyl ketones and N-alkyl­isatins. These aldol products were used successfully as strategic inter­mediates for the preparation of N-substituted (E)-3-(2-hetaryl-2-oxo­ethyl­idene)indolin-2-ones by a stereoselective dehydration reaction under acidic conditions. The products have all been fully characterized by 1H and 13C NMR spectroscopy, by mass spectrometry and, for a representative selection, by crystal structure analysis. In each of (RS)-1-benzyl-3-hy­droxy-3-[2-(4-meth­oxy­phen­yl)-2-oxoeth­yl]indolin-2-one, C24H21NO4, (Ic), and (RS)-1-benzyl-3-{2-[4-(di­methyl­amino)­phen­yl]-2-oxoeth­yl}-3-hy­droxy­indolin-2-one, C25H24N2O3, (Id), inversion-related pairs of mol­ecules are linked by O—H⋯O hydrogen bonds to form R22(10) rings, which are further linked into chains of rings by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in (Ic) and by C—H⋯π(arene) hydrogen bonds in (Id). The mol­ecules of (RS)-1-benzyl-3-hy­droxy-3-[2-oxo-2-(pyridin-4-yl)eth­yl]indolin-2-one, C22H18N2O3, (Ie), are linked into a three-dimensional framework structure by a combination of O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. (RS)-3-[2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoeth­yl]-1-benzyl-3-hy­droxy­indolin-2-one, C24H19NO5, (If), crystallizes with Z' = 2 in the space group Poverline{1} and the mol­ecules are linked into com­plex sheets by a combination of O—H⋯O, C—H⋯O and C—H⋯π(arene) hydro­gen bonds. In each of (E)-1-benzyl-3-[2-(4-fluoro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H16FNO2, (IIa), and (E)-1-benzyl-3-[2-oxo-2-(thiophen-2-yl)ethylidene]indolin-2-one, C21H15NO2S, (IIg), the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond, while those of (E)-1-benzyl-3-[2-oxo-2-(pyridin-4-yl)ethyl­idene]indolin-2-one, C22H16N2O2, (IIe), are linked by three C—H⋯O hydrogen bonds to form sheets which are further linked into a three-dimensional structure by C—H⋯π(arene) hydrogen bonds. There are no hydrogen bonds in the structures of either (E)-1-benzyl-3-[2-(4-meth­oxy­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C24H19NO3, (IIc), or (E)-1-benzyl-5-chloro-3-[2-(4-chloro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H15Cl2NO2, (IIh), but the mol­ecules of (IIh) are linked into chains of π-stacked dimers by a combination of C—Cl⋯π(arene) and aromatic π–π stacking inter­actions.




and

Synthesis, decom­position studies and crystal structure of a three-dimensional CuCN network structure with protonated N-methyl­ethano­lamine as the guest cation

The com­pound poly[2-hy­droxy-N-methyl­ethan-1-aminium [μ3-cyanido-κ3C:C:N-di-μ-cyanido-κ4C:N-dicuprate(I)]], {(C3H10NO)[Cu2(CN)3]}n or [meoenH]Cu2(CN)3, crystallizes in the tetra­gonal space group P43. The structure consists of a three-dimensional (3D) anionic CuICN network with noncoordinated protonated N-methyl­ethano­lamine cations providing charge neutrality. Pairs of cuprophilic Cu atoms are bridged by the C atoms of μ3-cyanide ligands, which link these units into a 43 spiral along the c axis. The spirals are linked together into a 3D anionic network by the two other cyanide groups. The cationic moieties are linked into their own 43 spiral via N—H⋯O and O—H⋯O hydrogen bonds, and the cations inter­act with the 3D network via an unusual pair of N—H⋯N hydrogen bonds to one of the μ2-cyanide groups. Thermogravimetric analysis indicates an initial loss of the base cation and one cyanide as HCN at temperatures in the range 130–250 °C to form CuCN. We show how loss of a specific cyanide group from the 3D CuCN structure could form the linear CuCN structure. Further heating leaves a residue of elemental copper, isolated as the oxide.




and

Sodium sulfite hepta­hydrate and its relation to sodium carbonate hepta­hydrate

The monoclinic crystal structure of Na2SO3(H2O)7 is characterized by an alternating stacking of (100) cationic sodium–water layers and anionic sulfite layers along [100]. The cationic layers are made up from two types of [Na(H2O)6] octa­hedra that form linear 1∞[Na(H2O)4/2(H2O)2/1] chains linked by dimeric [Na(H2O)2/2(H2O)4/1]2 units on both sides of the chains. The isolated trigonal–pyramidal sulfite anions are connected to the cationic layers through an intricate network of O—H⋯O hydrogen bonds, together with a remarkable O—H⋯S hydrogen bond, with an O⋯S donor–acceptor distance of 3.2582 (6) Å, which is about 0.05 Å shorter than the average for O—H⋯S hydrogen bonds in thio­salt hydrates and organic sulfur com­pounds of the type Y—S—Z (Y/Z = C, N, O or S). Structural relationships between monoclinic Na2SO3(H2O)7 and ortho­rhom­bic Na2CO3(H2O)7 are discussed in detail.




and

7-Iodo-5-aza-7-deazaguanine ribonucleoside: crystal structure, physical properties, base-pair stability and functionalization

The positional change of nitro­gen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-de­aza­guanosine. Contrary to guanosine, this mol­ecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs. The present work reports the single-crystal X-ray structure of 7-iodo-5-aza-7-de­aza­guanosine, C10H12IN5O5 (1). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4'-endo) for the ribose moiety, with an anti­periplanar orientation of the 5'-hy­droxy group. Crystal packing is controlled by inter­actions between nucleobase and sugar moieties. The 7-iodo substituent forms a contact to oxygen-2' of the ribose moiety. Self-pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H⋯O and N—H⋯O). The concept of pK-value differences to evaluate base-pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all-purine' RNA. Furthermore, the 7-iodo substituent of 1 was functionalized with benzo­furan to detect motional constraints by fluorescence spectroscopy.




and

LaTe1.82(1): modulated crystal structure and chemical bonding of a chalcogen-deficient rare earth metal polytelluride

Crystals of the rare earth metal polytelluride LaTe1.82(1), namely, lanthanum telluride (1/1.8), have been grown by molten alkali halide flux reactions and vapour-assisted crystallization with iodine. The two-dimensionally incommensurately modulated crystal structure has been investigated by X-ray diffraction experiments. In contrast to the tetra­gonal average structure with unit-cell dimensions of a = 4.4996 (5) and c = 9.179 (1) Å at 296 (1) K, which was solved and refined in the space group P4/nmm (No. 129), the satellite reflections are not compatible with a tetra­gonal symmetry but enforce a symmetry reduction. Possible space groups have been derived by group–subgroup relationships and by consideration of previous reports on similar rare earth metal polychalcogenide structures. Two structural models in the ortho­rhom­bic superspace group, i.e. Pmmn(α,β,1 over 2)000(−α,β,1 over 2)000 (No. 59.2.51.39) and Pm21n(α,β,1 over 2)000(−α,β,1 over 2)000 (No. 31.2.51.35), with modulation wave vectors q1 = αa* + βb* + 1 over 2c* and q2 = −αa* + βb* + 1 over 2c* [α = 0.272 (1) and β = 0.314 (1)], have been established and evaluated against each other. The modulation describes the distribution of defects in the planar [Te] layer, coupled to a displacive modulation due to the formation of different Te anions. The bonding situation in the planar [Te] layer and the different Te anion species have been investigated by density functional theory (DFT) methods and an electron localizability indicator (ELI-D)-based bonding analysis on three different approximants. The temperature-dependent electrical resistance revealed a semiconducting behaviour with an estimated band gap of 0.17 eV.




and

Polymorphism and phase transformation in the dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene

A new polymorph (form II) is reported for the 1:1 dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene (TFDIB·DMSO or C6F4I2·C2H6SO). The structure is similar to that of a previously reported polymorph (form I) [Britton (2003). Acta Cryst. E59, o1332–o1333], containing layers of TFDIB mol­ecules with DMSO mol­ecules between, accepting I⋯O halogen bonds from two TFDIB mol­ecules. Re-examination of form I over the temperature range 300–120 K shows that it undergoes a phase transformation around 220 K, where the DMSO mol­ecules undergo re-orientation and become ordered. The unit cell expands by ca 0.5 Å along the c axis and contracts by ca 1.0 Å along the a axis, and the space-group symmetry is reduced from Pnma to P212121. Refinement of form I against data collected at 220 K captures the (average) structure of the crystal prior to the phase transformation, with the DMSO mol­ecules showing four distinct disorder com­ponents, corresponding to an overlay of the 297 and 120 K structures. Assessment of the inter­molecular inter­action energies using the PIXEL method indicates that the various orientations of the DMSO mol­ecules have very similar total inter­action energies with the molecules of the TFDIB framework. The phase transformation is driven by inter­actions between DMSO mol­ecules, whereby re-orientation at lower temperature yields significantly closer and more stabilizing inter­actions between neighbouring DMSO mol­ecules, which lock in an ordered arrangement along the shortened a axis.




and

Open-access and free articles in Acta Crystallographica Section C: Crystal Structural Communications




and

Oscars 2015: Printable Oscar ballots and bingo cards

Announcement cards and envelopes by designer Marc Friedland which are used by presenters at the Oscars to announce winners are on display at the food and decor preview Feb. 4, 2015 of this years Governors Ball, the post-Oscar celebration which follows the 87th Oscars ceremony on Feb. 22 in Hollywood.; Credit: Robyn Beck/AFP/Getty Images

Lisa Brenner and Mike Roe

Ready for your 2015 Oscars party? We've got printable Oscars ballots and the bingo cards you need to prove your superiority over your movie-loving friends during your Academy Awards viewing party. Here are the party printables you'll need to play along with Sunday's show, with TV coverage kicking off at 4 p.m. Pacific. (Get caught up on KPCC's 2015 Oscars coverage right here to have more fun and help make your picks!)

Printable official Oscars ballot

2015 Oscars ballot

Printable Oscars bingo cards

  • Download, print and play at home. Use our custom generator to create as many cards as you need for your party.
  • How to play: Mark off each block when you hear these words or see these things happen during the Oscars telecast on Sunday. When you get five blocks in a row (horizontally, vertically, or diagonally) stand up and shout "OSCAR!!" Alternate rules: Play as a drinking game and for every block, take a sip. Finished a row? Finish your scotch.

Interactive Oscars bingo cards 

  • WNYC pays tribute to the annual exercise in entertainment award show parody with a portable, computerized bingo. Play on your phone, iPad, computer or print a card. Refresh for new combinations.

This content is from Southern California Public Radio. View the original story at SCPR.org.




and

Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy electron diffraction (RHEED) for Si(111) surface

Features of azimuthal plots for RHEED and its new counterpart, RHEPD, are discussed. The plots, for both electrons and positrons, are determined using dynamical diffraction theory.




and

Wedge reversion antisymmetry and 41 types of physical quantities in arbitrary dimensions

Physical quantities in arbitrary dimensional space can be classified into 41 types using three antisymmetries within the framework of Clifford algebra.




and

The quaternion-based spatial coordinate- and orientation-frame alignment problems

Quaternion methods for obtaining solutions to the problem of finding global rotations that optimally align pairs of corresponding lists of 3D spatial and/or orientation data are critically studied. The existence of multiple literatures and historical contexts is pointed out, and the algebraic solutions of the quaternion approach to the classic 3D spatial problem are emphasized. The treatment is extended to novel quaternion-based solutions to the alignment problems for 4D translation and orientation data.




and

Domain formation and phase transitions in the wurtzite-based heterovalent ternaries: a Landau theory analysis

A Landau theory for the wurtzite-based heterovalent ternary semiconductor ZnSnN2 is developed and a first-order reconstructive phase transition is proposed as the cause of observed crystal structure disorder. The model infers that the phase transition is paraelectric to antiferroelectric.




and

Forthcoming article in Acta Crystallographica Section A Foundations and Advances




and

#Chemsafety at #ACSSanDiego

Here’s what’s planned for chemical and laboratory safety at the ACS National Meeting in San Diego, which starts on Sunday. You can also take advantage of the Division of Chemical Health & Safety’s printer-friendly CHAS-At-A-Glance. Sunday, Aug. 25 Committee on Chemical Safety Open and Executive Subcommittee Meeting, 7:00–10:00 am, Marriott Marquis San Diego Marina, Marina […]

The post #Chemsafety at #ACSSanDiego appeared first on CENtral Science.




and

Yoti, Galaxkey, LedgerState team up for government and email security services

(The Paypers) Yoti has revealed a pair of partnerships to provide solutions combining its biometric technology...




and

Safened rebrands KYC activities as Fourthline

(The Paypers) The Dutch fintech startup Safened will be rebranded as



and

GiG receives ISO 27001 certificate on Core platform and data warehouse

(The Paypers) Gaming Innovation Group (GiG) has achieved ISO 27001 certification for the second year running.




and

AML and CFT obligations for digital assets high on the US regulatory bodies' agenda

(The Paypers) Financial institutions (FIs) working in digital assets have been required by US regulatory bodies to pay attention to their anti-money laundering and...




and

Verimi, Scrive team up to expand digital identity in Europe

(The Paypers) Scrive, a Nordic e-sign and eID services provider, and