eso

New DWC ‘Brown Bag Series’ on dispute resolution

This fall DWC Hearings continues their Brown Bag Series with stakeholders in the Texas workers’ compensation system.




eso

How video technology is transforming casinos and high-end resorts

Casinos and high-end resorts are constantly challenged to provide a personalized and engaging guest experience while maximizing revenue and operational efficiency.The growing demand for immersive, tailored experiences means that traditional analog video systems are no longer sufficient.




eso

N. Korea Slams EU for Proposing Human Rights Resolution

[International] :
North Korea has slammed the European Union(EU) for moving to adopt a resolution to address human rights violations in the North.  In an announcement carried by the state-run Korean Central News Agency, the North’s permanent mission to the UN criticized the EU for following what it called the United ...

[more...]




eso

Groundwater resources - British Geological Survey

Groundwater resources  British Geological Survey







eso

High-resolution double vision of the allosteric phosphatase PTP1B

Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.




eso

Multi-scale and time-resolved structure analysis of relaxor ferroelectric crystals under an electric field

The electric field responses of the average and local lattice strains and polar nanoregions of relaxor ferroelectric PMN-30PT single crystals were revealed by multi-scale and time-resolved X-ray diffraction under DC and AC electric fields.




eso

Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction

The position- and time-resolved monitoring of a mechanochemical reaction using synchrotron powder X-ray diffraction revealed a position-independent increase rate of product in the jar of a shaker mill.




eso

High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection

We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD.




eso

Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction

We investigated the position and time dependence of a mechanochemical reaction induced by ball milling using in situ synchrotron powder X-ray diffraction with changing X-ray irradiation position. The mechanochemical reduction of AgCl with Cu was monitored in situ with the X-rays incident at two different vertical positions on the jar. Our previously developed multi-distance Rietveld method was applied to analyze the in situ diffraction data with a 1 min resolution. Both the vertical and the horizontal sample positions were determined using the sample-to-detector distances from the in situ data. Position dependence was found in the powder spreading and induction time. We reveal that the increase rate of the product is independent of the sample position when measured with a 1 min time resolution, confirming the validity of in situ monitoring of part of the space in a milling jar for a gradual mechanochemical reaction.




eso

Multi-scale and time-resolved structure analysis of relaxor ferroelectric crystals under an electric field

Lead-based relaxor ferroelectrics exhibit giant piezoelectric properties owing to their heterogeneous structures. The average and local structures measured by single-crystal X-ray diffraction under DC and AC electric fields are reviewed in this article. The position-dependent local lattice strain and the distribution of polar nanodomains and nanoregions show strong electric field dependence, which contributes to the giant piezoelectric properties.




eso

A method with ultra-high angular resolution for X-ray diffraction experiments

In X-ray diffraction measurements, the angular resolution has a detection limit due to the receiving size of the detector. In many cases this detection limit is too large and must be breached to obtain the desired information. A novel method is proposed here by making the detector simultaneously measuring and moving. Using the deconvolution algorithm to remove the convolution effect, the pixel size limitation is finally broken. The algorithm used is not a common one, and suppresses signals at high frequencies, ensuring the reliability of the peak shape after restoration. The feasibility of this method is verified by successfully measuring the crystal truncation rod signal of SrTiO3 single crystal, and the resolution is nearly ten times higher than that of a single pixel. Moreover, this method greatly reduces the noise and improves the signal-to-noise ratio.




eso

Efficient boundary-guided scanning for high-resolution X-ray ptychography

In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines.




eso

Angle-resolved X-ray emission spectroscopy facility realized by an innovative spectrometer rotation mechanism at SPring-8 BL07LSU

The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45–135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities.




eso

The role of carboxyl­ate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxyl­ate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxyl­ate oxygen lone pair orbitals, through which electron density around carboxyl­ate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.




eso

Measuring magnetic hysteresis curves with polarized soft X-ray resonant reflectivity

Calculations and measurements of polarization-dependent soft X-ray scattering intensity are presented during a magnetic hysteresis cycle. It is confirmed that the dependence of the intensity on the magnetic moment can be linear, quadratic or a combination of both, depending on the polarization of the incident X-ray beam and the direction of the magnetic moment. With a linearly polarized beam, the scattered intensity will have a purely quadratic dependence on the magnetic moment when the magnetic moment is parallel to the scattering plane. However, with the magnetic moment perpendicular to the scattering plane, there is also a linear component. This means that, when measuring the hysteresis with linear polarization during a hysteresis cycle, the intensity will be an even function of the applied field when the change in the magnetic moment (and field) is confined within the scattering plane but becomes more complicated when the magnetic moment is out of the scattering plane. Furthermore, with circular polarization, the dependence of the scattered intensity on the moment is a combination of linear and quadratic. With the moment parallel to the scattering plane, the linear component changes with the helicity of the incident beam. Surprisingly, in stark contrast to absorption studies, even when the magnetic moment is perpendicular to the scattering plane there is still a dependence on the moment with a linear component. This linear component is completely independent of the helicity of the beam, meaning that the hysteresis loops will not be inverted with helicity.




eso

Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.




eso

Laminography as a tool for imaging large-size samples with high resolution

Despite the increased brilliance of the new generation synchrotron sources, there is still a challenge with high-resolution scanning of very thick and absorbing samples, such as a whole mouse brain stained with heavy elements, and, extending further, brains of primates. Samples are typically cut into smaller parts, to ensure a sufficient X-ray transmission, and scanned separately. Compared with the standard tomography setup where the sample would be cut into many pillars, the laminographic geometry operates with slab-shaped sections significantly reducing the number of sample parts to be prepared, the cutting damage and data stitching problems. In this work, a laminography pipeline for imaging large samples (>1 cm) at micrometre resolution is presented. The implementation includes a low-cost instrument setup installed at the 2-BM micro-CT beamline of the Advanced Photon Source. Additionally, sample mounting, scanning techniques, data stitching procedures, a fast reconstruction algorithm with low computational complexity, and accelerated reconstruction on multi-GPU systems for processing large-scale datasets are presented. The applicability of the whole laminography pipeline was demonstrated by imaging four sequential slabs throughout an entire mouse brain sample stained with osmium, in total generating approximately 12 TB of raw data for reconstruction.




eso

First X-ray spectral ptychography and resonant ptychographic computed tomography experiments at the SWING beamline from Synchrotron SOLEIL

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and β, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.




eso

High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.




eso

Signal-to-noise and spatial resolution in in-line imaging. 1. Basic theory, numerical simulations and planar experimental images

Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.




eso

New opportunities for time-resolved imaging using diffraction-limited storage rings

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.




eso

Diamond sensors for hard X-ray energy and position resolving measurements at the European XFEL

The diagnostics of X-ray beam properties has a critical importance at the European X-ray Free-Electron Laser facility. Besides existing diagnostic components, utilization of a diamond sensor was proposed to achieve radiation-hard, non-invasive beam position and pulse energy measurements for hard X-rays. In particular, with very hard X-rays, diamond-based sensors become a useful complement to gas-based devices which lose sensitivity due to significantly reduced gas cross-sections. The measurements presented in this work were performed with diamond sensors consisting of an electronic-grade single-crystal chemical-vapor-deposition diamond with position-sensitive resistive electrodes in a duo-lateral configuration. The results show that the diamond sensor delivers pulse-resolved X-ray beam position data at 2.25 MHz with an uncertainty of less than 1% of the beam size. To our knowledge this is the first demonstration of pulse-resolved position measurements at the MHz rate using a transmissive diamond sensor at a free-electron laser facility. It can therefore be a valuable tool for X-ray free-electron lasers, especially for high-repetition-rate machines, enabling applications such as beam-based alignment and intra-pulse-train position feedback.




eso

Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments

The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction.




eso

Electrochemical cell for synchrotron nuclear resonance techniques

Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering.




eso

meso-α,α-5,15-Bis(o-nicotinamido­phen­yl)-10,20-diphen­ylporphyrin n-hexane monosolvate

The structure of the title solvated porphyrin, C56H38N8O2·C6H14, is reported. Two porphyrin mol­ecules, one ordered and one disordered n-hexane solvate mol­ecules are present in its asymmetric unit. The porphyrin macrocycle shows a characteristic saddle-shaped distortion, and the maximum deviation from the mean plane for non-hydrogen atoms is 0.48 Å. N—H⋯N, N—H⋯O, and C—H⋯O hydrogen bonds, as well as π–π inter­actions, are observed in the crystal structure.




eso

meso-5,15-Bis[3-(iso­propyl­idenegalacto­pyran­oxy)phen­yl]-10,20-bis­(4-methyl­phen­yl)porphyrin

The crystal structure of a glycosyl­ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso­propyl­idene protected galactose moieties are attached to the meso position of a substituted tetra­aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin–porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C—H⋯O and C—H⋯π inter­actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π–π inter­actions with the delocalized π-systems of neighboring porphyrins.




eso

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




eso

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI inter­actions to form a three-dimensional network. In poly[bis­(μ-3-amino­propano­lato)tetra-μ-cyan­ido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propano­lamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis­(2-amino­pro­pan­ol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis­(2-amino­ethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octa­hedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decom­position in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1.




eso

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




eso

The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment.




eso

From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons

Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump–probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.




eso

STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials

Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.




eso

C-SPAM: an open-source time-resolved specimen vitrification device with light-activated molecules

Molecular structures can be determined in vitro and in situ with cryo-electron microscopy (cryo-EM). Specimen preparation is a major obstacle in cryo-EM. Typical sample preparation is orders of magnitude slower than biological processes. Time-resolved cryo-EM (TR-cryo-EM) can capture short-lived states. Here, Cryo-EM sample preparation with light-activated molecules (C-SPAM) is presented, an open-source, photochemistry-coupled device for TR-cryo-EM that enables millisecond resolution and tunable timescales across broad biological applications.




eso

Droplet microfluidics for time-resolved serial crystallography

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.




eso

KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography

Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods.




eso

Scanning WAXS microscopy of regenerated cellulose fibers at mesoscopic resolution

In this work, regenerated cellulose textile fibers, Ioncell-F, dry-wet spun with different draw ratios, have been investigated by scanning wide-angle X-ray scattering (WAXS) using a mesoscopic X-ray beam. The fibers were found to be homogeneous on the 500 nm length scale. Analysis of the azimuthal angular dependence of a crystalline Bragg spot intensity revealed a radial dependence of the degree of orientation of crystallites that was found to increase with the distance from the center of the fiber. We attribute this to radial velocity gradients during the extrusion of the spin dope and the early stage of drawing. On the other hand, the fiber crystallinity was found to be essentially homogeneous over the fiber cross section.




eso

Photoinduced bidirectional mesophase transition in vesicles containing azo­benzene amphiphiles

The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospho­lipids and azo­benzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5 min with light of 365 and 455 nm wavelengths, respectively, to switch between the cis and trans states of the azo­benzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems.




eso

Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution

Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.




eso

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




eso

Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature

Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydro­phobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power.




eso

Crystal structure of the sodium salt of mesotrione: a triketone herbicide

The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methane­sulfonyl-2-nitro­phen­yl)carbon­yl]-3-oxo­cyclo­hex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol mol­ecule, and an O atom from the methyl­sulfonyl group of a neighboring mol­ecule. Simultaneously, an O atom of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.




eso

High-resolution crystal structure of the double nitrate hydrate [La(NO3)6]2[Ni(H2O)6]3·6H2O

This study introduces bis­[hexa­kis­(nitrato-κ2O,O')lanthanum(III)] tris­[hexa­aqua­nickel(II)] hexa­hydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexa­gonal space group Roverline{3}. The salt com­prises [La(NO3)6]3− icosa­hedra and [Ni(H2O)6]2+ octa­hedra, thus forming an intricate network of inter­penetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octa­hedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexa­gonal plate-like crystals.




eso

Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001)

Time-resolved high-energy X-ray diffraction was used during growth of ultrathin NixFe3−xO4 films with varying Ni content (0 ≤ x ≤ 1.5) deposited on MgO(001) substrates by reactive molecular beam epitaxy, providing an insight into the growth dynamics of these films. In order to obtain structural information, reciprocal-space maps were recorded and the temporal evolution of the Bragg peaks specific to the octahedral and tetrahedral lattice sites of the inverse spinel structure of NixFe3−xO4 was observed during growth of the films. A time delay, corresponding to a coverage of 1.2–1.8 nm, between the appearance of the Bragg reflections originating from octahedral sites and reflections originating exclusively from tetrahedral sites indicates that the ferrite films grow in two stages. In the initial growth phase, a rock salt interface layer is formed. Afterwards, a structural transition occurs and the films grow in an inverse spinel structure. The thickness of the initial rock salt phase was found to increase with Ni content and to be responsible for atypical strain in the thin films. Films with Ni contents x > 1 do not show a structural transition. These films remain in a (deficient) rock salt structure consisting of a mixed Ni–Fe oxide and do not form a spinel structure at all. They show an increased number of NiO clusters as detected by X-ray photoelectron spectroscopy of the valence band, accompanied by a significant roughening of the films.




eso

Time-resolved AUSAXS at BL28XU at SPring-8

An anomalous ultra-small-angle X-ray scattering (AUSAXS) system has been constructed at BL28XU at SPring-8 for time-resolved AUSAXS experiments. The path length was extended to 9.1 m and a minimum of q = 0.0069 nm−1 was attained. Scattering profiles at 0.0069 to 0.3 nm−1 were successfully obtained at 17 different X-ray energies in 30 s using the BL28XU optical setup, which enables adjustment of the energy of the incident X-rays quickly without the beam position drifting. Time-resolved measurements were conducted to investigate changes in the structure of zinc compounds in poly(styrene-ran-butadiene) rubber during vulcanization. A change in energy dependence of the scattered intensity with time was found during vulcanization, suggesting the transformation of zinc in the reaction.




eso

Accessing self-diffusion on nanosecond time and nanometre length scales with minute kinetic resolution

Neutron spectroscopy uniquely and non-destructively accesses diffusive dynamics in soft and biological matter, including for instance proteins in hydrated powders or in solution, and more generally dynamic properties of condensed matter on the molecular level. Given the limited neutron flux resulting in long counting times, it is important to optimize data acquisition for the specific question, in particular for time-resolved (kinetic) studies. The required acquisition time was recently significantly reduced by measurements of discrete energy transfers rather than quasi-continuous neutron scattering spectra on neutron backscattering spectrometers. Besides this reduction in acquisition times, smaller amounts of samples can be measured with better statistics, and most importantly, kinetically changing samples, such as aggregating or crystallizing samples, can be followed. However, given the small number of discrete energy transfers probed in this mode, established analysis frameworks for full spectra can break down. Presented here are new approaches to analyze measurements of diffusive dynamics recorded within fixed windows in energy transfer, and these are compared with the analysis of full spectra. The new approaches are tested by both modeled scattering functions and a comparative analysis of fixed energy window data and full spectra on well understood reference samples. This new approach can be employed successfully for kinetic studies of the dynamics focusing on the short-time apparent center-of-mass diffusion.




eso

On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources

With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.




eso

Resonant neutron scattering lengths

Unlike most of the periodic table, many rare-earth elements display considerable resonant scattering for thermal neutrons. Although this property is accompanied by strong neutron absorption, modern high-intensity neutron sources make diffraction experiments possible with these elements. Computation of scattering intensities is accomplished by fitting the variation in resonant scattering lengths (b0, b' and b'') to a semi-empirical Breit–Wigner formalism, which can be evaluated over the range of neutron energies useful for diffraction, typically E = 10–600 meV; λ = 0.4–2.8 Å (with good extrapolation to longer wavelengths).