cr

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




cr

Crystal structure of di­ethyl­ammonium dioxido{Z)-N-[(pyri­din-2-yl)car­bon­yl­azan­idyl]pyri­dine-2-car­box­imid­ato}vana­date(1−) monohydrate

The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and di­ethyl­amine in methanol. It crystallizes in the triclinic crystal system in space group Poverline{1}. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water mol­ecule to two complex anions and one di­ethyl­ammonium ion. One of the CH2 groups in the di­ethyl­amine is disordered over two sets of sites in a 0.7:0.3 ratio.




cr

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, isopropyl 4-[4-(di­fluoro&

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.




cr

Crystal structure of 4-(benzo[d]thia­zol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one

In the title compound, C12H11N3OS, the inter­planar angle between the pyrazole and benzo­thia­zole rings is 3.31 (7)°. In the three-dimensional mol­ecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to (overline{1}01) can be recognized as a subsection of the packing.




cr

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.




cr

Crystal structure and characterization of a new one-dimensional copper(II) coordination polymer containing a 4-amino­benzoic acid ligand

A CuII coordination polymer, catena-poly[[[aqua­copper(II)]-bis­(μ-4-amino­benz­o­ato)-κ2N:O;κ2O:N] monohydrate], {[Cu(pABA)2(H2O)]·H2O}n (pABA = p-amino­benzoate, C7H4NO2−), was synthesized and characterized. It exhibits a one-dimensional chain structure extended into a three-dimensional supra­molecular assembly through hydrogen bonds and π–π inter­actions. While the twinned crystal shows a metrically ortho­rhom­bic lattice and an apparent space group Pbcm, the true symmetry is monoclinic (space group P2/c), with disordered Cu atoms and mixed roles of water mol­ecules (aqua ligand/crystallization water). The luminescence spectrum of the complex shows an emission at 345 nm, cf. 349 nm for pABAH.




cr

Crystal structure of the sodium salt of mesotrione: a triketone herbicide

The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methane­sulfonyl-2-nitro­phen­yl)carbon­yl]-3-oxo­cyclo­hex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol mol­ecule, and an O atom from the methyl­sulfonyl group of a neighboring mol­ecule. Simultaneously, an O atom of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.




cr

Synthesis, characterization, and crystal structure of 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide

An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the crystal structure, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions link the mol­ecules. The structure exhibits disorder of the mol­ecule.




cr

Crystal structure and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one

In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains extending along the a-axis direction. The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties.




cr

Synthesis and crystal structures of bis­[1-oxopyridin-2-olato(1−)]bis­(penta­fluoro­phen­yl)silicon(IV)–tetra­hydro­furan–pentane (2/1/1), bis­[1-oxopyridin-2-olato(1−)]bis­(p-tol­yl)silicon(IV), and dimes

The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hy­droxy­pyridin-2-one in tetra­hydro­furan (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tol­yl2Si(OPO)2 (2) and mesit­yl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tol­yl2SiCl2 and mesit­yl2SiCl2, respectively, in aceto­nitrile. The oxygen-bonded carbon and nitro­gen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino­naphthalene through two-step reactions of acetyl­ation and nitration. The mol­ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl­amino group (C-6). In the crystal, the mol­ecules are assembled into two-dimensional sheet-like structures by inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.




cr

Crystal structure and Hirshfeld surface analysis of 4-oxo-3-phenyl-2-sulfanyl­idene-5-(thio­phen-2-yl)-3,4,7,8,9,10-hexa­hydro-2H-pyrido[1,6-a:2,3-d']di­pyrimidine-6-carbo­nitrile

In the title compound, C21H15N5OS2, mol­ecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with R22(12) and R22(16) motifs, respectively, thus forming layers parallel to the (10overline{4}) plane. In addition, C=S⋯π and C≡N⋯π inter­actions between the layers ensure crystal cohesion. The Hirshfeld surface analysis indicates that the major contributions to the crystal packing are H⋯H (43.0%), C⋯H/H⋯C (16.9%), N⋯H/H⋯N (11.3%) and S⋯H/H⋯S (10.9%) inter­actions.




cr

Crystal structure of tetra­kis­(μ-2-hy­droxy-3,5-di­isoprop­yl­benzoato)bis­[(dimethyl sulfoxide)copper(II)]

Metal complexes of 3,5-diiso­propyl­salicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diiso­propyl­salicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hy­droxy group of the diiso­propyl­salicylate ligands participates in intra­molecular O—H⋯O hydrogen-bonding inter­actions.




cr

‘Young crystallographers’ rejuvenate crystallography in Germany

Since its founding in 2013, the Young Crystallographers (YC) have become one of the most active working groups not only within their parent organization, the German Crystallographic Society (DGK), but also among other young crystallographers' groups in Europe and the world. The aim of the YC is and always has been to support early-career researchers in the diverse fields of crystallography and the rejuvenation of the field on a national scale. Over the past decade, we have curated events, platforms, and educational content tailored to foster collaboration and knowledge transfer among young crystallographers. In this article, we introduce our group and show how this active and diverse community has shaped the rejuvenation of crystallography in Germany, strengthened by the support of our national society.




cr

Crystal structure of 1-{4-[bis­(4-methyl­phen­yl)amino]­phen­yl}ethene-1,2,2-tricarbo­nitrile

The title compound, C25H18N4, crystallizes in the centrosymmetric ortho­rhom­bic space group Pbca, with eight mol­ecules in the unit cell. The main feature noticeable in the structure is the impact of the tri­cyano­vinyl (TCV) group in forcing partial planarity of the portion of the mol­ecule carrying the TCV group and directing the mol­ecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intra­molecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitro­gen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC inter­actions with distances of 2.637 (17) Å.




cr

Crystal structure of (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone

The structure of (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone, C13H13ClFNO4, at 100 K has monoclinic (P21) symmetry. The compound has a polymeric structure propagated by a screw axis parallel to the b axis with N—H⋯O hydrogen bonding. It is of inter­est with respect to efforts in the synthesis of a candidate anti­cancer drug, parsaclisib.




cr

Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide

The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula R13–nR2nPEAuX3 (R1 = t-butyl; R2 = i-propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding bromido derivatives are 9b–16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deutero­chloro­form monosolvate 11aa), 12a (as its di­chloro­methane monosolvate), 14a, 15a (as its deutero­chloro­form monosolvate 15aa, in which the solvent mol­ecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of 11a, 15a, 11b and 15b form an isotypic set, and those of compounds 10aa and 14a form an isotypic pair. All structures have Z' = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetra­hedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable trans influence of S and Se donor atoms on a trans Au—Cl bond. Each compound with an isopropyl group shows a short intra­molecular contact of the type C—Hmethine⋯Xcis; these may be regarded as intra­molecular ‘weak’ hydrogen bonds, and they determine the orientation of the AuX3 groups. The mol­ecular packing is analysed in terms of various short contacts such as weak hydrogen bonds C—H⋯X and contacts between the heavier atoms, such as X⋯X (9a, 10aa, 11aa, 15aa and 9b), S⋯S (10aa, 11a and 12a) and S⋯Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent mol­ecules take part in C—H⋯Cl hydrogen bonds; for 15aa, a disordered solvent region at z ≃ 0 is observed. Structure 13b involves unusual inversion-symmetric dimers with Se⋯Au and Se⋯Br contacts, further connected by Br⋯Br contacts.




cr

Crystal structure of tetra­phenyl phosphate tetra­kis­[dimethyl (2,2,2-tri­chloro­acet­yl)phos­pho­ramidato]lutetium(III), PPh4[LuL4]

A lutetium(III) complex based on the anion of the ligand dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate (HL) and tetra­phenylphosphonium, of composition PPh4[LuL4] (L = CAPh = carbacyl­amido­phosphate), or (C24H20)[Lu(C4H6Cl3NO4P)4], has been synthesized and structurally characterized. The X-ray diffraction study of the compound revealed that the lutetium ion is surrounded by four bis-chelating CAPh ligands, forming the complex anion [LuL4]− with a coordination number of 8[O] for LuIII, while PPh4+ serves as a counter-ion. The coordination geometry around the Lu3+ ion was determined to be a nearly perfect triangular dodeca­hedron. The complex crystallizes in the monoclinic crystal system, space group P21/c, with four mol­ecules in the unit cell. Weak hydrogen bonds O⋯HC(Ph), Cl⋯HC(Ph) and N⋯HC(Ph) are formed between the cations and anions. For a comparative study, HL-based structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed. A Hirshfeld surface analysis was also performed.




cr

Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methyl­phen­yl)sulfon­yl]-2,7,8,9-tetra­hydro-1H-3,6:10,13-diep­oxy-1,8-benzodi­aza­cyclo­penta­decine ethanol hemisolvate

The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent mol­ecule and a half mol­ecule of ethanol solvent. The main compound stabilizes its mol­ecular conformation by forming a ring with an R12(7) motif with the ethanol solvent mol­ecule. In the crystal, mol­ecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions also strengthen the mol­ecular packing.




cr

Crystal structure and Hirshfeld surface analysis of 4,4'-di­meth­oxy­biphenyl-3,3',5,5'-tetra­carb­oxy­lic acid dihydrate

In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The crystal structure is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host mol­ecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water mol­ecules in turn form helical supra­molecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water mol­ecule provides a link to a meth­oxy O atom of the host mol­ecule. A Hirshfeld surface analysis was performed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) inter­actions.




cr

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




cr

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methyl­phen­yl)-1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

In the ten-membered 1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-di­hydro­pyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) inter­actions are the most important contributors to the crystal packing.




cr

Synthesis and crystal structure of N-phenyl-2-(phenyl­sulfan­yl)acetamide

N-Phenyl-2-(phenyl­sulfan­yl)acetamide, C14H13NOS, was synthesized and structurally characterized. In the crystal, N—H⋯O hydrogen bonding leads to the formation of chains of mol­ecules along the [100] direction. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional network. The crystal studied was twinned by a twofold rotation around [100].




cr

Crystal structure of 2,4-di­amino-5-(4-hy­droxy-3-meth­oxy­phen­yl)-8,8-dimethyl-6-oxo-6,7,8,9-tetra­hydro-5H-chromeno[2,3-b]pyridine-3-carbo­nitrile–di­methyl­formamide–water (1/1/1)

In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the meth­oxy­phenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main mol­ecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water mol­ecules connect the residues in the third dimension.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yl­oxy)quin­oxaline

In the title compound, C17H12N2O, the quinoxaline moiety shows deviations of 0.0288 (7) to −0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two mol­ecules thick are formed by C—H⋯N hydrogen bonds and π-stacking inter­actions.




cr

Synthesis, characterization and supra­molecular analysis for (E)-3-(pyridin-4-yl)acrylic acid

The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in space group Poverline{1}, with one mol­ecule in the asymmetric unit. The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N inter­actions link the mol­ecules, forming chains along the [101] direction. Weak C—H⋯O inter­actions link adjacent chains along the [100] direction, generating an R22(14) homosynthon. Finally, π–π stacking inter­actions lead to the formation of the three-dimensional structure. The supra­molecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C inter­actions.




cr

Crystal structure and Hirshfeld surface analysis of ethyl 2-(7-chloro-3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)acetate

The quinoxaline moiety in the title mol­ecule, C13H13ClN2O3, is almost planar (r.m.s. deviation of the fitted atoms = 0.033 Å). In the crystal, C—H⋯O hydrogen bonds plus slipped π-stacking and C—H⋯π(ring) inter­actions generate chains of mol­ecules extending along the b-axis direction. The chains are connected by additional C—H⋯O hydrogen bonds. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.6%), H⋯O/O⋯H (22.7%) and H⋯Cl/Cl⋯H (13.1%) inter­actions.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.




cr

Synthesis and crystal structure of tetra­methyl (E)-4,4'-(ethene-1,2-di­yl)bis­(5-nitro­benzene-1,2-di­carboxyl­ate)

The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis­(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a mol­ecule that is located at a centre of inversion. As a result of symmetry restrictions, the mol­ecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, mol­ecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding inter­actions.




cr

Crystal structures of fourteen halochalcogenylphos­pho­nium tetra­halogenidoaurates(III)

The structures of fourteen halochalcogenyl­phospho­nium tetra­halogen­ido­aurates(III), phosphane chalcogenide derivatives with general formula [R13–nR2nPEX][AuX4] (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 17a, n = 3, E = S; 18a, n = 2, E = S; 19a, n = 1, E = S; 20a, n = 0, E = S; 21a, n = 3, E = Se; 22a, n = 2, E = Se; 23a, n = 1, E = Se; and 24a, n = 0, E = Se, and the corresponding bromido derivatives are 17b–24b in the same order. Structures were obtained for all compounds except for the tri-t-butyl derivatives 24a and 24b. Isotypy is observed for 18a/18b/22a/22b, 19a/23a, 17b/21b and 19b/23b. In eleven of the compounds, X⋯X contacts (mostly very short) are observed between the cation and anion, whereby the E—X⋯X groups are approximately linear and the X⋯X—Au angles approximately 90°. The exceptions are 17a, 19a and 23a, which instead display short E⋯X contacts. Bond lengths in the cations correspond to single bonds P—E and E—X. For each group with constant E and X, the P—E—X bond-angle values increase monotonically with the steric bulk of the alkyl groups. The packing is analysed in terms of E⋯X, X⋯X (some between anions alone), H⋯X and H⋯Au contacts. Even for isotypic compounds, some significant differences can be discerned.




cr

2-Cyano-2-iso­nitro­soacetamide–3,4-di­methylpyrazole (1/1): a co-crystal of two mol­ecules with agrochemical activities

In the structure of the title co-crystal, C3H3N3O2·C5H8N2, the components are linked by a set of directional O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds to yield a two-dimensional mono-periodic arrangement. The structure propagates in the third dimension by extensive π–π stacking inter­actions of nearly parallel mol­ecules of the two components, following an alternating sequence. The primary structure-defining inter­action is very strong oxime-OH donor to pyrazole-N acceptor hydrogen bond [O⋯N = 2.587 (2) Å], while the significance of weaker hydrogen bonds and π–π stacking inter­actions is comparable. The distinct structural roles of different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and calculated inter­action energies. The title compound provides insights into co-crystals of active agrochemical mol­ecules and features the rational integration in one structure of a fungicide, C3H3N3O2, and a second active component, C5H8N2, known for alleviation the toxic effects of fungicides on plants. The material appears to be well suited for practical uses, being non-volatile, air-stable, water-soluble, but neither hygroscopic nor efflorescent.




cr

Crystal structures of tri­chlorido­(4-methyl­piperidine)gold(III) and two polymorphs of tri­bromido(4-methyl­piperidine)­gold(III)

Tri­chlorido­(4-methyl­piperidine)­gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tri­bromido­(4-methyl­piperidine)­gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of mol­ecules with offset stacking of the AuX3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N—H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are inter­connected by Br⋯Br contacts.




cr

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1'-biphen­yl]-2,4-di­carboxyl­ate

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.




cr

Crystal structure and Hirshfeld surface analysis of 5-hy­droxy­penta­nehydrazide

Carb­oxy­hydrazides are widely used in medicinal chemistry because of their medicinal properties and many drugs have been developed containing this functional group. A suitable inter­mediate to obtain potential hydrazide drug candidates is the title compound 5-hy­droxy­penta­nehydrazide, C5H12N2O2 (1). The aliphatic compound can react both via the hydroxyl and hydrazide moieties forming derivatives, which can inhibit Mycobacterium tuberculosis catalase-peroxidase (KatG) and consequently causes death of the pathogen. In this work, the hydrazide was obtained via a reaction of a lactone with hydrazine hydrate. The colourless prismatic single crystals belong to the ortho­rhom­bic space group Pca21. Regarding supra­molecular inter­actions, the compound shows classic medium to strong inter­molecular hydrogen bonds involving the hydroxyl and hydrazide groups. Besides, the three-dimensional packing also shows weak H⋯H and C⋯H contacts, as investigated by Hirshfeld surface analysis (HS) and fingerprint plots (FP).




cr

Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­idene}hydrazinecarbo­thio­amide

The title compound (C14H23N3S, common name: cis-jasmone 4-ethyl­thio­semicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethyl­thio­semicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent mol­ecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thio­semicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The mol­ecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intra­molecular inter­action is observed, with graph-set motif S(5). In the crystal, the mol­ecules are connected through pairs of H⋯S inter­actions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N inter­actions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supra­molecular assembly of the title compound are compared with four known cis-jasmone thio­semicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) inter­faces (only the disordered atoms with the highest s.o.f. were considered for the evaluation).




cr

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-[(1Z,3E)-1-cyano-2,4-di­phenyl­penta-1,3-dien-1-yl]pyridine-3,5-dicarbo­nitrile monohydrate

The asymmetric unit of the title compound, C25H18N6·H2O, comproses two mol­ecules (I and II), together with a water mol­ecule. The terminal phenyl groups attached to the methyl groups of the mol­ecules I and II do not overlap completely, but are approximately perpendicular. In the crystal, the mol­ecules are connected by N—H⋯N, C—H⋯N, O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water mol­ecules, forming layers parallel to the (001) plane. C—H⋯π inter­actions between these layers ensure the cohesion of the crystal structure. A Hirshfeld surface analysis indicates that H⋯H (39.1% for mol­ecule I; 40.0% for mol­ecule II), C⋯H/H⋯C (26.6% for mol­ecule I and 25.8% for mol­ecule II) and N⋯H/H⋯N (24.3% for mol­ecules I and II) inter­actions are the most important contributors to the crystal packing.




cr

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­idene}amino)penta­noate-κ3O,N,O']copper(II)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from l-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.




cr

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.




cr

Crystal structure of (E)-N-(4-bromo­phen­yl)-2-cyano-3-[3-(2-methyl­prop­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide

The structure of the title compound, C23H21BrN4O, contains two independent mol­ecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The mol­ecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphen­yl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphen­yl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin.




cr

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­(μ-4-methylpyridine N-oxide-κ2O:O)bis­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)]

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(car­bamo­thioyl­amino)­imino]­eth­yl}phenyl propano­ate

The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an anti­periplanar (ap) conformation. There are short intra­molecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, mol­ecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S inter­actions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S inter­actions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains.




cr

High-resolution crystal structure of the double nitrate hydrate [La(NO3)6]2[Ni(H2O)6]3·6H2O

This study introduces bis­[hexa­kis­(nitrato-κ2O,O')lanthanum(III)] tris­[hexa­aqua­nickel(II)] hexa­hydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexa­gonal space group Roverline{3}. The salt com­prises [La(NO3)6]3− icosa­hedra and [Ni(H2O)6]2+ octa­hedra, thus forming an intricate network of inter­penetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octa­hedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexa­gonal plate-like crystals.




cr

Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thio­phen-3-yl)cyclo­pent-1-en-1-yl]meth­yl}(phen­yl)amino)-4-oxobut-2-enoic acid

In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons along the a axis. Inter­molecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0overline{1}1) plane. The mol­ecular packing is strengthened by van der Waals inter­actions between the layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.




cr

Synthesis and crystal structures of N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate and N-iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate

Two 2,4,6-tri­methyl­aniline-based trifuloro­methane­sulfonate (tri­fluoro­methane­sulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C10H14NH2+][CF3O3S−] (1), was synthesized via methyl­ation of 2,4,6-tri­methyl­aniline. N-Iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­meth­ane­sulfonate, [C13H20N+][CF3O3S−] (2), was synthesized in a two-step reaction where the imine, N-iso­propyl­idene-2,4,6-tri­methyl­aniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methyl­ation using methyl tri­fluoro­methane­sulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π–π inter­actions form the main inter­molecular inter­actions. The primary inter­action is a strong N—H⋯O hydrogen bond with the oxygen atoms of the tri­fluoro­methane­sulfonate anions bonded to the hydrogen atoms of the ammonium nitro­gen atom to generate a one-dimensional chain. The [C10H14NH2+] cations form dimers where the benzene rings form a π–π inter­action with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the inter­planar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and inter­planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major inter­molecular inter­actions in 2 are instead a series of weaker C—H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an inter­action virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional inter­actions in either structure.




cr

Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(4-hy­droxy­phen­yl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one

In the title mol­ecule, C21H17N3O2, the five-membered ring is slightly ruffled and dihedral angles between the pendant six-membered rings and the central, five-membered ring vary between 50.78 (4) and 86.78 (10)°. The exocyclic nitro­gen lone pair is involved in conjugated π bonding to the five-membered ring. In the crystal, a layered structure is generated by O—H⋯N and N—H⋯O hydrogen bonds plus C—H⋯π(ring) and weak π-stacking inter­actions.




cr

Synthesis and crystal structure of (NH4)[Ni3(HAsO4)(AsO4)(OH)2]

The title compound, ammonium trinickel(II) hydrogen arsenate arsenate di­hydroxide, was synthesized under hydro­thermal conditions. Its crystal structure is isotypic with that of K[Cu3(HAsO4)(AsO4)(OH)2] and is characterized by pseudo-hexa­gonal (001) 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers formed from vertex- and edge-sharing [NiO4(OH)2] octa­hedra and [AsO3.5(OH)0.5] tetra­hedra as the building units. The hydrogen atom of the OH group shows occupational disorder and was refined with a site occupation factor of 1/2, indicating the equal presence of [HAsO4]2– and [AsO4]3– groups. Strong asymmetric hydrogen bonds between symmetry-related (O,OH) groups of the arsenate units [O⋯O = 2.588 (18) Å] as well as hydrogen bonds accepted by these (O,OH) groups from OH groups bonded to the NiII atoms [O⋯O = 2.848 (12) Å] link adjacent layers. Additional consolidation of the packing is achieved through N—H⋯O hydrogen bonds from the ammonium ion, which is sandwiched between adjacent layers [N⋯O = 2.930 (7) Å] although the H atoms could not be located in the present study. The presence of the pseudo-hexa­gonal 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers may be the reason for the systematic threefold twinning of (NH4)[Ni3(HAsO4)(AsO4)(OH)2] crystals. Significant overlaps of the reflections of the respective twin domains complicated the structure solution and refinement.




cr

Synthesis and crystal structures of 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene, 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di&#

The calixarenes, 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone mol­ecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intra­molecular O—H⋯O hydrogen bonds, while in calixarene 2 intra­molecular Br⋯Br inter­actions consolidate the 1,3-alternate mol­ecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of π–π, C—H⋯π and C—H⋯O inter­actions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent mol­ecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent mol­ecules per unit cell. Rigid mol­ecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals inter­actions, and the resulting columns are held together by weak C—H⋯π contacts.




cr

Synthesis, crystal structure and anti­cancer activity of the complex chlorido­(η2-ethyl­ene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods

The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hy­droxy­quinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethyl­ene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π inter­actions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethyl­ene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethyl­ene with H2O and the water with the guanine mol­ecule.




cr

Crystal structure characterization, Hirshfeld surface analysis, and DFT calculation studies of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone

The title compound, C12H10N2O3, was obtained by the de­acetyl­ation reaction of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The mol­ecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the mol­ecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding inter­actions. n–π and π–π stacking inter­actions are the dominant inter­actions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier mol­ecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO–HOMO energy gap of the mol­ecule is 3.765 eV.




cr

Crystal structure of bis­{2-[5-(3,4,5-tri­meth­oxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis­(tri­fluoro­acetate) tri­fluoro­acetic acid disolvate

The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group Poverline{1} with the asymmetric unit containing half the cation (PdII site symmetry Ci), one tri­fluoro­actetate anion and one co-crystallized tri­fluoro­acetic acid mol­ecule. Two neutral chelating 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intra­molecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the tri­fluoro­acetic acid–tri­fluoro­acetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding inter­actions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.