ex

HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening

The Swiss Light Source facilitates fragment-based drug-discovery campaigns for academic and industrial users through the Fast Fragment and Compound Screening (FFCS) software suite. This framework is further enriched by the option to utilize the Smart Digital User (SDU) software for automated data collection across the PXI, PXII and PXIII beamlines. In this work, the newly developed HEIDI webpage (https://heidi.psi.ch) is introduced: a platform crafted using state-of-the-art software architecture and web technologies for sample management of rotational data experiments. The HEIDI webpage features a data-review tab for enhanced result visualization and provides programmatic access through a representational state transfer application programming interface (REST API). The migration of the local FFCS MongoDB instance to the cloud is highlighted and detailed. This transition ensures secure, encrypted and consistently accessible data through a robust and reliable REST API tailored for the FFCS software suite. Collectively, these advancements not only significantly elevate the user experience, but also pave the way for future expansions and improvements in the capabilities of the system.




ex

Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.




ex

CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments

A group of three deep-learning tools, referred to collectively as CHiMP (Crystal Hits in My Plate), were created for analysis of micrographs of protein crystallization experiments at the Diamond Light Source (DLS) synchrotron, UK. The first tool, a classification network, assigns images into categories relating to experimental outcomes. The other two tools are networks that perform both object detection and instance segmentation, resulting in masks of individual crystals in the first case and masks of crystallization droplets in addition to crystals in the second case, allowing the positions and sizes of these entities to be recorded. The creation of these tools used transfer learning, where weights from a pre-trained deep-learning network were used as a starting point and repurposed by further training on a relatively small set of data. Two of the tools are now integrated at the VMXi macromolecular crystallography beamline at DLS, where they have the potential to absolve the need for any user input, both for monitoring crystallization experiments and for triggering in situ data collections. The third is being integrated into the XChem fragment-based drug-discovery screening platform, also at DLS, to allow the automatic targeting of acoustic compound dispensing into crystallization droplets.




ex

The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era

The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.




ex

The ABC toxin complex from Yersinia entomophaga can package three different cytotoxic components expressed from distinct genetic loci in an unfolded state: the structures of both shell and cargo

Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB–TcC subcomplex that makes a hollow shell. This TcB–TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB–TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.




ex

KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography

Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods.




ex

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




ex

Chaperone-mediated MHC-I peptide exchange in antigen presentation

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.




ex

Chromic soft crystals based on luminescent platinum(II) complexes

Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal–metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided.




ex

Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution

Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.




ex

Exploring serial crystallography for drug discovery

Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today – conventional X-ray crystallography – is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydro­lase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.




ex

Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation

The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization.




ex

Texture tomography, a versatile framework to study crystalline texture in 3D

Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials.




ex

On the structure refinement of metal complexes against 3D electron diffraction data using multipolar scattering factors

This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal–organic complex, iron(III) acetyl­acetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetyl­acetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe—O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65–2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00–0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal–organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED.




ex

Hirshfeld atom refinement and dynamical refinement of hexagonal ice structure from electron diffraction data

Reaching beyond the commonly used spherical atomic electron density model allows one to greatly improve the accuracy of hydrogen atom structural param­eters derived from X-ray data. However, the effects of atomic asphericity are less explored for electron diffraction data. In this work, Hirshfeld atom refinement (HAR), a method that uses an accurate description of electron density by quantum mechanical calculation for a system of interest, was applied for the first time to the kinematical refinement of electron diffraction data. This approach was applied here to derive the structure of ordinary hexagonal ice (Ih). The effect of introducing HAR is much less noticeable than in the case of X-ray refinement and it is largely overshadowed by dynamical scattering effects. It led to only a slight change in the O—H bond lengths (shortening by 0.01 Å) compared with the independent atom model (IAM). The average absolute differences in O—H bond lengths between the kinematical refinements and the reference neutron structure were much larger: 0.044 for IAM and 0.046 Å for HAR. The refinement results changed considerably when dynamical scattering effects were modelled – with extinction correction or with dynamical refinement. The latter led to an improvement of the O—H bond length accuracy to 0.021 Å on average (with IAM refinement). Though there is a potential for deriving more accurate structures using HAR for electron diffraction, modelling of dynamical scattering effects seems to be a necessary step to achieve this. However, at present there is no software to support both HAR and dynamical refinement.




ex

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




ex

Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity




ex

Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity

The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage.




ex

Crystal structure solution and high-temperature thermal expansion in NaZr2(PO4)3-type materials

The NaZr2P3O12 family of materials have shown low and tailorable thermal expansion properties. In this study, SrZr4P6O24 (SrO·4ZrO2·3P2O5), CaZr4P6O24 (CaO·4ZrO2·3P2O5), MgZr4P6O24 (MgO·4ZrO2·3P2O5), NaTi2P3O12 [½(Na2O·4TiO2·3P2O5)], NaZr2P3O12 [½(Na2O·4ZrO2·3P2O5)], and related solid solutions were synthesized using the organic–inorganic steric entrapment method. The samples were characterized by in-situ high-temperature X-ray diffraction from 25 to 1500°C at the Advanced Photon Source and National Synchrotron Light Source II. The average linear thermal expansion of SrZr4P6O24 and CaZr4P6O24 was between −1 × 10−6 per °C and 6 × 10−6 per °C from 25 to 1500°C. The crystal structures of the high-temperature polymorphs of CaZr4P6O24 and SrZr4P6O24 with R3c symmetry were solved by Fourier difference mapping and Rietveld refinement. This polymorph is present above ∼1250°C. This work measured thermal expansion coefficients to 1500°C for all samples and investigated the differences in thermal expansion mechanisms between polymorphs and between compositions.




ex

Following the guidelines for communicating commensurate magnetic structures: real case examples

A few real case examples are presented on how to report magnetic structures, with precise step-by-step explanations, following the guidelines of the IUCr Commission on Magnetic Structures [Perez-Mato et al. (2024). Acta Cryst. B80, 219–234]. Four examples have been chosen, illustrating different types of single-k magnetic orders, from the basic case to more complex ones, including odd-harmonics, and one multi-k order. In addition to acquainting researchers with the process of communicating commensurate magnetic structures, these examples also aim to clarify important concepts, which are used throughout the guidelines, such as the transformation to a standard setting of a magnetic space group.




ex

Solvatomorphism in a series of copper(II) complexes with the 5-phenyl­imidazole/perchlorate system as ligands

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenyl­imidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenyl­imidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(di­methyl­formamide) (7), 2(acetone) (8), 2(tetra­hydro­furane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(di­ethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the di­ethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds.




ex

K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclo­silicates

Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclo­silicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclo­silicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units.




ex

Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1

Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails.




ex

Crystal structure of S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate and of its bis-chelated nickel(II) complex

The nitro­gen–sulfur Schiff base proligand S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl di­thio­carbamate with aceto­phenone. Treatment of HL with nickel acetate yielded the complex bis­[S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetra­hedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiol­ate) bond.




ex

Crystal structures of the isotypic complexes bis­(morpholine)­gold(I) chloride and bis­(morpholine)­gold(I) bromide

The compounds bis­(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis­(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding.




ex

Synthesis and crystal structures of two related Co and Mn complexes: a celebration of collaboration between the universities of Dakar and Southampton

We report the synthesis and structures of two transition-metal complexes involving 2-(2-hy­droxy­phen­yl)benzimidazole (2hpbi – a ligand of inter­est for its photoluminescent applications), with cobalt, namely, bis­[μ-2-(1H-1,3-benzo­diazol-2-yl)phenolato]bis­[ethanol(thio­cyanato)­cobalt(II)], [Co2(C13H9N2O)2(NCS)2(C2H6O)2], (1), and manganese, namely, bis­[μ-2-(1H-1,3-benzo­diazol-2-yl)phenolato]bis­{[2-(1H-1,3-benzo­diazol-2-yl)phenolato](thio­cyanato)­mang­an­ese(III)} dihydrate, [Mn2(C13H9N2O)4(NCS)2]·2H2O, (2). These structures are two recent examples of a fruitful collaboration between researchers at the Laboratoire de Chimie de Coordination Organique/Organic Coordination Chemistry Laboratory (LCCO), University of Dakar, Senegal and the National Crystallography Service (NCS), School of Chemistry, University Southampton, UK. This productive partnership was forged through meeting at Pan-African Conferences on Crystallography and quickly grew as the plans for the AfCA (African Crystallographic Association) developed. This article therefore also showcases this productive partnership, in celebration of the IUCr's 75 year anniversary and the recent inclusion of AfCA as a Regional Associate of the IUCr.




ex

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol mon

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).




ex

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




ex

Crystal structure and anti­mycobacterial evaluation of 2-(cyclo­hexyl­meth­yl)-7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one

The title compound, C15H15F3N2O3S, crystallizes in the monoclinic system, space group I2/a, with Z = 8. As expected, the nine-membered heterobicyclic system is virtually planar and the cyclo­hexyl group adopts a chair conformation. There is structural evidence for intra­molecular N—S⋯O chalcogen bonding between the benziso­thia­zolinone S atom and one O atom of the nitro group, approximately aligned along the extension of the covalent N—S bond [N—S⋯O = 162.7 (1)°]. In the crystal, the mol­ecules form centrosymmetric dimers through C—H⋯O weak hydrogen bonding between a C—H group of the electron-deficient benzene ring and the benzo­thia­zolinone carbonyl O atom with an R22(10) motif. In contrast to the previously described N-acyl 7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-ones, the title N-cyclo­hexyl­methyl analogue does not inhibit growth of Mycobacterium aurum and Mycobacterium smegmatis in vitro.




ex

Synthesis, crystal structure and Hirshfeld surface analysis of a cadmium complex of naphthalene-1,5-di­sulfonate and o-phenyl­enedi­amine

A novel o-phenyl­enedi­amine (opda)-based cadmium complex, bis­(benzene-1,2-di­amine-κ2N,N')bis­(benzene-1,2-di­amine-κN)cadmium(II) naphthalene-1,5-di­sulfonate, [Cd(C6H8N2)4](C10H6O6S2), was synthesized. The complex salt crystallizes in the monoclinic space group C2/c. The Cd atom occupies a special position and coordinates six nitro­gen atoms from four o-phenyl­enedi­amine mol­ecules, two as chelating ligands and two as monodentate ligands. The amino H atoms of opda inter­act with two O atoms of the naphthalene-1,5-di­sulfonate anions. The anions act as bridges between [Cd(opda)4]2+ cations, forming a two-dimensional network in the [010] and [001] directions. The Hirshfeld surface analysis shows that the primary factors contributing to the supramolecular inter­actions are short contacts, particularly van der Waals forces of the type H⋯H, O⋯H and C⋯H.




ex

The synthesis and structural properties of a chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­trichlorido­zincate coordination complex

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.




ex

Crystal structures of sixteen phosphane chalcogenide complexes of gold(I) chloride, bromide and iodide

The structures of 16 phosphane chalcogenide complexes of gold(I) halides, with the general formula R13-nR2nPEAuX (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl, Br or I), are presented. The eight possible chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b–8b in the same order. However, 2a and 2b were badly disordered and 8a was not obtained. The iodido derivatives are 2c, 6c and 7c (numbered as for the series a and b). All structures are solvent-free and all have Z' = 1 except for 6b and 6c (Z' = 2). All mol­ecules show the expected linear geometry at gold and approximately tetra­hedral angles P—E—Au. The presence of bulky ligands forces some short intra­molecular contacts, in particular H⋯Au and H⋯E. The Au—E bond lengths have a slight but consistent tendency to be longer when trans to a softer X ligand, and vice versa. The five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c form isotypic pairs. The crystal packing can be analysed in terms of various types of secondary inter­actions, of which the most frequent are `weak' hydrogen bonds from methine hydrogen atoms to the halogenido ligands. For the structure type 1a, H⋯X and H⋯E contacts combine to form a layer structure. For 3a/3b, the packing is almost featureless, but can be described in terms of a double-layer structure involving borderline H⋯Cl/Br and H⋯S contacts. In 4a and 4b/8b, which lack methine groups, Cmeth­yl—H⋯X contacts combine to form layer structures. In 7a/7b, short C—H⋯X inter­actions form chains of mol­ecules that are further linked by association of short Au⋯Se contacts to form a layer structure. The packing of compound 6b/6c can conveniently be analysed for each independent mol­ecule separately, because they occupy different regions of the cell. Mol­ecule 1 forms chains in which the mol­ecules are linked by a Cmethine⋯Au contact. The mol­ecules 2 associate via a short Se⋯Se contact and a short H⋯X contact to form a layer structure. The packing of compound 2c can be described in terms of two short Cmethine—H⋯I contacts, which combine to form a corrugated ribbon structure. Compound 7c is the only compound in this paper to feature Au⋯Au contacts, which lead to twofold-symmetric dimers. Apart from this, the packing is almost featureless, consisting of layers with only translation symmetry except for two very borderline Au⋯H contacts.




ex

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.




ex

Crystal structure of poly[hexa-μ-bro­mido-bis{2-[1-(py­ri­din-2-yl)ethyl­idene­amino]ethanol­ato}tetracopper(II)]

The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethanol (HL), which is formed by reaction of 2-amino­ethanol and 2-acetyl­pyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis­{2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethano­lato}tetra­copper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated mol­ecules of the ligand, and six bromide anions, which act as bridges. The ligand mol­ecules act in a tridentate fashion through their azomethine nitro­gen atoms, their pyridine nitro­gen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetra­hedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetra­nuclear polymer compound.




ex

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




ex

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




ex

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, isopropyl 4-[4-(di­fluoro&

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.




ex

Crystal structure and Hirshfeld surface analysis of 4-oxo-3-phenyl-2-sulfanyl­idene-5-(thio­phen-2-yl)-3,4,7,8,9,10-hexa­hydro-2H-pyrido[1,6-a:2,3-d']di­pyrimidine-6-carbo­nitrile

In the title compound, C21H15N5OS2, mol­ecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with R22(12) and R22(16) motifs, respectively, thus forming layers parallel to the (10overline{4}) plane. In addition, C=S⋯π and C≡N⋯π inter­actions between the layers ensure crystal cohesion. The Hirshfeld surface analysis indicates that the major contributions to the crystal packing are H⋯H (43.0%), C⋯H/H⋯C (16.9%), N⋯H/H⋯N (11.3%) and S⋯H/H⋯S (10.9%) inter­actions.




ex

Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide

The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula R13–nR2nPEAuX3 (R1 = t-butyl; R2 = i-propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding bromido derivatives are 9b–16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deutero­chloro­form monosolvate 11aa), 12a (as its di­chloro­methane monosolvate), 14a, 15a (as its deutero­chloro­form monosolvate 15aa, in which the solvent mol­ecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of 11a, 15a, 11b and 15b form an isotypic set, and those of compounds 10aa and 14a form an isotypic pair. All structures have Z' = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetra­hedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable trans influence of S and Se donor atoms on a trans Au—Cl bond. Each compound with an isopropyl group shows a short intra­molecular contact of the type C—Hmethine⋯Xcis; these may be regarded as intra­molecular ‘weak’ hydrogen bonds, and they determine the orientation of the AuX3 groups. The mol­ecular packing is analysed in terms of various short contacts such as weak hydrogen bonds C—H⋯X and contacts between the heavier atoms, such as X⋯X (9a, 10aa, 11aa, 15aa and 9b), S⋯S (10aa, 11a and 12a) and S⋯Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent mol­ecules take part in C—H⋯Cl hydrogen bonds; for 15aa, a disordered solvent region at z ≃ 0 is observed. Structure 13b involves unusual inversion-symmetric dimers with Se⋯Au and Se⋯Br contacts, further connected by Br⋯Br contacts.




ex

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.




ex

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­(μ-4-methylpyridine N-oxide-κ2O:O)bis­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)]

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.




ex

Structure of the five-coordinate CoII complex (1H-imidazole){tris­[(1-benzyl­triazol-4-yl-κN3)meth­yl]amine-κN}cobalt(II) bis­(tetra­fluoro­borate)

The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris­[(1-benzyl­triazol-4-yl)meth­yl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetra­fluoro­borate anions provide charge balance in the crystal.




ex

Synthesis, crystal structure and anti­cancer activity of the complex chlorido­(η2-ethyl­ene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods

The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hy­droxy­quinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethyl­ene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π inter­actions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethyl­ene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethyl­ene with H2O and the water with the guanine mol­ecule.




ex

Crystal structure and Hirshfeld surface of a penta­amine­copper(II) complex with urea and chloride

The reaction of copper(II) oxalate and hexa­methyl­ene­tetra­mine in a deep eutectic solvent made of urea and choline chloride produced crystals of penta­amine­copper(II) dichloride–urea (1/1), [Cu(NH3)5]Cl2·CO(NH2)2, which was characterized by single-crystal X-ray diffraction. The complex contains discrete penta­amine­copper(II) units in a square-based pyramidal geometry. The overall structure of the multi-component crystal is dictated by hydrogen bonding between urea mol­ecules and amine H atoms with chloride anions.




ex

Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(­oxy)]bis­(5,5-di­methyl­cyclo­hex-2-en-1-one) including an unknown solvate

The title mol­ecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the mol­ecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) inter­actions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.




ex

Crystal structure of a three-coordinate lithium complex with monodentate phenyl­oxazoline and hexa­methyl­disilyl­amide ligands

The reaction of lithium hexa­methyl­disilyl­amide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis­(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexa­methyl­disilyl­amido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the unit cell of the C2/c space group, the neutral mol­ecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitro­gen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyl­oxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent inter­actions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features.




ex

Tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-porphyrin and its CaII complex

The synthesis, crystallization and characterization of a tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-por­phy­rin, C68H54N84+·4CF3SO3−·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetra­kis­(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver tri­fluoro­methane­sulfonate (AgOTf) salt produced a red–brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin mol­ecule, two tri­fluoro­methane­sulfonate anions and two water mol­ecules of crystallization. The macrocycle of tetra­pyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methyl­ene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π inter­actions between the CaII atom and the π-system of the phenyl ring of neighboring mol­ecules. Both tri­fluoro­methane­sulfonate anions are found at the periphery of 1, forming hydrogen bonds with water mol­ecules.




ex

Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural aryl­olefin and quinoline derivatives

Three organoplatinum(II) complexes bearing natural aryl­olefin and quinoline derivatives, namely, [4-meth­oxy-5-(2-meth­oxy-2-oxoeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-meth­oxy-5-(2-oxo-2-propoxyeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinoline-2-carboxy­l­ato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido­[4-meth­oxy-5-(2-oxo-2-propoxyeth­oxy)-2-(prop-2-en-1-yl)phen­yl](quinoline)­plat­inum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cyclo­platinated aryl­olefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hy­droxy­quinoline (C9H6NO) and quinoline-2-carb­oxy­lic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and π–π [for (I)] inter­actions.




ex

Crystal structure and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thio­phen-2-yl)cyclo­hex-3-ene-1,3-di­carboxyl­ate

In the title compound, C19H17NO5S, the cyclo­hexene ring adopts nearly an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect the mol­ecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) inter­actions are the most significant contributors to the crystal packing.




ex

Structural characterization of the supra­molecular complex between a tetra­quinoxaline-based cavitand and benzo­nitrile

The structural characterization is reported of the supra­molecular complex between the tetra­quinoxaline-based cavitand 2,8,14,20-tetra­hexyl-6,10:12,16:18,22:24,4-O,O'-tetra­kis­(quinoxaline-2,3-di­yl)calix[4]resorcinarene (QxCav) with benzo­nitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent mol­ecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzo­nitrile mol­ecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly inter­act through weak C—H⋯π, C—H⋯N and dispersion inter­actions. These inter­actions help to consolidate the formation of supra­molecular chains running along the crystallographic b-axis direction.