cr Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis By journals.iucr.org Published On :: 2024-04-15 The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis. Full Article text
cr Infrared spectroscopy across scales in length and time at BESSY II By journals.iucr.org Published On :: 2024-04-23 The infrared beamline at BESSY II storage ring was upgraded recently to extend the capabilities of infrared microscopy. The endstations available at the beamline are now facilitating improved characterization of molecules and materials at different length scales and time resolutions. Here, the current outline of the beamline is reported and an overview of the endstations available is given. In particular, the first results obtained by using a new microscope for nano-spectroscopy that was implemented are presented. The capabilities of the scattering-type near-field optical microscope (s-SNOM) are demonstrated by investigating cellulose microfibrils, representing nanoscopic objects of a hierarchical structure. It is shown that the s-SNOM coupled to the beamline allows imaging to be performed with a spatial resolution of less than 30 nm and infrared spectra to be collected from an effective volume of less than 30 nm × 30 nm × 12 nm. Potential steps for further optimization of the beamline performance are discussed. Full Article text
cr Asymmetric electrostatic dodecapole: compact bandpass filter with low aberrations for momentum microscopy By journals.iucr.org Published On :: 2024-06-20 Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer. Full Article text
cr Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments By journals.iucr.org Published On :: 2024-06-05 Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s−1, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines. Full Article text
cr PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite By journals.iucr.org Published On :: 2024-06-25 The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts – zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron–photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra. Full Article text
cr Sub-nanometre quality X-ray mirrors created using ion beam figuring By journals.iucr.org Published On :: 2024-06-21 Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics. Full Article text
cr High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up By journals.iucr.org Published On :: 2024-07-15 Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated. Full Article text
cr BEATS: BEAmline for synchrotron X-ray microTomography at SESAME By journals.iucr.org Published On :: 2024-07-15 The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME. Full Article text
cr Double-edge scan wavefront metrology and its application in crystal diffraction wavefront measurements By journals.iucr.org Published On :: 2024-07-29 Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals. Full Article text
cr In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum By journals.iucr.org Published On :: 2024-08-06 Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected. Full Article text
cr Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions By journals.iucr.org Published On :: 2024-08-23 Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed. Full Article text
cr Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space By journals.iucr.org Published On :: 2024-08-28 Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps. Full Article text
cr The soft X-ray spectromicroscopy beamline BL08U1A upgrade at SSRF By journals.iucr.org Published On :: 2024-08-22 Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 104). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180–2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 109 photons s−1 (E/ΔE = 6440 @ 244 eV). Full Article text
cr Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission By journals.iucr.org Published On :: 2024-08-28 Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310–430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2−xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps. Full Article text
cr A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The molecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by N—H⋯S and C—H⋯S interactions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K. Full Article text
cr Crystal structure of AlFe0.95 By journals.iucr.org Published On :: 2023-12-14 Three B2-type intermetallic AlFe1 – δ phases (0.18 < δ < 0.05) in the Al–Fe binary system were synthesized by smelting and high temperature sintering methods. The exact crystal structure for δ = 0.05 was refined by single-crystal X-ray diffraction. The amount of vacancy defects at the Fe atom sites was obtained by refining the corresponding site occupancy factor, converging to the chemical formula AlFe0.95, with a structure identical to that of ideal AlFe models inferred from powder X-ray or neutron diffraction patterns. Full Article text
cr Crystal structure of Ti4Ni2C By journals.iucr.org Published On :: 2024-01-19 Single crystals of the intermetallic phase with composition Ti4Ni2C were serendipitously obtained by high-pressure sintering of a mixture with initial chemical composition Ti2Ni. The Ti4Ni2C phase crystallizes in the Fdoverline{3}m space group and can be considered as a partially filled Ti2Ni structure with the C atom occupying an octahedral void. Ti4Ni2C is isotypic with Ti4Ni2O, Nb4Ni2C and Ta4Ni2C, all of which were studied previously by means of powder diffraction. Full Article text
cr Crystal structure of defect scheelite-type Nd2/3[WO4] By journals.iucr.org Published On :: 2024-03-06 Neodymium(III) ortho-oxidotungstate(VI) was synthesized as a side-product in an unsuccessful synthesis attempt at fluoride derivatives of neodymium tungstate in fused silica ampoules, using neodymium(III) oxide, neodymium(III) fluoride and tungsten trioxide. Violet, platelet-shaped single crystals of the title compound emerged of the bulk, which crystallize in the defect scheelite type with a trigonal dodecahedral coordination of oxide anions around the Nd3+ cations and the hexavalent tungsten cations situated in the centers of oxide tetrahedra. Full Article text
cr Redetermination of germacrone type II based on single-crystal X-ray data By journals.iucr.org Published On :: 2024-04-26 The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022). Powder Diffr. 37, 98–104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the intermolecular interactions of germacrone type II. Full Article text
cr α-d-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-01-22 α-d-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-deoxyadenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. Full Article text
cr Crystal structure and analytical profile of 1,2-diphenyl-2-pyrrolidin-1-ylethanone hydrochloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol By journals.iucr.org Published On :: 2024-01-22 A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant complete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hydrochloride hemihydrate or 1-(2-oxo-1,2-diphenylethyl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) interesting hydrogen bonding observed in pairwise interactions by the drug molecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π interactions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques. Full Article text
cr Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients By journals.iucr.org Published On :: 2024-01-28 The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is orthorhombic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3. Full Article text
cr Synthesis, crystal structure and in-silico evaluation of arylsulfonamide Schiff bases for potential activity against colon cancer By journals.iucr.org Published On :: 2024-03-28 This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules. Full Article text
cr Relationship between synthesis method–crystal structure–melting properties in cocrystals: the case of caffeine–citric acid By journals.iucr.org Published On :: 2024-05-07 The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid cocrystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to compare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical interest, compared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one molecule of caffeine and one molecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations compared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the cocrystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known cocrystals. Full Article text
cr Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers By journals.iucr.org Published On :: 2024-05-01 The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI interactions to form a three-dimensional network. In poly[bis(μ-3-aminopropanolato)tetra-μ-cyanido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propanolamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis(2-aminopropanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis(2-aminoethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octahedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decomposition in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1. Full Article text
cr Rebuttal to the article Pathological crystal structures By journals.iucr.org Published On :: 2024-07-14 A section in the Acta Crystallographica Section C article by Raymond & Girolami [Acta Cryst. (2023), C79, 445–455] stated that the product of the reaction of [(Cp*Rh)2(μ-OH)3]+ (Cp* is 1,2,3,4,5-pentamethylcyclopentadiene) with 1-methylthymine (1-MT) at pH 10 and 60 °C, to synthesize the anionic component [RhI(η1-N3-1-MT)2]−, was not an RhI complex, but rather an AgI complex, due to the use of silver triflate (AgOTf) to remove Cl− from [Cp*RhCl2]2 to synthesize [Cp*Rh(H2O)3](OTf)2, a water-soluble crystalline complex. We will clearly show that this premise, as stated, is invalid, while the authors have simply avoided several important facts, including that Cp*OH, a reductive elimination product, at pH 10 and 60 °C, was unequivocally identified, thus leading to the RhI anionic component [RhI(η1-N3-1-MT)2]−. More importantly, AgOH, from the reaction of NaOH at pH 10 with any potentially remaining AgOTf, after the AgCl was filtered off, would be insoluble in water. Furthermore, a control experiment with the inorganic complex Rh(OH)3, reacting with 1-methylthymine at pH 10, provided no product, and this bodes well for a similar fate with AgOTf and 1-methylthymine, i.e. at pH 10, AgOTf would again be converted to the water-insoluble AgOH; therefore, no reaction would occur! Finally, a 1H NMR spectroscopy experiment was carried out with synthesized and crystallized [Cp*Rh(H2O)3](OTf)2 in D2O at various pD values; at pD 8.65 no reaction took place, while at pD 13.6, and at 60 °C for 2 h, a reductive elimination reaction caused the precipitation of Cp*OH. The subsequent 1H NMR spectrum clearly demonstrated, in the absence of any AgI complexes, that the solution structure and the X-ray crystals in D2O were similar. A postulated mechanism for this novel anionic component structure, as published previously [Smith et al. (2014). Organometallics, 33, 2389–2404], will be presented, along with the experimental data, to insure the credibility of our results. We will also answer the comments in the response of Drs Raymond and Girolami to this rebuttal. Full Article text
cr Response to the rebuttal of the article Pathological crystal structures By journals.iucr.org Published On :: 2024-07-14 We stand fully behind our earlier suggestion [Raymond & Girolami (2023). Acta Cryst. C79, 445–455] that the claim by Fish and co-workers [Chen et al. (1995). J. Am. Chem. Soc. 117, 9097–9098; Smith et al. (2014). Organometallics, 33, 2389–2404] of a linear two-coordinate rhodium(I) species is incorrect, and that the putative rhodium atom is in fact silver. Full Article text
cr Applying 3D ED/MicroED workflows toward the next frontiers By journals.iucr.org Published On :: 2024-05-07 We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation. Full Article text
cr 3D ED/MicroED entering a new era By journals.iucr.org Published On :: 2024-05-31 Full Article text
cr Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
cr Crystal structure elucidation of a geminal and vicinal bis(trifluoromethanesulfonate) ester By journals.iucr.org Published On :: 2024-06-14 Geminal and vicinal bis(trifluoromethanesulfonate) esters are highly reactive alkylene synthons used as potent electrophiles in the macrocyclization of imidazoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methylene (C3H2F6O6S2) and ethylene bis(trifluoromethanesulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis(trifluoromethanesulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis(trifluoromethanesulfonate)s are air- and moisture-sensitive oils and were crystallized at 277 K to afford two-component non-merohedrally twinned crystals. The dominant interactions present in both compounds are non-classical C—H⋯O hydrogen bonds and intermolecular C—F⋯F—C interactions between trifluoromethyl groups. Molecular electrostatic potential (MEP) calculations by DFT-D3 helped to quantify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis(trifluoromethanesulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure. Full Article text
cr TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules By journals.iucr.org Published On :: 2024-06-27 3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering. Full Article text
cr The crystal structure of the ammonium salt of 2-aminomalonic acid By journals.iucr.org Published On :: 2024-06-19 The salt ammonium 2-aminomalonate (systematic name: ammonium 2-azaniumylpropanedioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intramolecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network. Full Article text
cr Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text
cr Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thioethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2] By journals.iucr.org Published On :: 2024-07-05 Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thioethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for compound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth complex to be reported containing a perthiolated cyclopentadienyl ring. The molecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br interactions. It turned out that although some interactions of this type occurred, they were of minor importance for the arrangement of the molecules in the crystal. Full Article text
cr Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A By journals.iucr.org Published On :: 2024-07-10 The highly cytotoxic macrocyclic trichothecene Isororidin A (C29H40O9) was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by one- (1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the orthorhombic space group P212121, with one molecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13' of the macrocyclic ring. Full Article text
cr How to grow crystals for X-ray crystallography By journals.iucr.org Published On :: 2024-07-24 Growing high-quality crystals remains a necessary part of crystallography and many other techniques. This article tabulates and describes several techniques and variations that will help individuals grow high-quality crystals in preparation for crystallographic techniques and other endeavors, such as form screening. The discussion is organized to focus on low-tech approaches available in any laboratory. Full Article text
cr Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-07-25 A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four compounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K confirmed the formation of a mononuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O interaction. The Sn and O atoms are surrounded by hydrophobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent interactions. The pairwise interaction energies showed that the cohesion between the heterocycles are mainly due to dispersion forces. Full Article text
cr The influence of the axial group on the crystal structures of boron subphthalocyanines By journals.iucr.org Published On :: 2024-09-04 The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π–π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π–π interactions between the isoindole units of adjacent BsubPc molecules most often involve concave–concave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in π–π interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π–π interactions and/or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics. Full Article text
cr 2,4-Diarylpyrroles: synthesis, characterization and crystallographic insights By journals.iucr.org Published On :: 2024-08-08 Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins. Full Article text
cr Crystal structures of two unexpected products of vicinal diamines left to crystallize in acetone By journals.iucr.org Published On :: 2024-08-23 Herein we report the crystal structures of two benzodiazepines obtained by reacting N,N'-(4,5-diamino-1,2-phenylene)bis(4-methylbenzenesulfonamide) (1) or 4,5-(4-methylbenzenesulfonamido)benzene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepine, C26H30N4O4S2 (2), and 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal diamines present in the molecular structures, forming a 5H-1,5-benzodiazepine ring. In the crystal structure of 2, the seven-membered ring of benzodiazepine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline compounds, the tosylamide N atoms are not in resonance with the arene ring, mainly due to hydrogen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supramolecular level, the crystal structure is maintained by a combination of hydrogen bonds and hydrophobic interactions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hydrogen bonds can be observed. In contrast, in 3, the chloride counter-ion and water molecule result in most of the hydrogen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine interacts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed. Full Article text
cr Methods in molecular photocrystallography By journals.iucr.org Published On :: 2024-09-04 Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully. Full Article text
cr On the importance of crystal structures for organic thin film transistors By journals.iucr.org Published On :: 2024-09-04 Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field. Full Article text
cr The challenges of growing great crystals – or at least good enough ones! By journals.iucr.org Published On :: 2024-08-27 Full Article text
cr Molecular and crystal structures of six poly(arylsulfinyl)- and poly(arylsulfanyl)ferrocenes By journals.iucr.org Published On :: 2024-10-04 Starting from (p-tolylsulfinyl)ferrocene (1), a mixture of the complete series [CpFe{C5H5–n(SOTol-p)n}] (n = 2–4) (2–4) in all regioisomers was obtained. After chromatographic separation, crystals of 1,2-bis[(4-methylbenzene)sulfinyl]ferrocene, 2a, and 1,3-bis[(4-methylbenzene)sulfinyl]ferrocene, 2b, both [Fe(C5H5)(C19H17O2S2)], as well as of 1,2,3-tris[(4-methylbenzene)sulfinyl]ferrocene, [Fe(C5H5)(C26H23O3S3)], 3a, and 1,2,3,4-tetrakis[(4-methylbenzene)sulfinyl]ferrocene ethyl acetate 0.75-solvate, [Fe(C5H5)(C33H29O4S4)]·0.75C4H8O2, 4, could be isolated. Their molecular and crystal structures are compared with each other and also with the so far unreported structures of related 1,2-bis(phenylsulfanyl)ferrocene, [Fe(C5H5)(C17H13S2)], 5, and 1,2,3,4-tetrakis(phenylsulfanyl)ferrocene, [Fe(C5H5)(C29H21S4)], 6. In all the sulfinyl structures, the O atoms of the S=O groups are in equatorial positions, except for that in tetrasubstituted 4. All the arene rings of these compounds (except for one ring in 4) are in axial positions directed away from the Fe atom, mostly in a near perpendicular orientation with respect to the plane of the cyclopentadienyl ring. The main intermolecular interactions in the crystals are C—H⋯H—C, C—H⋯π and C—H⋯O, while C—H⋯S interactions are much less important, except for tetrasulfanyl compound 6. π–π interactions (intramolecular) are only important in compound 3a. Hirshfeld analysis shows that dispersion terms are dominant for the interaction energies of all six compounds. In general, the calculated total interaction energies increase with increasing number of substituents and are higher for the sulfinyl than for the sulfanyl groups. Full Article text
cr Introducing the Best practice in crystallography series By journals.iucr.org Published On :: 2024-09-26 Full Article text
cr Photocrystallography – common or exclusive? By journals.iucr.org Published On :: 2024-10-07 Full Article text
cr Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors By journals.iucr.org Published On :: 2024-10-31 Full Article text
cr The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals By journals.iucr.org Published On :: 2024-01-01 The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment. Full Article text
cr Deep residual networks for crystallography trained on synthetic data By journals.iucr.org Published On :: 2024-01-01 The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis. Full Article text