cr Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements By journals.iucr.org Published On :: 2024-05-01 Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography. Full Article text
cr Chromic soft crystals based on luminescent platinum(II) complexes By journals.iucr.org Published On :: 2024-06-11 Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal–metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided. Full Article text
cr Scanning WAXS microscopy of regenerated cellulose fibers at mesoscopic resolution By journals.iucr.org Published On :: 2024-06-11 In this work, regenerated cellulose textile fibers, Ioncell-F, dry-wet spun with different draw ratios, have been investigated by scanning wide-angle X-ray scattering (WAXS) using a mesoscopic X-ray beam. The fibers were found to be homogeneous on the 500 nm length scale. Analysis of the azimuthal angular dependence of a crystalline Bragg spot intensity revealed a radial dependence of the degree of orientation of crystallites that was found to increase with the distance from the center of the fiber. We attribute this to radial velocity gradients during the extrusion of the spin dope and the early stage of drawing. On the other hand, the fiber crystallinity was found to be essentially homogeneous over the fiber cross section. Full Article text
cr Crystal structure via fluctuation scattering By journals.iucr.org Published On :: 2024-06-06 Crystallography is a quintessential method for determining the atomic structure of crystals. The most common implementation of crystallography uses single crystals that must be of sufficient size, typically tens of micrometres or larger, depending on the complexity of the crystal structure. The emergence of serial data-collection methods in crystallography, particularly for time-resolved experiments, opens up opportunities to develop new routes to structure determination for nanocrystals and ensembles of crystals. Fluctuation X-ray scattering is a correlation-based approach for single-particle imaging from ensembles of identical particles, but has yet to be applied to crystal structure determination. Here, an iterative algorithm is presented that recovers crystal structure-factor intensities from fluctuation X-ray scattering correlations. The capabilities of this algorithm are demonstrated by recovering the structure of three small-molecule crystals and a protein crystal from simulated fluctuation X-ray scattering correlations. This method could facilitate the recovery of structure-factor intensities from crystals in serial crystallography experiments and relax sample requirements for crystallography experiments. Full Article text
cr The importance of definitions in crystallography By journals.iucr.org Published On :: 2024-05-28 This paper was motivated by the articles `Same or different – that is the question' in CrystEngComm (July 2020) and `Change to the definition of a crystal' in the IUCr Newsletter (June 2021). Experimental approaches to crystal comparisons require rigorously defined classifications in crystallography and beyond. Since crystal structures are determined in a rigid form, their strongest equivalence in practice is rigid motion, which is a composition of translations and rotations in 3D space. Conventional representations based on reduced cells and standardizations theoretically distinguish all periodic crystals. However, all cell-based representations are inherently discontinuous under almost any atomic displacement that can arbitrarily scale up a reduced cell. Hence, comparison of millions of known structures in materials databases requires continuous distance metrics. Full Article text
cr The evolution of raw data archiving and the growth of its importance in crystallography By journals.iucr.org Published On :: 2024-06-12 The hardware for data archiving has expanded capacities for digital storage enormously in the past decade or more. The IUCr evaluated the costs and benefits of this within an official working group which advised that raw data archiving would allow ground truth reproducibility in published studies. Consultations of the IUCr's Commissions ensued via a newly constituted standing advisory committee, the Committee on Data. At all stages, the IUCr financed workshops to facilitate community discussions and possible methods of raw data archiving implementation. The recent launch of the IUCrData journal's Raw Data Letters is a milestone in the implementation of raw data archiving beyond the currently published studies: it includes diffraction patterns that have not been fully interpreted, if at all. The IUCr 75th Congress in Melbourne included a workshop on raw data reuse, discussing the successes and ongoing challenges of raw data reuse. This article charts the efforts of the IUCr to facilitate discussions and plans relating to raw data archiving and reuse within the various communities of crystallography, diffraction and scattering. Full Article text
cr From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system By journals.iucr.org Published On :: 2024-06-10 Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery. Full Article text
cr Statistical optimization of guest uptake in crystalline sponges: grading structural outcomes By journals.iucr.org Published On :: 2024-06-12 Investigation of the analyte soaking conditions on the crystalline sponge {[(ZnI2)3(tpt)2·x(solvent)]n} method using a statistical design of experiments model has provided fundamental insights into the influence of experimental variables. This approach focuses on a single analyte tested via 60 experiments (20 unique conditions) to identify the main effects for success and overall guest structure quality. This is employed as a basis for the development of a novel molecular structure grading system that enables the quantification of guest exchange quality. Full Article text
cr A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction By journals.iucr.org Published On :: 2024-06-21 The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm. Full Article text
cr Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography By journals.iucr.org Published On :: 2024-06-27 A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale. Full Article text
cr Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns By journals.iucr.org Published On :: 2024-06-27 Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization. Full Article text
cr Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution By journals.iucr.org Published On :: 2024-07-04 Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field. Full Article text
cr Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography By journals.iucr.org Published On :: 2024-07-22 Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process. Full Article text
cr In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry By journals.iucr.org Published On :: 2024-07-15 The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons. Full Article text
cr Refinement of cryo-EM 3D maps with a self-supervised denoising model: crefDenoiser By journals.iucr.org Published On :: 2024-07-29 Cryogenic electron microscopy (cryo-EM) is a pivotal technique for imaging macromolecular structures. However, despite extensive processing of large image sets collected in cryo-EM experiments to amplify the signal-to-noise ratio, the reconstructed 3D protein-density maps are often limited in quality due to residual noise, which in turn affects the accuracy of the macromolecular representation. Here, crefDenoiser is introduced, a denoising neural network model designed to enhance the signal in 3D cryo-EM maps produced with standard processing pipelines. The crefDenoiser model is trained without the need for `clean' ground-truth target maps. Instead, a custom dataset is employed, composed of real noisy protein half-maps sourced from the Electron Microscopy Data Bank repository. Competing with the current state-of-the-art, crefDenoiser is designed to optimize for the theoretical noise-free map during self-supervised training. We demonstrate that our model successfully amplifies the signal across a wide variety of protein maps, outperforming a classic map denoiser and following a network-based sharpening model. Without biasing the map, the proposed denoising method leads to improved visibility of protein structural features, including protein domains, secondary structure elements and modest high-resolution feature restoration. Full Article text
cr Exploring serial crystallography for drug discovery By journals.iucr.org Published On :: 2024-07-29 Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today – conventional X-ray crystallography – is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydrolase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery. Full Article text
cr Bridging length scales in hard materials with ultra-small angle X-ray scattering – a critical review By journals.iucr.org Published On :: 2024-08-01 Owing to their exceptional properties, hard materials such as advanced ceramics, metals and composites have enormous economic and societal value, with applications across numerous industries. Understanding their microstructural characteristics is crucial for enhancing their performance, materials development and unleashing their potential for future innovative applications. However, their microstructures are unambiguously hierarchical and typically span several length scales, from sub-ångstrom to micrometres, posing demanding challenges for their characterization, especially for in situ characterization which is critical to understanding the kinetic processes controlling microstructure formation. This review provides a comprehensive description of the rapidly developing technique of ultra-small angle X-ray scattering (USAXS), a nondestructive method for probing the nano-to-micrometre scale features of hard materials. USAXS and its complementary techniques, when developed for and applied to hard materials, offer valuable insights into their porosity, grain size, phase composition and inhomogeneities. We discuss the fundamental principles, instrumentation, advantages, challenges and global status of USAXS for hard materials. Using selected examples, we demonstrate the potential of this technique for unveiling the microstructural characteristics of hard materials and its relevance to advanced materials development and manufacturing process optimization. We also provide our perspective on the opportunities and challenges for the continued development of USAXS, including multimodal characterization, coherent scattering, time-resolved studies, machine learning and autonomous experiments. Our goal is to stimulate further implementation and exploration of USAXS techniques and inspire their broader adoption across various domains of hard materials science, thereby driving the field toward discoveries and further developments. Full Article text
cr Texture tomography, a versatile framework to study crystalline texture in 3D By journals.iucr.org Published On :: 2024-07-24 Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials. Full Article text
cr CheckMyMetal (CMM): validating metal-binding sites in X-ray and cryo-EM data By journals.iucr.org Published On :: 2024-08-14 Identifying and characterizing metal-binding sites (MBS) within macromolecular structures is imperative for elucidating their biological functions. CheckMyMetal (CMM) is a web based tool that facilitates the interactive validation of MBS in structures determined through X-ray crystallography and cryo-electron microscopy (cryo-EM). Recent updates to CMM have significantly enhanced its capability to efficiently handle large datasets generated from cryo-EM structural analyses. In this study, we address various challenges inherent in validating MBS within both X-ray and cryo-EM structures. Specifically, we examine the difficulties associated with accurately identifying metals and modeling their coordination environments by considering the ongoing reproducibility challenges in structural biology and the critical importance of well annotated, high-quality experimental data. CMM employs a sophisticated framework of rules rooted in the valence bond theory for MBS validation. We explore how CMM validation parameters correlate with the resolution of experimentally derived structures of macromolecules and their complexes. Additionally, we showcase the practical utility of CMM by analyzing a representative cryo-EM structure. Through a comprehensive examination of experimental data, we demonstrate the capability of CMM to advance MBS characterization and identify potential instances of metal misassignment. Full Article text
cr The crystal structure of olanzapine form III By journals.iucr.org Published On :: 2024-07-29 The antipsychotic drug olanzapine is well known for its complex polymorphism. Although widely investigated, the crystal structure of one of its anhydrous polymorphs, form III, is still unknown. Its appearance, always in concomitance with forms II and I, and the impossibility of isolating it from that mixture, have prevented its structure determination so far. The scenario has changed with the emerging field of 3D electron diffraction (3D ED) and its great advantages in the characterization of polyphasic mixtures of nanosized crystals. In this study, we show how the application of 3D ED allows the ab initio structure determination and dynamical refinement of this elusive crystal structure that remained unknown for more than 20 years. Olanzapine form III is monoclinic and shows a similar but shifted packing with respect to form II. It is remarkably different from the lowest-energy structures predicted by the energy-minimization algorithms of crystal structure prediction. Full Article text
cr Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature By journals.iucr.org Published On :: 2024-08-27 Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power. Full Article text
cr Crossing length scales: X-ray approaches to studying the structure of biological materials By journals.iucr.org Published On :: 2024-08-28 Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them. Full Article text
cr Roodmus: a toolkit for benchmarking heterogeneous electron cryo-microscopy reconstructions By journals.iucr.org Published On :: 2024-10-15 Conformational heterogeneity of biological macromolecules is a challenge in single-particle averaging (SPA). Current standard practice is to employ classification and filtering methods that may allow a discrete number of conformational states to be reconstructed. However, the conformation space accessible to these molecules is continuous and, therefore, explored incompletely by a small number of discrete classes. Recently developed heterogeneous reconstruction algorithms (HRAs) to analyse continuous heterogeneity rely on machine-learning methods that employ low-dimensional latent space representations. The non-linear nature of many of these methods poses a challenge to their validation and interpretation and to identifying functionally relevant conformational trajectories. These methods would benefit from in-depth benchmarking using high-quality synthetic data and concomitant ground truth information. We present a framework for the simulation and subsequent analysis with respect to the ground truth of cryo-EM micrographs containing particles whose conformational heterogeneity is sourced from molecular dynamics simulations. These synthetic data can be processed as if they were experimental data, allowing aspects of standard SPA workflows as well as heterogeneous reconstruction methods to be compared with known ground truth using available utilities. The simulation and analysis of several such datasets are demonstrated and an initial investigation into HRAs is presented. Full Article text
cr Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography By journals.iucr.org Published On :: 2024-10-29 OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond–millisecond spectroscopic intermediates. Full Article text
cr Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity By journals.iucr.org Published On :: 2024-10-29 Full Article text
cr Ab initio crystal structures and relative phase stabilities for the aleksite series, PbnBi4Te4Sn+2 By journals.iucr.org Published On :: 2023-11-01 Density functional theory methods are applied to crystal structures and stabilities of phases from the aleksite homologous series, PbnBi4Te4Sn+2 (n = homologue number). The seven phases investigated correspond to n = 0 (tetradymite), 2 (aleksite-21R and -42R), 4 (saddlebackite-9H and -18H), 6 (unnamed Pb6Bi4Te4S8), 8 (unnamed Pb8Bi4Te4S10), 10 (hitachiite) and 12 (unnamed Pb12Bi4Te4S14). These seven phases correspond to nine single- or double-module structures, each comprising an odd number of atom layers, 5, 7, (5.9), 9, (7.11), 11, 13, 15 and 17, expressed by the formula: S(MpXp+1)·L(Mp+1Xp+2), where M = Pb, Bi and X = Te, S, p ≥ 2, and S and L = number of short and long modules, respectively. Relaxed structures show a and c values within 1.5% of experimental data; a and the interlayer distance dsub decrease with increasing PbS content. Variable Pb—S bond lengths contrast with constant Pb—S bond lengths in galena. All phases are n-fold superstructures of a rhombohedral subcell with c/3 = dsub*. Electron diffraction patterns show two brightest reflections at the centre of dsub*, described by the modulation vector qF = (i/N) · dsub*, i = S + L. A second modulation vector, q = γ · csub*, shows a decrease in γ, from 1.8 to 1.588, across the n = 0 to n = 12 interval. The linear relationship between γ and dsub allows the prediction of any theoretical phases beyond the studied compositional range. The upper PbS-rich limit of the series is postulated as n = 398 (Pb398Bi4Te4S400), a phase with dsub (1.726 Å) identical to that of trigonal PbS within experimental error. The aleksite series is a prime example of mixed layer compounds built with accretional homology principles. Full Article text
cr High-throughput nanoscale crystallization of dihydropyridine active pharmaceutical ingredients By journals.iucr.org Published On :: 2023-12-21 Single-crystal X-ray diffraction analysis of small molecule active pharmaceutical ingredients is a key technique in the confirmation of molecular connectivity, including absolute stereochemistry, as well as the solid-state form. However, accessing single crystals suitable for X-ray diffraction analysis of an active pharmaceutical ingredient can be experimentally laborious, especially considering the potential for multiple solid-state forms (solvates, hydrates and polymorphs). In recent years, methods for the exploration of experimental crystallization space of small molecules have undergone a `step-change', resulting in new high-throughput techniques becoming available. Here, the application of high-throughput encapsulated nanodroplet crystallization to a series of six dihydropyridines, calcium channel blockers used in the treatment of hypertension related diseases, is described. This approach allowed 288 individual crystallization experiments to be performed in parallel on each molecule, resulting in rapid access to crystals and subsequent crystal structures for all six dihydropyridines, as well as revealing a new solvate polymorph of nifedipine (1,4-dioxane solvate) and the first known solvate of nimodipine (DMSO solvate). This work further demonstrates the power of modern high-throughput crystallization methods in the exploration of the solid-state landscape of active pharmaceutical ingredients to facilitate crystal form discovery and structural analysis by single-crystal X-ray diffraction. Full Article text
cr Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity By journals.iucr.org Published On :: 2024-01-04 The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage. Full Article text
cr Elastic and inelastic strain in submicron-thick ZnO epilayers grown on r-sapphire substrates by metal–organic vapour phase deposition By journals.iucr.org Published On :: 2024-02-13 A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal–organic chemical vapour deposition are studied. Morphological and structural studies have been made using scanning electron microscopy and high-resolution X-ray diffraction. Plastic unit-cell distortion and corresponding strain have been determined as a function of film thickness. A critical thickness has been observed as separating the non-elastic/elastic states with an experimental value of 150–200 nm. This behaviour has been confirmed from ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy measurements. An equation that gives the balance of strains is proposed as an interesting method to experimentally determine this critical thickness. It is concluded that in the thinnest films an elongation of the Zn—O bond takes place and that the plastic strained ZnO films relax through nucleation of misfit dislocations, which is a consequence of three-dimensional surface morphology. Full Article text
cr Attractive and repulsive forces in a crystal of [Rb(18-crown-6)][SbCl6] under high pressure By journals.iucr.org Published On :: 2024-03-20 The compression behavior of [Rb(18-crown-6)][SbCl6] crystal under pressure up to 2.16 (3) GPa was investigated in a diamond anvil cell (DAC) using a mixture of pentane–isopentane (1:4) as the pressure-transmitting fluid. The compound crystallizes in trigonal space group R3 and no phase transition was observed in the indicated pressure range. The low value of pressure bulk modulus [9.1 (5) GPa] found in this crystal is a characteristic of soft materials with predominant dispersive and electrostatic interaction forces. The nonlinear relationship between unit-cell parameters under high pressure is attributed to the influence of reduced intermolecular H⋯Cl contacts under pressure over 0.73 GPa. It also explains the high compression efficiency of [Rb(18-crown-6)][SbCl6] crystals at relatively low pressures, resulting in a significant shift of the Rb atom to the center of the crown ether cavity. At pressures above 0.9 GPa, steric repulsion forces begin to play a remarkable role, since an increasing number of interatomic H⋯Cl and H⋯H contacts become shorter than the sum of their van der Waals (vdW) radii. Below 0.9 GPa, both unit-cell parameter dependences (P–a and P–c) exhibit hysteresis upon pressure release, demonstrating their influence on the disordered model of Rb atoms. The void reduction under pressure also demonstrates two linear sections with the inflection point at 0.9 GPa. Compression of the crystal is accompanied by a significant decrease in the volume of the voids, leading to the rapid approach of Rb atoms to the center of the crown ether cavity. For the Rb atom to penetrate into the center of the crown ether cavity in [Rb(18-crown-6)][SbCl6], it is necessary to apply a pressure of about 2.5 GPa to disrupt the balance of atomic forces in the crystal. This sample serves as a compression model demonstrating the influence of both attractive and repulsive forces on the change in unit-cell parameters under pressure. Full Article text
cr Crystal structure solution and high-temperature thermal expansion in NaZr2(PO4)3-type materials By journals.iucr.org Published On :: 2024-03-22 The NaZr2P3O12 family of materials have shown low and tailorable thermal expansion properties. In this study, SrZr4P6O24 (SrO·4ZrO2·3P2O5), CaZr4P6O24 (CaO·4ZrO2·3P2O5), MgZr4P6O24 (MgO·4ZrO2·3P2O5), NaTi2P3O12 [½(Na2O·4TiO2·3P2O5)], NaZr2P3O12 [½(Na2O·4ZrO2·3P2O5)], and related solid solutions were synthesized using the organic–inorganic steric entrapment method. The samples were characterized by in-situ high-temperature X-ray diffraction from 25 to 1500°C at the Advanced Photon Source and National Synchrotron Light Source II. The average linear thermal expansion of SrZr4P6O24 and CaZr4P6O24 was between −1 × 10−6 per °C and 6 × 10−6 per °C from 25 to 1500°C. The crystal structures of the high-temperature polymorphs of CaZr4P6O24 and SrZr4P6O24 with R3c symmetry were solved by Fourier difference mapping and Rietveld refinement. This polymorph is present above ∼1250°C. This work measured thermal expansion coefficients to 1500°C for all samples and investigated the differences in thermal expansion mechanisms between polymorphs and between compositions. Full Article text
cr Supramolecular synthons in hydrates and solvates of lamotrigine: a tool for cocrystal design By journals.iucr.org Published On :: 2024-05-10 The molecule of anti-epileptic drug lamotrigine [LAM; 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is capable of the formation of multicomponent solids. Such an enhanced tendency is related to the diverse functionalities of the LAM chemical groups able to form hydrogen bonds. Two robust synthons are recognized in the supramolecular structure of LAM itself formed via N—H⋯N hydrogen bond: homosynthon, so-called aminopyridine dimer or synthon 1 [R22(8)] and larger homosynthon 2 [R32(8)]. The synthetic procedures for a new hydrate and 11 solvates of LAM (in the series: with acetone, ethanol: two polymorphs: form I and form II, 2-propanol, n-butanol, tert-butanol, n-pentanol, benzonitrile, acetonitrile, DMSO and dioxane) were performed. The comparative solid state structural analysis of a new hydrate and 11 solvates of LAM has been undertaken in order to establish robustness of the supramolecular synthons 1 and 2 found in the crystal structure of LAM itself as well as LAM susceptibility to build methodical solid state supramolecular architecture in the given competitive surrounding of potential hydrogen bonds. The aminopyridine dimer homosynthon 1 [R22(8)] has been switched from para-para (P-P) topology to ortho-ortho (O-O) topology in all crystal structures, except in LAM:n-pentanol:water solvate where it remains P-P. Homosynthon 2 [R32(8)] of the LAM crystal structure imitates in the LAM solvates as a heterosynthon by replacing the triazine nitrogen proton acceptor atoms of LAM with the proton acceptors of solvates molecules. Full Article text
cr Crystal structures of two new high-pressure oxynitrides with composition SnGe4N4O4, from single-crystal electron diffraction By journals.iucr.org Published On :: 2024-05-08 SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT. Full Article text
cr Current developments and trends in quantum crystallography By journals.iucr.org Published On :: 2024-06-18 Quantum crystallography is an emerging research field of science that has its origin in the early days of quantum physics and modern crystallography when it was almost immediately envisaged that X-ray radiation could be somehow exploited to determine the electron distribution of atoms and molecules. Today it can be seen as a composite research area at the intersection of crystallography, quantum chemistry, solid-state physics, applied mathematics and computer science, with the goal of investigating quantum problems, phenomena and features of the crystalline state. In this article, the state-of-the-art of quantum crystallography will be described by presenting developments and applications of novel techniques that have been introduced in the last 15 years. The focus will be on advances in the framework of multipole model strategies, wavefunction-/density matrix-based approaches and quantum chemical topological techniques. Finally, possible future improvements and expansions in the field will be discussed, also considering new emerging experimental and computational technologies. Full Article text
cr Supramolecular architectures in multicomponent crystals of imidazole-based drugs and trithiocyanuric acid By journals.iucr.org Published On :: 2024-07-01 The structures of three multicomponent crystals formed with imidazole-based drugs, namely metronidazole, ketoconazole and miconazole, in conjunction with trithiocyanuric acid are characterized. Each of the obtained adducts represents a different category of crystalline molecular forms: a cocrystal, a salt and a cocrystal of salt. The structural analysis revealed that in all cases, the N—H⋯N hydrogen bond is responsible for the formation of acid–base pairs, regardless of whether proton transfer occurs or not, and these molecular pairs are combined to form unique supramolecular motifs by centrosymmetric N—H⋯S interactions between acid molecules. The complex intermolecular forces acting in characteristic patterns are discussed from the geometric and energetic perspectives, involving Hirshfeld surface analysis, pairwise energy estimation, and natural bond orbital calculations. Full Article text
cr New insights into the magnetism and magnetic structure of LuCrO3 perovskite By journals.iucr.org Published On :: 2024-09-03 A polycrystalline sample LuCrO3 has been characterized by neutron powder diffraction (NPD) and magnetization measurements. Its crystal structure has been Rietveld refined from NPD data in space group Pnma; this perovskite contains strongly tilted CrO6 octahedra with extremely bent Cr—O—Cr superexchange angles of ∼142°. The NPD data show that below Néel temperature (TN ≃ 131 K), the magnetic structure can be defined as an A-type antiferromagnetic arrangement of Cr3+ magnetic moments, aligned along the b axis, with a canting along the c axis. A noticeable magnetostrictive effect is observed in the unit-cell parameters and volume upon cooling down across TN. The AC magnetic susceptibility indicates the onset of magnetic ordering below 112.6 K; the magnetization isotherms below TN show a nonlinear behaviour that is associated with the described canting of the Cr3+ magnetic moments. From the Curie–Weiss law, the effective moment of the Cr3+ sublattice is found to be μeff = 3.55 μB (calculated 3.7 μB) while the ΘCW parameter yields a value of −155 K, indicating antiferromagnetic interactions. There is a conspicuous increase of TN upon the application of external pressure, which must be due to shortening of the Cr—O bond length under compression that increases the orbital overlap integral. Full Article text
cr Synthesis and characterization of an organic–inorganic hybrid crystal: 2[Co(en)3](V4O13)·4H2O By journals.iucr.org Published On :: 2024-09-03 Organic–inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt–vanadium-containing compound, 2[Co(en)3]3+(V4O13)6−·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10−6 K−1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site. Full Article text
cr On the magnetic and crystal structures of NiO and MnO By journals.iucr.org Published On :: 2024-09-10 The magnetic and crystal structures of manganese and nickel monoxides have been studied using high-resolution neutron diffraction. The known 1k-structures based on the single propagation vector [½ ½ ½] for the parent paramagnetic space group Fm3m are forced to have monoclinic magnetic symmetry and are not possible in rhombohedral symmetry. However, the monoclinic distortions from the rhombohedral crystal metric allowed by symmetry are very small, and the explicit monoclinic splittings of the diffraction peaks have not been experimentally observed. We analyse the magnetic crystallographic models metrically compatible with our experimental data in full detail by using isotropy subgroup representation approach, including rhombohedral solutions based on the propagation vector star {[½ ½ ½], [−½ ½ ½], [½−½ ½], [½ ½ −½]}. Although the full star rhombohedral RI3c structure can equally well fit our diffraction data for NiO, we conclude that the best solution for the crystal and magnetic structures for NiO and MnO is the 1k monoclinic model with the magnetic space group Cc2/c (Belov–Neronova–Smirnova No. 15.90, UNI symbol C2/c.1'c[C2/m]). Full Article text
cr Search for missing symmetry in the Inorganic Crystal Structure Database (ICSD) By journals.iucr.org Published On :: 2024-09-17 An exhaustive search for missing symmetry was performed for 223 076 entries in the ICSD (2023-2 release). Approximately 0.65% of them can be described with higher symmetry than reported. Out of the identified noncentrosymmetric entries, ∼74% can be described by centrosymmetric space groups; this has implications for compatible physical properties. It is proposed that the information on the correct space group is included in the ICSD. Full Article text
cr Determining magnetic structures in GSAS-II using the Bilbao Crystallographic Server tool k-SUBGROUPSMAG By journals.iucr.org Published On :: 2024-09-20 The embedded call to a special version of the web-based Bilbao Crystallographic Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all possible commensurate magnetic subgroups of a parent magnetic grey group is described. It facilitates the selection and refinement of the best commensurate magnetic structure model by having all the analysis tools including Rietveld refinement in one place as part of GSAS-II. It also provides the chosen magnetic space group as one of the 1421 possible standard Belov–Neronova–Smirnova forms or equivalent non-standard versions. Full Article text
cr Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1 By journals.iucr.org Published On :: 2024-11-06 Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails. Full Article text
cr Crystal structure of S-n-octyl 3-(1-phenylethylidene)dithiocarbazate and of its bis-chelated nickel(II) complex By journals.iucr.org Published On :: 2023-11-14 The nitrogen–sulfur Schiff base proligand S-n-octyl 3-(1-phenylethylidene)dithiocarbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl dithiocarbamate with acetophenone. Treatment of HL with nickel acetate yielded the complex bis[S-n-octyl 3-(1-phenylethylidene)dithiocarbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetrahedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiolate) bond. Full Article text
cr Crystal structures of the isotypic complexes bis(morpholine)gold(I) chloride and bis(morpholine)gold(I) bromide By journals.iucr.org Published On :: 2023-11-16 The compounds bis(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding. Full Article text
cr Synthesis and crystallographic characterization of 6-hydroxy-1,2-dihydropyridin-2-one By journals.iucr.org Published On :: 2023-11-14 The title compound, C5H5NO2, is a hydroxylated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydrochloride salt that is commercially available, and its spectroscopic and crystallographic characterization. Full Article text
cr Crystal structure of polymeric bis(3-amino-1H-pyrazole)cadmium dibromide By journals.iucr.org Published On :: 2023-11-14 The reaction of cadmium bromide tetrahydrate with 3-aminopyrazole (3-apz) in ethanolic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[dibromidocadmium(II)]-bis(μ-3-amino-1H-pyrazole)-κ2N3:N2;κ2N2:N3], [CdBr2(C3H5N3)2]n or [CdBr2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, a bromide anion and a 3-apz molecule. The Cd2+ cations are coordinated by two bromide anions and two 3-apz ligands, generating trans-CdN4Br2 octahedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand molecules and bromide anions of neighboring chains are linked through interchain hydrogen bonds into a two-dimensional network. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative quantitative contributions of the weak intermolecular contacts. Full Article text
cr Crystal structure reinvestigation and spectroscopic analysis of tricadmium orthophosphate By journals.iucr.org Published On :: 2023-11-14 Single crystals of tricadmium orthophosphate, Cd3(PO4)2, have been synthesized successfully by the hydrothermal route, while its powder form was obtained by a solid-solid process. The corresponding crystal structure was determined using X-ray diffraction data in the monoclinic space group P21/n. The crystal structure consists of Cd2O8 or Cd2O10 dimers linked together by PO4 tetrahedra through sharing vertices or edges. Scanning electron microscopy (SEM) was used to investigate the morphology and to confirm the chemical composition of the synthesized powder. Infrared analysis corroborates the presence of isolated phosphate tetrahedrons in the structure. UV–Visible studies showed an absorbance peak at 289 nm and a band gap energy of 3.85 eV, as determined by the Kubelka–Munk model. Full Article text
cr Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate By journals.iucr.org Published On :: 2023-11-14 In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the molecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two molecules are connected to the water molecule by two N—H⋯O hydrogen bonds and one molecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π interactions further link the molecules into chains extending in the [overline{1}01] direction and stabilize the molecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) interactions are the most significant contributors to the crystal packing. Full Article text
cr Synthesis and crystal structures of two related Co and Mn complexes: a celebration of collaboration between the universities of Dakar and Southampton By journals.iucr.org Published On :: 2023-11-16 We report the synthesis and structures of two transition-metal complexes involving 2-(2-hydroxyphenyl)benzimidazole (2hpbi – a ligand of interest for its photoluminescent applications), with cobalt, namely, bis[μ-2-(1H-1,3-benzodiazol-2-yl)phenolato]bis[ethanol(thiocyanato)cobalt(II)], [Co2(C13H9N2O)2(NCS)2(C2H6O)2], (1), and manganese, namely, bis[μ-2-(1H-1,3-benzodiazol-2-yl)phenolato]bis{[2-(1H-1,3-benzodiazol-2-yl)phenolato](thiocyanato)manganese(III)} dihydrate, [Mn2(C13H9N2O)4(NCS)2]·2H2O, (2). These structures are two recent examples of a fruitful collaboration between researchers at the Laboratoire de Chimie de Coordination Organique/Organic Coordination Chemistry Laboratory (LCCO), University of Dakar, Senegal and the National Crystallography Service (NCS), School of Chemistry, University Southampton, UK. This productive partnership was forged through meeting at Pan-African Conferences on Crystallography and quickly grew as the plans for the AfCA (African Crystallographic Association) developed. This article therefore also showcases this productive partnership, in celebration of the IUCr's 75 year anniversary and the recent inclusion of AfCA as a Regional Associate of the IUCr. Full Article text
cr Synthesis, crystal structure and properties of chloridotetrakis(pyridine-3-carbonitrile)thiocyanatoiron(II) By journals.iucr.org Published On :: 2023-11-21 Reaction of FeCl2·4H2O with KSCN and 3-cyanopyridine (pyridine-3-carbonitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyanopyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thiocyanate anion that are located on a fourfold rotation axis as well as of one 3-cyanopyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thiocyanate anion in trans-positions and four 3-cyanopyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thiocyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced intermolecular interactions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thiocyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyanopyridine ligands are emitted in two separate poorly resolved steps. After the first step, an intermediate compound with the composition Fe(NCS)(Cl)(3-cyanopyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thiocyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridging thiocyanate anions into chains or layers. Full Article text