cr

Synthesis, mol­ecular and crystal structure of [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O

The title compound, bis­[di­thio­bis­(formamidinium)] hexa­bromido­ruthenium dibromide trihydrate, [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O, crystallizes in the ortho­rhom­bic system, space group Cmcm, Z = 4. The [RuBr6]2− anionic complex has an octa­hedral structure. The Ru—Br distances fall in the range 2.4779 (4)–2.4890 (4) Å. The S—S and C—S distances are 2.0282 (12) and 1.783 (2) Å, respectively. The H2O mol­ecules, Br− ions, and NH2 groups of the cation are linked by hydrogen bonds. The conformation of the cation is consolidated by intra­molecular O—H⋯Br, O—H⋯O, N—H⋯Br and N—H⋯O hydrogen bonds. The [(NH2)2CSSC(NH2)2]2+ cations form a hydrogen-bonded system involving the Br − ions and the water mol­ecules. Two Br − anions form four hydrogen bonds, each with the NH2 groups of two cations, thus linking the cations into a ring. The rings are connected by water mol­ecules, forming N—H⋯O—H⋯Br hydrogen bonds.




cr

Crystal structure of bis­[(η5-tert-butyl­cyclo­pentadien­yl)tri­carbonyl­molybdenum(I)](Mo—Mo)

The dinuclear mol­ecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclo­penta­dienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, inter­molecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.




cr

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8.




cr

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




cr

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




cr

Synthesis and crystal structure of (2E)-1-[3,5-bis­(benz­yloxy)phen­yl]-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

In the title compound, C31H28O4, the phenyl rings of the chalcone unit subtend a dihedral angle of 26.43 (10)°. The phenyl rings of the pendant benz­yloxy groups are orientated at 75.57 (13) and 75.70 (10)° with respect to their attached ring. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, which showed a breakdown into H⋯H (49.8%), H⋯C/C⋯H (33.8%) and H⋯O/O⋯H (13.6%) inter­actions with other types making negligible contributions.




cr

Crystal structure of hexa­glycinium dodeca­iodo­triplumbate

The crystal structure of hexa­glycinium tetra-μ-iodido-octa­iodido­triplumbate, (C2H6NO2)6[Pb3I12] or (GlyH)6[Pb3I12], is reported. The compound crystallizes in the triclinic space group Poverline{1}. The [Pb3I12]6− anion is discrete and located around a special position: the central Pb ion located on the inversion center is holodirected, while the other two are hemidirected. The supra­molecular nature is mainly based on C—H⋯I, N—H⋯I, O—H⋯I and N—H⋯O hydrogen bonds. Dimeric cations of type (A+⋯A+) for the amino acid glycine are observed for the first time.




cr

Crystal structure of bis­(β-alaninium) tetra­bromidoplumbate

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




cr

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.




cr

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




cr

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




cr

Crystal structure of propane-1,3-diaminium squarate dihydrate

Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-di­amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra­gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra­molecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




cr

Foreword to the AfCA collection: celebrating work published by African researchers in IUCr journals




cr

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




cr

Crystal structure of a tris(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.




cr

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




cr

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




cr

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




cr

Color center creation by dipole stacking in crystals of 2-meth­oxy-5-nitro­aniline

This work describes the X-ray structure of orange–red crystals of 2-meth­oxy-5-nitro­aniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an inter­molecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align anti­parallel. Stacked mol­ecules inter­act with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV.




cr

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.




cr

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C inter­actions.




cr

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.




cr

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




cr

Crystal structures of the (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh­yl)anthra­quinone ligands

When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) tri-μ-chlorido-bis­({3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O inter­actions. The stronger inter­molecular attractions are likely the offset parallel π–π inter­actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra­quinone moieties, the latter of which are capped by toluene solvate mol­ecules, making for π-stacks of four mol­ecules each. The related ligand, 2-(di-tert-butyl­phosphinometh­yl)-anthra­quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro­form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis­(carbon­yl{3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π inter­actions between anthra­quinone groups of adjacent mol­ecules link the mol­ecules in one dimension.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




cr

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.




cr

Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br)

During our studies of the oxidation of gold(I) complexes of tri­alkyl­phosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis­(tri­alkyl­phosphane chalcogenido)gold(I) tetra­halogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These corres­pond to the addition of one halogen atom per gold atom of the AuI precursor. Com­pound 1, bis­(triiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aur­ate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­bromi­doaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis­(tert-butyl­diiso­propyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis­(tri-tert-butyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors. There are several short intra­molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl inter­actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.




cr

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




cr

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




cr

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




cr

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




cr

Crystal structure and supra­molecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene

A host–guest supra­molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo­nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo­nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π inter­actions. Both functional groups on the macrocyclic rim are engaged in supra­molecular inter­actions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) inter­actions, resulting in the formation of a supra­molecular dimer in the crystal structure.




cr

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.




cr

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S')bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.




cr

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




cr

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular π–π inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular π–π inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.




cr

Synthesis and crystal structure of sodium (ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ate] octa­hydrate

The title compound, catena-poly[[tri­aqua­sodium]-di-μ-aqua-[tri­aqua­sodium]-μ-(ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the meth­oxy­propyl unit of the ligand to form infinite chains.




cr

Crystal structure of a hydrogen-bonded 2:1 co-crystal of 4-nitro­phenol and 4,4'-bi­pyridine

In the title compound, C10H8N2·2C6H5NO3, 4-nitro­phenol and 4,4'-bi­pyridine crystallized together in a 2:1 ratio in the space group P21/n. There is a hydrogen-bonding inter­action between the nitro­gen atoms on the 4,4'-bi­pyridine mol­ecule and the hydrogen atom on the hydroxyl group on the 4-nitro­phenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016). Cryst. Growth Des. 16, 5966–5975], which differs mainly due to a twist in the 4,4'-bi­pyridine mol­ecule.




cr

Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra­hydro-2H-1,3-benzodioxole-4,5-diol

The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The mol­ecule is a relevant inter­mediary for the synthesis of speciosins, ep­oxy­quinoides or their analogues. The mol­ecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an iso­propyl­idenedioxo ring. The packing is directed by hydrogen bonds that define double planes of mol­ecules laying along the ab plane and van der Waals inter­actions between aliphatic chains that point outwards of the planes.




cr

Crystal structures of two different multi-component crystals consisting of 1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline and fumaric acid

Two different multi-component crystals consisting of papaverine [1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline, C20H21NO4] and fumaric acid [C4H4O4] were obtained. Single-crystal X-ray structure analysis revealed that one, C20H21NO4·1.5C4H4O4 (I), is a salt co-crystal composed of salt-forming and non-salt-forming mol­ecules, and the other, C20H21NO4·0.5C4H4O4 (II), is a salt–co-crystal inter­mediate (i.e., in an inter­mediate state between a salt and a co-crystal). In this study, one state (crystal structure at 100 K) within the salt–co-crystal continuum is defined as the ‘inter­mediate’.




cr

Crystal structure of (μ2-7-{[bis­(pyridin-2-ylmeth­yl)amino-1κ3N,N',N'']meth­yl}-5-chloro­quinolin-8-olato-2κN;1:2κ2O)tri­chlorido-1κCl,2κ2Cl-dizinc(II)

The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one penta­dentate ligand containing quinolin-8-olato and bis­(pyridin-2-ylmeth­yl)amine groups. One of the two ZnII atom adopts a tetra­hedral geometry and coordinates two chlorido ligands with chelate coord­ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine unit. In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another inter­molecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two inter­molecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other inter­molecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The mol­ecules are cross-linked through the four inter­molecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.




cr

Crystal structure of N,N',N''-tri­cyclo­prop­ylbenzene-1,3,5-tricarboxamide

The title compound, C18H21N3O3, was prepared from 1,3,5-benzene­tricarbonyl trichloride and cyclo­propyl­amine. Its crystal structure was solved in the monoclinic space group P21/c. In the crystal, the three amide groups of the mol­ecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the benzene ring. The mol­ecules are linked by N—H⋯O hydrogen bonds, forming two-dimensional supra­molecular aggregates that extend parallel to the crystallographic ab plane and are further connected by C—H⋯O contacts. As a result of the supra­molecular inter­actions, a propeller-like conformation of the title mol­ecule can be observed.




cr

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and π–π inter­actions, yielding a three-dimensional network.




cr

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.