ng Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress. Full Article
ng G{alpha}s directly drives PDZ-RhoGEF signaling to Cdc42 [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42. Full Article
ng AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion. Full Article
ng AMPK{beta}1 and AMPK{beta}2 define an isoform-specific gene signature in human pluripotent stem cells, differentially mediating cardiac lineage specification [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism that phosphorylates a wide range of proteins to maintain cellular homeostasis. AMPK consists of three subunits: α, β, and γ. AMPKα and β are encoded by two genes, the γ subunit by three genes, all of which are expressed in a tissue-specific manner. It is not fully understood, whether individual isoforms have different functions. Using RNA-Seq technology, we provide evidence that the loss of AMPKβ1 and AMPKβ2 lead to different gene expression profiles in human induced pluripotent stem cells (hiPSCs), indicating isoform-specific function. The knockout of AMPKβ2 was associated with a higher number of differentially regulated genes than the deletion of AMPKβ1, suggesting that AMPKβ2 has a more comprehensive impact on the transcriptome. Bioinformatics analysis identified cell differentiation as one biological function being specifically associated with AMPKβ2. Correspondingly, the two isoforms differentially affected lineage decision toward a cardiac cell fate. Although the lack of PRKAB1 impacted differentiation into cardiomyocytes only at late stages of cardiac maturation, the availability of PRKAB2 was indispensable for mesoderm specification as shown by gene expression analysis and histochemical staining for cardiac lineage markers such as cTnT, GATA4, and NKX2.5. Ultimately, the lack of AMPKβ1 impairs, whereas deficiency of AMPKβ2 abrogates differentiation into cardiomyocytes. Finally, we demonstrate that AMPK affects cellular physiology by engaging in the regulation of hiPSC transcription in an isoform-specific manner, providing the basis for further investigations elucidating the role of dedicated AMPK subunits in the modulation of gene expression. Full Article
ng Visualizing, quantifying, and manipulating mitochondrial DNA in vivo [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells. Full Article
ng Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1. Full Article
ng Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer. Full Article
ng Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain. Full Article
ng NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX. Full Article
ng PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
ng A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state. Full Article
ng High resolution structure of human apolipoprotein (a) kringle IV type 2: beyond the lysine binding site By www.jlr.org Published On :: 2020-12-01 Alice SantonastasoDec 1, 2020; 61:1687-1696Research Articles Full Article
ng Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila By www.jlr.org Published On :: 2020-12-01 Stephanie E. HoodDec 1, 2020; 61:1720-1732Research Articles Full Article
ng Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous By www.jlr.org Published On :: 2020-12-01 Melissa GómezDec 1, 2020; 61:1658-1674Research Articles Full Article
ng A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand By www.jlr.org Published On :: 2020-12-01 Frank C. NicholsDec 1, 2020; 61:1645-1657Research Articles Full Article
ng PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids By www.jlr.org Published On :: 2020-12-01 Hideaki KugeDec 1, 2020; 61:1747-1763Research Articles Full Article
ng Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase By www.jlr.org Published On :: 2020-12-01 Marco De GiorgiDec 1, 2020; 61:1675-1686Research Articles Full Article
ng Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging By www.jlr.org Published On :: 2020-12-01 Douglas A. AndresDec 1, 2020; 61:1537-1537Images in Lipid Research Full Article
ng Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging By www.jlr.org Published On :: 2020-12-23 Astrid M. MoermanDec 23, 2020; 0:jlr.RA120000974v1-jlr.RA120000974Research Articles Full Article
ng Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition By www.jlr.org Published On :: 2020-12-01 Genta KakiyamaDec 1, 2020; 61:1629-1644Research Articles Full Article
ng rHDL modelling and the anchoring mechanism of LCAT activation By www.jlr.org Published On :: 2020-12-02 Tommaso LaurenziDec 2, 2020; 0:jlr.RA120000843v1-jlr.RA120000843Research Articles Full Article
ng Multi-modal Functional Imaging of Brown Adipose Tissue By www.jlr.org Published On :: 2020-11-18 Amanda D.V. MacCannellNov 18, 2020; 0:jlr.ILR120001204v1-jlr.ILR120001204Images in Lipid Research Full Article
ng Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
ng Problem Notes for SAS®9 - 66438: You see the message "The informat $ could not be loaded, probably due to insufficient memory" after attempting to insert data into a MySQL database By Published On :: Wed, 2 Sep 2020 10:39:14 EST For data that is being loaded from a SAS Stored Process Server, an insertion process might fail to a MySQL database with a warning, as well as an error message that says "During insert: Incorrect datetime value " Full Article BASE+Base+SAS
ng Problem Notes for SAS®9 - 66544: You cannot clear warnings for decision campaign nodes in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:41:53 EST In SAS Customer Intelligence Studio, you might notice that you cannot clear warnings for decision campaign nodes by selecting either the Clear Warnings option or the Clear All Warnin Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
ng Problem Notes for SAS®9 - 66527: Updating counts in a Link node in SAS Customer Intelligence Studio produces the error "Link: MAIQService:executeFastPath:" By Published On :: Tue, 1 Sep 2020 10:53:01 EST In SAS Customer Intelligence Studio, the following error is displayed when you update a new Link node in a diagram: imgalt="Link: MAIQService:executeFastPath:" src="{fusion_665 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
ng Problem Notes for SAS®9 - 66542: The initial loading of a rule set and a rule flow takes significantly longer in SAS Business Rules Manager 3.3 compared with release 3.2 By Published On :: Mon, 31 Aug 2020 16:35:05 EST In SAS Business Rules Manager 3.3, the initial loading of a rule set and a rule flow takes significantly longer than it does in release 3.2. When this problem happens, long time gaps are evident in the local Full Article BRLSTBNDL+SAS+Business+Rules+Manager
ng Problem Notes for SAS®9 - 66524: SAS Visual Data Builder uses the wrong SAS Application Server for previewing and scheduling By Published On :: Mon, 31 Aug 2020 12:14:44 EST If you have configured more than one SAS Application Server, then SAS Visual Data Builder might unexpectedly use the wrong application server when you preview or schedule queries. This problem occurs even though you h Full Article VISANLYTBNDL+SAS+Visual+Analytics
ng Problem Notes for SAS®9 - 55516: Opening the Edit Action Columns dialog box requires that you wait up to a minute to display a window By Published On :: Fri, 28 Aug 2020 11:23:00 EST Editing and/or saving an action column can take up to a minute to display a window. There are no workarounds identified at this time. Full Article SCDOFR+SAS+Visual+Scenario+Designer
ng Problem Notes for SAS®9 - 66391: Opening a database table returns a Segmentation Violation when you use the Metadata LIBNAME engine (META) By Published On :: Wed, 26 Aug 2020 16:39:25 EST You might receive a Segmentation Violation when opening a database table in SAS. The SAS Log contains the error and traceback: ERR Full Article METADATASRV+SAS+Metadata+Server
ng Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
ng Problem Notes for SAS®9 - 66095: The message "ERROR: Could not move and link one or more files to..." occurs while running a job-flow instance By Published On :: Fri, 21 Aug 2020 15:33:44 EST In SAS Infrastructure for Risk Management, the message "ERROR: Could not move and link one or more files to..." occurs while running a job-flow instance if an orphaned folder exists in the persistent area. Full Article IRMOFR+SAS+Infrastructure+for+Risk+Manag
ng Problem Notes for SAS®9 - 66507: The RegisterFontTask" install task fails during out-of-the-box, add-on, or upgrade-in-place deployments if Hot Fix D7G004 is applied By Published On :: Fri, 21 Aug 2020 11:05:36 EST The SAS 9.4M4 (TS1M4) Hot Fix D7G004 for ODS Templates installs national language support (NLS) content regardless of whether the languages were installed during the initial deployment. Having sparse Full Article
ng Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error By Published On :: Fri, 21 Aug 2020 09:34:11 EST When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for Full Article MMGROFR+SAS+Model+Manager
ng Problem Notes for SAS®9 - 66504: Clicking a link to pass a group break value to a SAS Web Report Studio report returns an HTTP 400 error By Published On :: Thu, 20 Aug 2020 14:07:26 EST SAS Web Report Studio enables you to link reports based on a group break value. However, when you click the link, it might fail with an HTTP 400 error. The exact message you see depends on which browser you are u Full Article CITATIONWEB+SAS+Web+Report+Studio
ng Problem Notes for SAS®9 - 66500: A content release on the SAS Risk Governance Framework fails to load when you use SAS 9.4M7 (TS1M7) on the Microsoft Windows operating system By Published On :: Wed, 19 Aug 2020 17:45:15 EST When you log on to the SAS Risk Governance Framework and choose a solution, the web application might fail to load the solution content. When the problem occurs, you continue to see "Loading..." on the screen, an Full Article RGPBNDL+SAS+Risk+Governance+Framework
ng Problem Notes for SAS®9 - 66294: The SAS Federation Server SPD driver fails to create a table that has a column name in UTF-8 encoding that also contains Latin5 characters By Published On :: Wed, 19 Aug 2020 15:57:34 EST Certain tables that are created in SAS Scalable Performance Data (SPD) Server might not be displayed correctly by SAS Federation Server Manager. Tables that have Latin5 characters in column names encounter this Full Article SPDS+SAS+Scalable+Peformance+Data+Server
ng WITHDRAWN: The Fundamental And Pathological Importance Of Oxysterol Binding Protein And Its Related Proteins [Thematic Reviews] By www.jlr.org Published On :: 2018-10-15T08:42:37-07:00 This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98. Full Article
ng Bisretinoid phospholipid and vitamin A aldehyde: Shining a light [Thematic Reviews] By www.jlr.org Published On :: 2020-05-05T13:30:26-07:00 Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate (N-retinylidene-PE, NRPE) through a Schiff base linkage with phosphatidylethanolamine (PE). The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial (RPE) cells, their fluorescence characters and new findings related to light and iron-associated oxidation of bisretinoids. Full Article
ng Signaling roles of phosphoinositides in the retina [Thematic Reviews] By www.jlr.org Published On :: 2020-06-15T14:33:05-07:00 The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina. Full Article
ng Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome [Research Articles] By www.jlr.org Published On :: 2020-07-09T14:33:39-07:00 Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions. Full Article
ng The emerging roles of the macular pigment carotenoids throughout the lifespan and in prenatal supplementation [Thematic Reviews] By www.jlr.org Published On :: 2020-07-24T07:33:25-07:00 Since the publication of the Age-Related Eye Disease Study (AREDS2) in 2013, the macular pigment carotenoids lutein and zeaxanthin have become well known to both the eye care community and the public. It is a fascinating aspect of evolution that primates have repurposed photoprotective pigments and binding proteins from plants and insects to protect and enhance visual acuity. Moreover, utilization of these plant-derived nutrients has been widely embraced for preventing vision loss from age-related macular degeneration (AMD). More recently, there has been growing awareness that these nutrients can also play a role in improving visual performance in adults. On the other hand, the potential benefits of lutein and zeaxanthin supplementation at very young ages have been underappreciated. In this review, we examine the biochemical mechanisms and supportive data for lutein and zeaxanthin supplementation throughout the lifespan, with particular emphasis on prenatal supplementation. We propose that prenatal nutritional recommendations may aim at improving maternal and infant carotenoid status. Prenatal supplementation with lutein and zeaxanthin might enhance infant visual development and performance and may even prevent retinopathy of prematurity, possibilities that should be examined in future clinical studies. Full Article
ng Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain [Thematic Reviews] By www.jlr.org Published On :: 2020-08-11T12:36:10-07:00 The cornea is densely innervated, mainly by sensory nerves of the ophthalmic branch of the trigeminal ganglia (TG). These nerves are important to maintain corneal homeostasis, and nerve damage can lead to a decrease in wound healing, an increase in corneal ulceration and dry eye disease (DED), and neuropathic pain. Pathologies, such as diabetes, aging, viral and bacterial infection, as well as prolonged use of contact lenses and surgeries to correct vision can produce nerve damage. There are no effective therapies to alleviate DED (a multifunctional disease) and several clinical trials using -3 supplementation show unclear and sometimes negative results. Using animal models of corneal nerve damage, we show that treating corneas with pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) increases nerve regeneration, wound healing, and tear secretion. The mechanism involves the activation of a calcium-independent phospholipase A2 (iPLA2) that releases the incorporated DHA from phospholipids and enhances the synthesis of docosanoids neuroprotectin D1 (NPD1) and a new resolvin stereoisomer RvD6i. NPD1 stimulates the synthesis of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and of semaphorin 7A (Sema7A). RvD6i treatment of injured corneas modulates gene expression in the TG resulting in enhanced neurogenesis; decreased neuropathic pain and increased sensitivity. Taken together, these results represent a promising therapeutic option to re-establish the homeostasis of the cornea. Full Article
ng Sphingolipids as Critical Players in Retinal Physiology and Pathology [Thematic Reviews] By www.jlr.org Published On :: 2020-09-18T07:36:30-07:00 Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is, therefore, crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) emerges as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide-1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches. Full Article
ng High-density lipoprotein-associated miRNA is increased following Roux-en-Y gastric bypass surgery for severe obesity [Research Articles] By www.jlr.org Published On :: 2020-10-22T06:30:32-07:00 Roux-en-Y gastric bypass (RYGB) is one of the most commonly performed weight-loss procedures, but how severe obesity and RYGB affects circulating HDL-associated microRNAs (miRNAs) remains unclear. Here, we aim to investigate how HDL-associated miRNAs are regulated in severe obesity and how weight loss after RYGB surgery affects HDL-miRNAs. Plasma HDL were isolated from patients with severe obesity (n=53) before, 6 and 12 months after RYGB by immunoprecipitation using goat anti-human apoA-I microbeads. HDL were also isolated from 18 healthy participants. miRNAs were extracted from isolated HDL and levels of miR-24, miR-126, miR-222 and miR-223 were determined by TaqMan miRNA assays. We found that HDL-associated miR-126, miR-222 and miR-223 levels, but not miR-24 levels, were significantly higher in patients with severe obesity when compared with healthy controls. There were significant increases in HDL-associated miR-24, miR-222 and miR-223 at 12 months after RYGB. Additionally, cholesterol efflux capacity and paraoxonase (PON1) activity were increased and intracellular adhesion molecule-1 (ICAM-1) levels decreased. The increases in HDL-associated miR-24 and miR-223 were positively correlated with increase in cholesterol efflux capacity (r=0.326, P=0.027 and r=0.349, P=0.017 respectively). An inverse correlation was observed between HDL-associated miR-223 and ICAM-1 at baseline. Together, these findings show that HDL-associated miRNAs are differentially regulated in healthy versus patients with severe obesity and are altered after RYGB. These findings provide insights into how miRNAs are regulated in obesity before and after weight reduction, and may lead to the development of novel treatment strategies for obesity and related metabolic disorders. Full Article
ng Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors [Thematic Reviews] By www.jlr.org Published On :: 2020-10-26T14:30:21-07:00 The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRC), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine (PC), amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (VLC-PUFAs,n-3, ≥ 28 carbons) are at the sn-1 of this PC molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of anti-apoptotic and pro-survival protein expression with concomitant downregulation of pro-apoptotic proteins when RPE is confronted with uncompensated oxidative stress (UOS). ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix (IPM), as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration (AMD), Alzheimer’s disease (AD), and other pathologies. Full Article
ng Multi-modal Functional Imaging of Brown Adipose Tissue [Images in Lipid Research] By www.jlr.org Published On :: 2020-11-18T10:30:48-08:00 Full Article
ng rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles] By www.jlr.org Published On :: 2020-12-02T13:30:37-08:00 Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates. Full Article
ng Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging [Research Articles] By www.jlr.org Published On :: 2020-12-23T12:30:44-08:00 Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of > 90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, while diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear co-localization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques. Full Article
ng Developing a vaccine against Zika By www.bmj.com Published On :: Thursday, November 10, 2016 - 16:26 Full Article