particle

Energy storage composite particle, battery negative electrode material and battery

An energy storage composite particle is provided, which includes a carbon film, a conductive carbon component, an energy storage grain, and a conductive carbon fiber. The carbon film surrounds a space. The conductive carbon component and the energy storage grain are disposed in the space. The conductive carbon fiber is electrically connected to the conductive carbon component, the energy storage grain, and the carbon film, and the conductive carbon fiber extends from the inside of the space to the outside of the space. The energy storage composite particle has a high gravimetric capacity, a high coulomb efficiency, and a long cycle life. Furthermore, a battery negative electrode material and a battery using the energy storage composite particle are also provided.




particle

Positive electrode active material particles for lithium ion secondary batteries, positive electrode using the same, and lithium ion secondary battery

Positive electrode active material particles for lithium ion secondary batteries include: a core particle including a first olivine-structured, lithium-containing phosphate compound which includes Fe and/or Mn and Li; and a shell layer attached to the surface of the core particle. The shell layer includes a second olivine-structured, lithium-containing phosphate compound which includes Fe and/or Mn and Li. At least the core particle includes a phosphorous compound represented by the formula (1): MemPnOp, where Me is Fe and/or Mn, 0




particle

Protection of porous carbon fuel particles from boudouard corrosion

A system for producing energy that includes infusing porous carbon particles produced by pyrolysis of carbon-containing materials with an off-eutectic salt composition thus producing pore-free carbon particles, and reacting the carbon particles with oxygen in a fuel cell according to the reaction C+O2=CO2 to produce electrical energy.




particle

Process for producing nanoparticles by spray drying

Nanoparticles of a compound are produced by spraying a solution of the compound into a heated chamber. The resulting product comprises a free flowing mixture of nanoparticles of the compound.




particle

Magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes

A magnetic storage medium is formed of magnetic nanoparticles that are encapsulated within nanotubes (e.g., carbon nanotubes).




particle

Method for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution

A process for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution in a surrounding gas phase in a reaction chamber, wherein the monomer solution is metered into the reaction chamber via at least one bore, and the diameter is from 210 to 290 μm per bore and the metering rate is from 0.9 to 5 kg/h per bore.




particle

High capacity magnetic nanoparticles as supports for reagents and catalysts

A magnetic particle-polymer hybrid material can include: a substance having a structure of Formula 1 or derivative or salt thereof:Z(Y-Triazole-CH2—X—CH2—(FP)n)m (Formula 1), wherein Z is a magnetic particle smaller than 1 mm; n and m are independently integers; Y includes a first linker having an alkyl and/or aryl linked to the magnetic particle; X is CH2 or a heteroatom; FP is a functionalized polymer having: a first structure derived from a first norbornene compound linked to the magnetic particle through the Y-Triazole-CH2—X—CH2 linker; and one or more monomeric units each including a second structure derived from a second norbornene compound, where one of the monomeric units is linked to the first structure through a saturated or unsaturated alkyl, each monomeric unit includes a functional group capable of binding with another substance.




particle

Method for making polyamide particles

This disclosure relates to a method of preparing polyamide particles. The method include spray drying a solution containing a polyamide to form polyamide particles having an average diameter of between about 0.5 μm and about 10 μm and at least about 85% of the polyamide particles having a diameter distribution of no more than about 1.5 μm.




particle

Electronic device for voltage switchable dielectric material having high aspect ratio particles

One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.




particle

Elastomeric particle having an electrically conducting surface, a pressure sensor comprising said particles, a method for producing said sensor and a sensor system comprising said sensors

An elastomeric particle (1, 1, 1″) comprises a non-conducting elastomeric body (2) having an electrically conducting surface (4a, 4b, 6). Pressure sensor elements (20, 20', 20″; 30, 30', 30″, 30'″) comprising such elastomeric particles are disclosed, as well as sensor clusters (50″, 50'″, 50IV, 50V, 50VI, 50VII, 70) comprising such sensor elements. There is also disclosed a pressure sensor element (40, 40', 40″, 40'″, 40IV, 40V, 40VI, 40VII), comprising a resistive element (44, 44', 44″) providing a conduction path, a first electrode (42a, 42a-1, 42a-2, 42a-3, 42a-4, 42a-5, 42a-6), connected to the resistive element, a second electrode (42b, 42b'), which in a quiescent state is spaced from said first electrode, wherein the second electrode, when the pressure sensor element is subjected to a pressure, is arranged to contact said first electrode or said resistive element. Systems comprising such sensor elements and sensor clusters are disclosed, as well as methods of their fabrication.




particle

Particle removal device for ink jet printer

A particle removal device for an ink jet printer is discussed. The particle removal device includes a first separator comprising an arrangement of obstacles including at least two rows of obstacles that extend laterally with respect to a flow path of ink in the first separator. The rows of obstacles are offset from one another by a row offset fraction. The arrangement of obstacles is configured to preferentially route larger particles having diameters greater than a critical diameter through the arrangement and along a first trajectory vector that is angled with respect to the direction of the flow path of the ink. The angle of the first trajectory vector with respect to the ink flow path is a function of the row offset fraction. Smaller particles having diameters less than the critical diameter travel through the arrangement along a second trajectory vector that is not substantially angled with respect to the flow path of the ink. The first separator causes a pressure drop of the ink of less than about 100 Pa.




particle

Detection of analytes via nanoparticle-labeled substances with electromagnetic read-write heads

A first set of antibodies are bonded to a substrate, and are exposed to and bonded with target antigens. A second set of antibodies are bonded to nanoparticles, and the nanoparticle labeled antibodies are exposed to the targeted antigens. An electromagnetic write-head magnetizes the nanoparticles, and then a read-sensor detects the freshly magnetized nanoparticles. The substrate comprises a flexible film or a Peltier material to allow selective heating and cooling of the antigens and antibodies. Nanoparticles of different magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.




particle

Antibody-nanoparticle conjugates and methods for making and using such conjugates

Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.




particle

Shortening particle compositions and dough products made therefrom

The invention relates to shortening particle compositions that are suitable for use in preparing batter or dough products such as biscuits, pizza crusts, pot pie crusts, cinnamon rolls, or dry mixes for same. Typically, the shortening compositions are low in trans fatty acids and in saturated fatty acids. For example, the shortening particle composition may comprise less than about 3% wt. total trans fatty acids and a total of about less than about 61% wt. saturated fatty acids and trans fatty acids.




particle

Multi-channel system and methods for sorting particles

A multi-channel system and methods for sorting particles according to one or more characteristics of the particles. The system includes multiple flow cytometry units, each unit can have a nozzle for producing a fluid stream containing a desired population of particles in a mixture of particles. Each of the units may be operable to sort said desired population of particles by interrogating the fluid stream with a beam of electromagnetic radiation and classifying particles based on one or more characteristics of the particles. The system also includes a common fluid delivery system for delivering sheath fluid to each flow cytometer unit for producing respective fluid streams.




particle

Methods and systems for manipulating particles using a fluidized bed

The present invention comprises methods and systems for manipulation of media and particles, whether inert materials or biomaterials, such as cells in suspension cell culture. The methods and systems comprise use of an apparatus comprising a rotating chamber wherein the actions of the combined forces fluid flow force and centrifugal force form a fluidized bed within the rotating chamber.




particle

Water-dispersable nanoparticles

Provided herein are methods for making water-soluble nanoparticles comprising a core/shell nanocrystal that is coated with a surface layer comprising enough hydrophilic ligands to render the nanoparticle water soluble or water dispersable. Methods for crosslinking molecules on the surface of a nanoparticle, which methods can be used on the above water-soluble nanoparticles also are provided. Nanoparticle compositions resulting from these methods are also provided.




particle

Basic zinc cyanurate fine particles, and method for producing same

Basic zinc cyanurate fine particles are produced by subjecting a mixed slurry to wet dispersion using a dispersion medium at a temperature in the range of 5 to 55° C., the mixed slurry being formed by blending water, cyanuric acid, and at least one component selected from zinc oxide and basic zinc carbonate such that the cyanuric acid concentration is 0.1 to 10.0 mass % with respect to water.




particle

Nuclear power plant using nanoparticles in emergency systems and related method

A nuclear power plant with an improved cooling system using nanoparticles in solid or fluid form is provided. The nanoparticles are delivered in locations such as the cold leg accumulator and high and low pressure pumps of an emergency core cooling system. Motor driven valves and pressurization can aid in the delivery. Methods for providing the nanoparticles are also provided.




particle

Coolant with dispersed neutron poison micro-particles, used in SCWR emergency core cooling system

Disclosed is a coolant with dispersed neutron poison micro-particles, used in a supercritical water-cooled reactor (SCWR) emergency core cooling system. Since the neutron poison micro-particles are uniformly dispersed in the coolant of the emergency core cooling system for a long period time, their fluidity is not lowered even though the polarity of water is changed in a supercritical state. Therefore, the neutron poison micro-particles absorb neutrons produced from nuclear fission in a nuclear reactor core. Accordingly, the neutron poison micro-particles can be appropriately used as a means for controlling neutrons and stopping a nuclear reactor in the SCWR emergency core cooling system.




particle

Slip prevention particle injection device

Problems are posed by slip prevention particle injection devices by wheels of railway rolling stock. Namely, if the injected quantity of slippage-preventing particles is adjusted so as not to be excessive and to be a suitable quantity, it is not possible to obtain a predetermined injection pressure and it is not possible to inject the particles at the target location. The injector device of the present invention is constituted by providing an air through-flow duct 5 inside a particle retainer tank 1, and connecting an air supply duct 17 to this air through-flow duct 5. In the above mentioned tank 1, in addition to an air inflow duct 6 being provided in the vicinity of the inlet side of the air through-flow duct 5, an air discharge duct 18 is provided in the vicinity of the outlet side of the air through-flow duct 5. This air inflow duct 6 and air discharge duct 18 are connected to the air through-flow duct 5 and one end of these ducts 6 and 18 is open into the tank 1. Further, in addition to a mixing chamber 15 and a smaller-diameter air passage section 9 being provided in the air through-flow duct 5, a particle introduction hole 16 is provided in the mixing chamber 15, and an injector duct 21 that injects a fluid mixture of slippage-preventing particles and compressed air is provided at the outlet side of the air through-flow duct 5.




particle

Method for removal of particles and VOC from an airstream

Apparatus and method for removal of particles and VOC from an airstream, in which particles carried by the airstream are charged by a corona ionizer and then collected by an electrically enhanced filter downstream of the ionizer. A catalytic filter downstream of the electrically enhanced filter removes VOC as well as ozone generated by the ionizer.




particle

Method of manufacturing spherical mesoporous silica containing dispersed silver nanoparticles, and spherical mesoporous silica manufactured by said method

The present invention relates to a method of preparing a spherical mesoporous silica structure containing silver nanoparticles dispersed therein by adding a silver nitrate solution to an aqueous surfactant solution and performing a sol-gel process and to spherical mesoporous silica prepared thereby. The spherical mesoporous silica is cost-effective compared to a conventional method that uses silver nanoparticles as a raw material, because the silver nitrate solution that is inexpensive compared to silver nanoparticles is used. Also, the spherical mesoporous silica can be with high productivity in large amounts, and thus is easily commercialized. Moreover, because silver nanoparticles are incorporated into the pores of the mesoporous silica, the silver nanoparticles are used stably and do not change color and odor. In addition, the spherical mesoporous silica exhibits various additional effects, including far-infrared ray emission and deodorization, attributable to silica.




particle

Nondestructive examination of structures having embedded particles

A system comprises a structure having particles embedded at a level within the structure, and X-ray imaging apparatus for capturing images of the particles at the level.




particle

Precision wood particle feedstocks with retained moisture contents of greater than 30% dry basis

Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L×H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W×H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L×W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W×H surfaces in the mixture of wood particles have end checking.




particle

Nonmagnetic material particle dispersed ferromagnetic material sputtering target

Provided is a nonmagnetic material particle dispersed ferromagnetic material sputtering target comprising a material including nonmagnetic material particles dispersed in a ferromagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is characterized in that all particles of the nonmagnetic material with a structure observed on the material in its polished face have a shape and size that are smaller than all imaginary circles having a radius of 2 μm formed around an arbitrary point within the nonmagnetic material particles, or that have at least two contact points or intersection points between the imaginary circles and the interface of the ferromagnetic material and the nonmagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is advantageous in that, in the formation of a film by sputtering, the influence of heating or the like on a substrate can be reduced, high-speed deposition by DC sputtering is possible, the film thickness can be regulated to be thin, the generation of particles (dust) or nodules can be reduced during sputtering, the variation in quality can be reduced to improve the mass productivity, fine crystal grains and high density can be realized, and the nonmagnetic material particle dispersed ferromagnetic material sputtering target is particularly best suited for use as a magnetic recording layer.




particle

Inorganic-particle-dispersed sputtering target

Provided is an inorganic-particle-dispersed sputtering target in which inorganic particles are dispersed in a Co base material, wherein the inorganic particles have an electric resistivity of 1×101 Ω·m or less and the volume ratio of the inorganic particles in the target is 50% or less. The sputtering target thus adjusted is advantageous in that, when sputtering is performed using a magnetron sputtering device comprising a DC power source, the inorganic particles are less charged, and arcing occurs less frequently. Accordingly, by using the sputtering target of the present invention, the occurrence of particles attributable to the arcing reduces, and a significant effect of improving the yield in forming a thin film is obtained.




particle

Particle characterization cell and particle characterization instrument

The present invention is configured to be provided with: a bottom-equipped tubular cell main body that forms an internal space S1 that extends in a longer direction, and has one end part that is opened; a pair of applying electrodes that are arranged so as to face to each other in the internal space; and a fixing spacer that intervenes between the pair of applying electrodes to thereby define a distance between the applying electrodes, and fixes the pair of applying electrodes, wherein in a state where the fixing spacer is inserted into the cell main body, in a lower part of the internal space of the cell main body, a zeta potential measuring space in which the pair of applying electrodes are exposed is formed.




particle

Charged particle beam apparatus

In a pattern inspection of a semiconductor circuit, to specify a cause of a process defect, not only a distribution on and across wafer of the number of defects but also more detailed, that is, the fact that how many defects occurred where on the semiconductor pattern is needed to be specified in some cases. Accordingly, the present invention aims to provide an apparatus capable of easily specifying a cause of a process defect based upon a positional relationship of a distribution of defect occurrence frequency and a pattern. The apparatus includes: a charged particle beam optical system for detecting secondary charged particles by irradiating the charged particle beam to the sample; an image processing unit for, based upon a plurality of images to be inspected that are obtained by the secondary charged particles, obtaining an occurrence frequency of defect candidates for each of predetermined regions inside the detected image; and a display unit for displaying the distribution of the occurrence frequency of the defect candidates so that a positional relationship to the pattern is recognized.




particle

Method of investigating and correcting aberrations in a charged-particle lens system

A system of investigating aberrations in a charged particle lens system, wherein a charged particle beam is directed from a multitude of directions through a pivot point on a sample stage. An image figure is recorded for each of multiple focus settings at each beam direction setting, creating a set of registered images. This set of images is compared to reference images to derive aberrations present in the lens system without the use of an amorphous sample present.




particle

Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces

Apparatus for separating ash particles from a flue gas. The apparatus includes a screen that has a plurality of semi-elliptical cylinder surfaces. The semi-elliptical cylinder surfaces having holes through which said flue gas flows and through which the ash particles will not pass. The screen has a single layer for performing the separation in a manner such that the ash particles fall away from the screen and collect outside of the screen. A method of reducing velocity of a flue gas passing through screening apparatus for separating flue gas from ash particles. The method includes replacing a first screen of the screening apparatus with a second screen that has a plurality of semi-elliptical cylinder surfaces.




particle

Layered compound-metal particle composite and production method therefor, and suspension, film and flexible solar cell using same

A layered compound-metal particle composite 3 is obtained by the addition, to an organically modified layered compound 1 formed by the intercalation of organic ions between layers of a layered compound, of both an aqueous colloidal metal solution 2 in which metal particles are dispersed as a metal colloid in water, and a nonaqueous solvent which is a poor solvent for the metal colloid and has an excellent ability to swell the organically modified layered compound 1.




particle

Device for electrical characterization of molecules using CNT-nanoparticle-molecule-nanoparticle-CNT structure

A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.




particle

Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids

Disclosed is a method of producing a chemically pure and stably dispersed organic nanoparticle colloidal suspension using an ultrafast pulsed laser ablation process. The method comprises irradiating a target of an organic compound material in contact with a poor solvent with ultrashort laser pulses at a high repetition rate and collecting the nanoparticles of the organic compound produced. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beam, an organic compound target in contact with a poor solvent, and a solvent circulating system to cool the laser focal volume and collect the produced nanoparticle products. By controlling various laser parameters, and with optional poor solvent flow movement, the method provides stable colloids of dispersed organic nanoparticles in the poor solvent in the absence of any stabilizing agents.




particle

Multipass rotary shear comminution process to produce corn stover particles

A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.




particle

Systems and methods for real-time catalyst particle size control in a polymerization reactor

Polymerization reactor systems providing real-time control of the average particle size of catalyst system components are disclosed. Methods for operating such polymerization reactor systems also are described.




particle

Thermoset nanocomposite particles, processing for their production, and their use in oil and natural gas drilling applications

Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles. Optional further improvement of the heat resistance and environmental resistance of said particles via post-polymerization heat treatment; processes for the manufacture of said particles; and use of said particles in the construction, drilling, completion and/or fracture stimulation of oil and natural gas wells are described.




particle

Magnetic composite particles

Magnetic composite particles can be used as proppants and allow for deliberate heating by applying an alternating magnetic field.




particle

Nepheline syenite powder with controlled particle size and novel method of making same

An ultra-fine nepheline syenite powder produced from a pre-processed nepheline syenite powder feedstock. The powder having a “controlled” maximum grain size D95 or D99 of less than about 20 microns and a “controlled” minimum grain size D5 in the range of 2-8 microns with a particle size spread D5-D95 of less than about 12 microns.




particle

Noble metal fine particle, method for withdrawing noble metal fine particles, and method for producing noble metal fine particle dispersed material using withdrawn noble metal fine particles

The present invention provides a noble metal fine particle with a protein adsorbed thereon, including a noble metal fine particle, and a protein adsorbed on a surface of the noble metal fine particle. The protein has an isoelectric point in a range of pH 4.0 to 7.5. An amount of the protein adsorbed is in a range of 3 to 55.1 wt % with respect to a total weight of the noble metal fine particle and the protein. The noble metal fine particle with a protein adsorbed thereon according to the present invention has excellent redispersibility. That is, by adjusting the pH of a noble metal fine particle dispersed liquid to the isoelectric point of the proteins and allowing the noble metal fine particles to be aggregated without adding a degrading enzyme that degrades the proteins to the noble metal fine particle dispersed liquid, it is possible to allow the noble metal fine particles with proteins adsorbed thereon withdrawn from the noble metal fine particle dispersed liquid to have an average particle diameter that is not increased significantly even after they are redispersed in another dispersion medium.




particle

Process for producing silica-based fine particle dispersion sols, silica-based fine particle dispersion sol, coating composition containing the dispersion sol, curable coating film, and substrate having the curable coating film

Provided are silica-based fine particle dispersion sols, processes for producing the sols, coating compositions containing the dispersion sol, curable coating films obtained from the coating composition, and substrates having the coating film. A process includes (1) mixing an aqueous aluminate solution to an alkaline silica sol which contains water-dispersible silica fine particles in a given ratio; (2) heating the mixture liquid obtained in the step (1) to 60 to 200° C. and stirring the mixture liquid at the temperature for 0.5 to 20 hours; and (3) contacting the mixture liquid obtained in the step (2) with a cation exchange resin to remove by ion exchange alkali metal ions contained in the mixture liquid and thereby controlling the pH of the mixture liquid to be in the range of 3.0 to 6.0.




particle

Movable discharge device for use in particle/bulk material storage silo and particle/bulk material storage silo

A movable discharge device for use in a particle/bulk material storage silo includes: a travel body configured to travel along a groove provided at a lower portion of a storage silo; a scrape-out unit configured to move integrally with the travel body and including a blade configured to rotate above the groove to rake coals in the storage silo and scrape out the coals to the groove; and a groove closing mechanism configured to close a predetermined region of the groove within a rotation trajectory region of the blade. The discharge device is configured to be able to suppress the change in the discharge amount of coals discharged by the blade from the particle/bulk material storage silo.




particle

Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.




particle

Method of concurrently filtering particles and collecting gases

A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.




particle

Particle guide collector system and associated method

Disclosed is a filtration system and method that uses a corona discharge grid and a series of electrostatic grids to filter ambient particles. The filtration system eliminates, or greatly reduces, the pressure drop across the associated filter media.




particle

Dispersions made from treated inorganic particles for making decor paper having improved optical performance

The disclosure provides a dispersion for making décor paper having improved optical performance without negatively impacting mechanical strength comprising a TiO2 particle slurry comprising a treated TiO2 particle having a surface area of at least about 30 m2/g, and a cationic polymer; wherein the treatment comprises an oxide of silicon, aluminum, phosphorus or mixtures thereof; and the treatment is present in the amount of at least 15% based on the total weight of the treated titanium dioxide particle; paper pulp; and a cationic polymer; wherein the cationic polymer in the slurry and the cationic polymer in the dispersion are compatible; wherein for equal optical performance, the amount of treated TiO2 particle in the dispersion is reduced by about 10% when compared to a dispersion not comprising the treated TiO2 particle of (a). These dispersions are useful in making décor paper that may be used in paper laminates.




particle

Nanoparticle-enhanced phase change materials (NEPCM) with improved thermal energy storage

Nanoparticle-enhanced phase change materials (NEPCM) including nanoparticles dispersed with a base phase change material and that exhibit enhanced thermal conductivity in comparison to the base phase change material.




particle

Heat transfer device including compressible particles suspended in a circulating heat-transfer fluid

A heat transfer device including a container in which a heat-transfer fluid circulates in a closed loop. The heat transfer fluid is capable of undergoing an increase in volume on solidifying. The container further contains particles suspended in the heat-transfer fluid. At least some of the particles are compressible under the pressure of the fluid, as the fluid is solidifying, so as to at least partially compensate for the increase in volume of the fluid upon solidifying.




particle

Composite nanoparticles and manufacturing method thereof

Metal nanoparticles having improved migration resistance are provided. The present invention relates to a method for manufacturing composite nanoparticles including obtaining composite nanoparticles containing at least silver and copper in a single particle by heat treating a mixture containing an organic silver compound and an organic copper compound at a temperature of 150° C. or more in a non-oxidative atmosphere in the presence of a tertiary amine compound represented by the general formula R1R2R3N (wherein R1 through R3 are optionally substituted alkyl groups or aryl groups that may be the same or different, R1 through R3 may be linked in a ring, and the number of carbon atoms in each of R1 through R3 is 5 through 18 and may be the same or different).




particle

Methods for producing silver nanoparticles

An exemplary embodiment of the invention is a method for making silver nanoparticles, and includes steps of reacting a silver salt with a phosphene amino acid to make silver nanoparticles. Exemplary phosphene amino acids include trimers, with a particular example being a trimeric amino acid conjugate containing one phosphene group. In an exemplary method of the invention, the silver nanoparticles may be produced in timer periods of less than about 30 minutes, and at temperatures of less than about 40° C. Other methods of the invention are directed to methods for stabilizing silver nanoparticles.