hi Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED) By arxiv.org Published On :: How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude. Full Article
hi Evolutionary Dynamics of Higher-Order Interactions. (arXiv:2001.10313v2 [physics.soc-ph] UPDATED) By arxiv.org Published On :: We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in groups of more than two players. To remedy this, we introduce higher-order interactions, where a link can connect more than two individuals, and study their evolutionary dynamics. We first consider a public goods game on a uniform hypergraph, showing that it corresponds to the replicator dynamics in the well-mixed limit, and providing an exact theoretical foundation to study cooperation in networked groups. We also extend the analysis to heterogeneous hypergraphs that describe interactions of groups of different sizes and characterize the evolution of cooperation in such cases. Finally, we apply our new formulation to study the nature of group dynamics in real systems, showing how to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work is a first step towards the implementation of new actions to boost cooperation in social groups. Full Article
hi SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED) By arxiv.org Published On :: High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet. Full Article
hi A predictive path-following controller for multi-steered articulated vehicles. (arXiv:1912.06259v5 [math.OC] UPDATED) By arxiv.org Published On :: Stabilizing multi-steered articulated vehicles in backward motion is a complex task for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a jack-knife state. In this work, a model predictive path-following controller is proposed enabling automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like tractor and an arbitrary number of trailers with passive or active steering. The proposed path-following controller is tailored to follow nominal paths that contains full state and control-input information, and is designed to satisfy various physical constraints on the vehicle states as well as saturations and rate limitations on the tractor's curvature and the trailer steering angles. The performance of the proposed model predictive path-following controller is evaluated in a set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has steerable wheels. Full Article
hi Biologic and Prognostic Feature Scores from Whole-Slide Histology Images Using Deep Learning. (arXiv:1910.09100v4 [q-bio.QM] UPDATED) By arxiv.org Published On :: Histopathology is a reflection of the molecular changes and provides prognostic phenotypes representing the disease progression. In this study, we introduced feature scores generated from hematoxylin and eosin histology images based on deep learning (DL) models developed for prostate pathology. We demonstrated that these feature scores were significantly prognostic for time to event endpoints (biochemical recurrence and cancer-specific survival) and had simultaneously molecular biologic associations to relevant genomic alterations and molecular subtypes using already trained DL models that were not previously exposed to the datasets of the current study. Further, we discussed the potential of such feature scores to improve the current tumor grading system and the challenges that are associated with tumor heterogeneity and the development of prognostic models from histology images. Our findings uncover the potential of feature scores from histology images as digital biomarkers in precision medicine and as an expanding utility for digital pathology. Full Article
hi Numerical study on the effect of geometric approximation error in the numerical solution of PDEs using a high-order curvilinear mesh. (arXiv:1908.09917v2 [math.NA] UPDATED) By arxiv.org Published On :: When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere. Full Article
hi A Shift Selection Strategy for Parallel Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation. (arXiv:1908.06043v2 [math.NA] UPDATED) By arxiv.org Published On :: The central importance of large scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which will be explored in future work. Full Article
hi Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation. (arXiv:1905.00444v2 [quant-ph] UPDATED) By arxiv.org Published On :: Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving "Quantum Supremacy", a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (RQC), which have been recently used as a benchmark for the first experimental demonstration of Quantum Supremacy, sustaining an average performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer in the World. These simulations were carried out using qFlex, a tensor-network-based classical high-performance simulator of RQCs. Our results show an advantage of many orders of magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we propose a standard benchmark for NISQ computers based on qFlex. Full Article
hi Machine learning topological phases in real space. (arXiv:1901.01963v4 [cond-mat.mes-hall] UPDATED) By arxiv.org Published On :: We develop a supervised machine learning algorithm that is able to learn topological phases for finite condensed matter systems from bulk data in real lattice space. The algorithm employs diagonalization in real space together with any supervised learning algorithm to learn topological phases through an eigenvector ensembling procedure. We combine our algorithm with decision trees and random forests to successfully recover topological phase diagrams of Su-Schrieffer-Heeger (SSH) models from bulk lattice data in real space and show how the Shannon information entropy of ensembles of lattice eigenvectors can be used to retrieve a signal detailing how topological information is distributed in the bulk. The discovery of Shannon information entropy signals associated with topological phase transitions from the analysis of data from several thousand SSH systems illustrates how model explainability in machine learning can advance the research of exotic quantum materials with properties that may power future technological applications such as qubit engineering for quantum computing. Full Article
hi Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED) By arxiv.org Published On :: This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces. Full Article
hi On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation. (arXiv:2005.03642v1 [cs.CL]) By arxiv.org Published On :: The standard training algorithm in neural machine translation (NMT) suffers from exposure bias, and alternative algorithms have been proposed to mitigate this. However, the practical impact of exposure bias is under debate. In this paper, we link exposure bias to another well-known problem in NMT, namely the tendency to generate hallucinations under domain shift. In experiments on three datasets with multiple test domains, we show that exposure bias is partially to blame for hallucinations, and that training with Minimum Risk Training, which avoids exposure bias, can mitigate this. Our analysis explains why exposure bias is more problematic under domain shift, and also links exposure bias to the beam search problem, i.e. performance deterioration with increasing beam size. Our results provide a new justification for methods that reduce exposure bias: even if they do not increase performance on in-domain test sets, they can increase model robustness to domain shift. Full Article
hi VM placement over WDM-TDM AWGR PON Based Data Centre Architecture. (arXiv:2005.03590v1 [cs.NI]) By arxiv.org Published On :: Passive optical networks (PON) can play a vital role in data centres and access fog solutions by providing scalable, cost and energy efficient architectures. This paper proposes a Mixed Integer Linear Programming (MILP) model to optimize the placement of virtual machines (VMs) over an energy efficient WDM-TDM AWGR PON based data centre architecture. In this optimization, the use of VMs and their requirements affect the optimum number of servers utilized in the data centre when minimizing the power consumption and enabling more efficient utilization of servers is considered. Two power consumption minimization objectives were examined for up to 20 VMs with different computing and networking requirements. The results indicate that considering the minimization of the processing and networking power consumption in the allocation of VMs in the WDM-TDM AWGR PON can reduce the networking power consumption by up to 70% compared to the minimization of the processing power consumption. Full Article
hi Learning Implicit Text Generation via Feature Matching. (arXiv:2005.03588v1 [cs.CL]) By arxiv.org Published On :: Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer. Full Article
hi GeoLogic -- Graphical interactive theorem prover for Euclidean geometry. (arXiv:2005.03586v1 [cs.LO]) By arxiv.org Published On :: Domain of mathematical logic in computers is dominated by automated theorem provers (ATP) and interactive theorem provers (ITP). Both of these are hard to access by AI from the human-imitation approach: ATPs often use human-unfriendly logical foundations while ITPs are meant for formalizing existing proofs rather than problem solving. We aim to create a simple human-friendly logical system for mathematical problem solving. We picked the case study of Euclidean geometry as it can be easily visualized, has simple logic, and yet potentially offers many high-school problems of various difficulty levels. To make the environment user friendly, we abandoned strict logic required by ITPs, allowing to infer topological facts from pictures. We present our system for Euclidean geometry, together with a graphical application GeoLogic, similar to GeoGebra, which allows users to interactively study and prove properties about the geometrical setup. Full Article
hi Online Algorithms to Schedule a Proportionate Flexible Flow Shop of Batching Machines. (arXiv:2005.03552v1 [cs.DS]) By arxiv.org Published On :: This paper is the first to consider online algorithms to schedule a proportionate flexible flow shop of batching machines (PFFB). The scheduling model is motivated by manufacturing processes of individualized medicaments, which are used in modern medicine to treat some serious illnesses. We provide two different online algorithms, proving also lower bounds for the offline problem to compute their competitive ratios. The first algorithm is an easy-to-implement, general local scheduling heuristic. It is 2-competitive for PFFBs with an arbitrary number of stages and for several natural scheduling objectives. We also show that for total/average flow time, no deterministic algorithm with better competitive ratio exists. For the special case with two stages and the makespan or total completion time objective, we describe an improved algorithm that achieves the best possible competitive ratio $varphi=frac{1+sqrt{5}}{2}$, the golden ratio. All our results also hold for proportionate (non-flexible) flow shops of batching machines (PFB) for which this is also the first paper to study online algorithms. Full Article
hi Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC]) By arxiv.org Published On :: This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience. Full Article
hi Practical Perspectives on Quality Estimation for Machine Translation. (arXiv:2005.03519v1 [cs.CL]) By arxiv.org Published On :: Sentence level quality estimation (QE) for machine translation (MT) attempts to predict the translation edit rate (TER) cost of post-editing work required to correct MT output. We describe our view on sentence-level QE as dictated by several practical setups encountered in the industry. We find consumers of MT output---whether human or algorithmic ones---to be primarily interested in a binary quality metric: is the translated sentence adequate as-is or does it need post-editing? Motivated by this we propose a quality classification (QC) view on sentence-level QE whereby we focus on maximizing recall at precision above a given threshold. We demonstrate that, while classical QE regression models fare poorly on this task, they can be re-purposed by replacing the output regression layer with a binary classification one, achieving 50-60\% recall at 90\% precision. For a high-quality MT system producing 75-80\% correct translations, this promises a significant reduction in post-editing work indeed. Full Article
hi Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG]) By arxiv.org Published On :: Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293. Full Article
hi Brain-like approaches to unsupervised learning of hidden representations -- a comparative study. (arXiv:2005.03476v1 [cs.NE]) By arxiv.org Published On :: Unsupervised learning of hidden representations has been one of the most vibrant research directions in machine learning in recent years. In this work we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The saliency and separability of the hidden representations when trained on MNIST dataset is studied using an external classifier, and compared with other unsupervised learning methods that include restricted Boltzmann machines and autoencoders. Full Article
hi Ensuring Fairness under Prior Probability Shifts. (arXiv:2005.03474v1 [cs.LG]) By arxiv.org Published On :: In this paper, we study the problem of fair classification in the presence of prior probability shifts, where the training set distribution differs from the test set. This phenomenon can be observed in the yearly records of several real-world datasets, such as recidivism records and medical expenditure surveys. If unaccounted for, such shifts can cause the predictions of a classifier to become unfair towards specific population subgroups. While the fairness notion called Proportional Equality (PE) accounts for such shifts, a procedure to ensure PE-fairness was unknown. In this work, we propose a method, called CAPE, which provides a comprehensive solution to the aforementioned problem. CAPE makes novel use of prevalence estimation techniques, sampling and an ensemble of classifiers to ensure fair predictions under prior probability shifts. We introduce a metric, called prevalence difference (PD), which CAPE attempts to minimize in order to ensure PE-fairness. We theoretically establish that this metric exhibits several desirable properties. We evaluate the efficacy of CAPE via a thorough empirical evaluation on synthetic datasets. We also compare the performance of CAPE with several popular fair classifiers on real-world datasets like COMPAS (criminal risk assessment) and MEPS (medical expenditure panel survey). The results indicate that CAPE ensures PE-fair predictions, while performing well on other performance metrics. Full Article
hi High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH]) By arxiv.org Published On :: In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches. Full Article
hi Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG]) By arxiv.org Published On :: Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets. Full Article
hi Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY]) By arxiv.org Published On :: Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm. Full Article
hi Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation. (arXiv:2005.03393v1 [cs.CL]) By arxiv.org Published On :: In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods. Full Article
hi 2kenize: Tying Subword Sequences for Chinese Script Conversion. (arXiv:2005.03375v1 [cs.CL]) By arxiv.org Published On :: Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities. Full Article
hi Vid2Curve: Simultaneously Camera Motion Estimation and Thin Structure Reconstruction from an RGB Video. (arXiv:2005.03372v1 [cs.GR]) By arxiv.org Published On :: Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world. It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion. We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera. Specifically, we present a new curve-based approach to estimate accurate camera poses by establishing correspondences between featureless thin objects in the foreground in consecutive video frames, without requiring visual texture in the background scene to lock on. Enabled by this effective curve-based camera pose estimation strategy, we develop an iterative optimization method with tailored measures on geometry, topology as well as self-occlusion handling for reconstructing 3D thin structures. Extensive validations on a variety of thin structures show that our method achieves accurate camera pose estimation and faithful reconstruction of 3D thin structures with complex shape and topology at a level that has not been attained by other existing reconstruction methods. Full Article
hi JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation. (arXiv:2005.03361v1 [cs.CL]) By arxiv.org Published On :: Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks. Full Article
hi Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP]) By arxiv.org Published On :: Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes. Full Article
hi DramaQA: Character-Centered Video Story Understanding with Hierarchical QA. (arXiv:2005.03356v1 [cs.CL]) By arxiv.org Published On :: Despite recent progress on computer vision and natural language processing, developing video understanding intelligence is still hard to achieve due to the intrinsic difficulty of story in video. Moreover, there is not a theoretical metric for evaluating the degree of video understanding. In this paper, we propose a novel video question answering (Video QA) task, DramaQA, for a comprehensive understanding of the video story. The DramaQA focused on two perspectives: 1) hierarchical QAs as an evaluation metric based on the cognitive developmental stages of human intelligence. 2) character-centered video annotations to model local coherence of the story. Our dataset is built upon the TV drama "Another Miss Oh" and it contains 16,191 QA pairs from 23,928 various length video clips, with each QA pair belonging to one of four difficulty levels. We provide 217,308 annotated images with rich character-centered annotations, including visual bounding boxes, behaviors, and emotions of main characters, and coreference resolved scripts. Additionally, we provide analyses of the dataset as well as Dual Matching Multistream model which effectively learns character-centered representations of video to answer questions about the video. We are planning to release our dataset and model publicly for research purposes and expect that our work will provide a new perspective on video story understanding research. Full Article
hi Error estimates for the Cahn--Hilliard equation with dynamic boundary conditions. (arXiv:2005.03349v1 [math.NA]) By arxiv.org Published On :: A proof of convergence is given for bulk--surface finite element semi-discretisation of the Cahn--Hilliard equation with Cahn--Hilliard-type dynamic boundary conditions in a smooth domain. The semi-discretisation is studied in the weak formulation as a second order system. Optimal-order uniform-in-time error estimates are shown in the $L^2$ and $H^1$ norms. The error estimates are based on a consistency and stability analysis. The proof of stability is performed in an abstract framework, based on energy estimates exploiting the anti-symmetric structure of the second order system. Numerical experiments illustrate the theoretical results. Full Article
hi Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI]) By arxiv.org Published On :: Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. Full Article
hi Knowledge Enhanced Neural Fashion Trend Forecasting. (arXiv:2005.03297v1 [cs.IR]) By arxiv.org Published On :: Fashion trend forecasting is a crucial task for both academia and industry. Although some efforts have been devoted to tackling this challenging task, they only studied limited fashion elements with highly seasonal or simple patterns, which could hardly reveal the real fashion trends. Towards insightful fashion trend forecasting, this work focuses on investigating fine-grained fashion element trends for specific user groups. We first contribute a large-scale fashion trend dataset (FIT) collected from Instagram with extracted time series fashion element records and user information. Further-more, to effectively model the time series data of fashion elements with rather complex patterns, we propose a Knowledge EnhancedRecurrent Network model (KERN) which takes advantage of the capability of deep recurrent neural networks in modeling time-series data. Moreover, it leverages internal and external knowledge in fashion domain that affects the time-series patterns of fashion element trends. Such incorporation of domain knowledge further enhances the deep learning model in capturing the patterns of specific fashion elements and predicting the future trends. Extensive experiments demonstrate that the proposed KERN model can effectively capture the complicated patterns of objective fashion elements, therefore making preferable fashion trend forecast. Full Article
hi Hierarchical Predictive Coding Models in a Deep-Learning Framework. (arXiv:2005.03230v1 [cs.CV]) By arxiv.org Published On :: Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding. Full Article
hi Hierarchical Attention Network for Action Segmentation. (arXiv:2005.03209v1 [cs.CV]) By arxiv.org Published On :: The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings. Full Article
hi Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting. (arXiv:2005.03119v1 [cs.CL]) By arxiv.org Published On :: Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when the images are not available at the testing time. Full Article
hi Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR]) By arxiv.org Published On :: We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context. Full Article
hi Eliminating NB-IoT Interference to LTE System: a Sparse Machine Learning Based Approach. (arXiv:2005.03092v1 [cs.IT]) By arxiv.org Published On :: Narrowband internet-of-things (NB-IoT) is a competitive 5G technology for massive machine-type communication scenarios, but meanwhile introduces narrowband interference (NBI) to existing broadband transmission such as the long term evolution (LTE) systems in enhanced mobile broadband (eMBB) scenarios. In order to facilitate the harmonic and fair coexistence in wireless heterogeneous networks, it is important to eliminate NB-IoT interference to LTE systems. In this paper, a novel sparse machine learning based framework and a sparse combinatorial optimization problem is formulated for accurate NBI recovery, which can be efficiently solved using the proposed iterative sparse learning algorithm called sparse cross-entropy minimization (SCEM). To further improve the recovery accuracy and convergence rate, regularization is introduced to the loss function in the enhanced algorithm called regularized SCEM. Moreover, exploiting the spatial correlation of NBI, the framework is extended to multiple-input multiple-output systems. Simulation results demonstrate that the proposed methods are effective in eliminating NB-IoT interference to LTE systems, and significantly outperform the state-of-the-art methods. Full Article
hi AVAC: A Machine Learning based Adaptive RRAM Variability-Aware Controller for Edge Devices. (arXiv:2005.03077v1 [eess.SY]) By arxiv.org Published On :: Recently, the Edge Computing paradigm has gained significant popularity both in industry and academia. Researchers now increasingly target to improve performance and reduce energy consumption of such devices. Some recent efforts focus on using emerging RRAM technologies for improving energy efficiency, thanks to their no leakage property and high integration density. As the complexity and dynamism of applications supported by such devices escalate, it has become difficult to maintain ideal performance by static RRAM controllers. Machine Learning provides a promising solution for this, and hence, this work focuses on extending such controllers to allow dynamic parameter updates. In this work we propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes using on-the-fly learning models and gradient ascent. AVAC allows Edge devices to adapt to different applications and their stages, to improve computation performance and reduce energy consumption. Simulations demonstrate that the proposed model can provide up to 29% increase in performance and 19% decrease in energy, compared to static controllers, using traces of real-life healthcare applications on a Raspberry-Pi based Edge deployment. Full Article
hi Evaluating text coherence based on the graph of the consistency of phrases to identify symptoms of schizophrenia. (arXiv:2005.03008v1 [cs.CL]) By arxiv.org Published On :: Different state-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed. The analysis of a text at the level of phrases has been suggested. The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text. The semantic coherence, cohesion, and other linguistic features (lexical diversity, lexical density) have been taken into account to form feature vectors for the training of a model-classifier. The training of the classifier has been performed on the set of English-language interviews. According to the retrieved results, the impact of each feature on the output of the model has been analyzed. The results obtained can indicate that the proposed method based on the graph of the consistency of phrases may be used in the different tasks of the detection of mental illness. Full Article
hi Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR]) By arxiv.org Published On :: Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator. Full Article
hi Football High: Helmets Do Not Prevent Concussions By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST Despite the improvements in helmet technology, helmets may prevent skull fractures, but they do not prevent concussions. Full Article video
hi Football High: Keeping Up with the Joneses By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST Competition is steep in games like football. The desire to win often trumps safety. Full Article video
hi Football High: Garrett Harper's Story, Part II By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST The decisions coaches make on the sidelines about returning a concussed player to the game or not can be a "game changer" for that athlete's life. Full Article video
hi Football High: Small Hits Add Up By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST Research is showing that the accumulation of sub-concussive hits in sports like football can be just as damaging as one or two major concussions. Full Article video
hi Football High: Garrett Harper's Story, Part I By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST For many competitive high school football players like Garrett Harper, the intensity of this contact sport has its price. Full Article video
hi Football High: Owen Thomas' Story By feedproxy.google.com Published On :: Tue, 10 Dec 2013 00:00:00 EST The issues of sports-related concussions and chronic traumatic encephalopathy were intensified when the brain of a deceased 21-year-old football player was examined. Full Article video
hi Retired Soccer Star Briana Scurry: "This Has Been the Most Difficult Thing" By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST "The penalty kicks, the final goals in the Olympics, playing in front of the president, in front of 90,000 people ... that is what I was born to do ... and my brain is what I used to get myself there." Full Article video
hi The Hit That Ended Briana Scurry's Soccer Career By feedproxy.google.com Published On :: Thu, 23 Jan 2014 00:00:00 EST "I knew I was in trouble ... I didn't know how much trouble," says retired soccer star Briana Scurry. Full Article video
hi This Concussion Is More Serious Than You Thought By feedproxy.google.com Published On :: Mon, 24 Feb 2014 00:00:00 EST Bob Duncan talks about what happened to his son when he returned to college and to his midterm exams only 24 hours after his concussion. Full Article video
hi 24 Must-Know Graphic Design Terms By feedproxy.google.com Published On :: Thu, 19 Sep 2019 13:31:41 +0000 Graphic design is everywhere — it’s used in traditional marketing efforts like billboards and fliers, and more importantly, it’s used in nearly every single digital marketing initiative from web design to social media marketing. If you’re a business that’s working with a digital marketing agency for any number of marketing campaigns (especially web design), it’s […] The post 24 Must-Know Graphic Design Terms appeared first on WebFX Blog. Full Article Web Design