action Periodic diffraction from an aperiodic monohedral tiling – the Spectre tiling. Addendum By journals.iucr.org Published On :: 2024-10-08 This article describes the diffraction pattern (2-periodic Fourier transform) from the vertices of a large patch of the recently discovered `Spectre' tiling – a strictly chiral aperiodic monotile. It was reported recently that the diffraction pattern of the related weakly chiral aperiodic `Hat' monotile was 2-periodic with chiral plane-group symmetry p6 [Kaplan et al. (2024). Acta Cryst. A80, 72–78]. The diffraction periodicity arises because the Hat tiling is a systematic aperiodic deletion of vertices from the 2-periodic hexagonal mta tiling. Despite the similarity of the Hat and Spectre tilings, the Spectre tiling is not aligned with a 2-periodic lattice, and its diffraction pattern is non-periodic with chiral point symmetry 6 about the origin. Full Article text
action Lattice symmetry relaxation as a cause for anisotropic line broadening and peak shift in powder diffraction By journals.iucr.org Published On :: 2024-10-03 In powder diffraction, lattice symmetry relaxation causes a peak to split into several components which are not resolved if the degree of desymmetrization is small (pseudosymmetry). Here the equations which rule peak splitting are elaborated for the six minimal symmetry transitions, showing that the resulting split peaks are generally broader and asymmetric, and suffer an hkl-dependent displacement with respect to the high-symmetry parent peak. These results will be of help in Rietveld refinement of pseudosymmetric structures where an exact interpretation of peak deformation is required. Full Article text
action A method with ultra-high angular resolution for X-ray diffraction experiments By journals.iucr.org Published On :: 2024-01-01 In X-ray diffraction measurements, the angular resolution has a detection limit due to the receiving size of the detector. In many cases this detection limit is too large and must be breached to obtain the desired information. A novel method is proposed here by making the detector simultaneously measuring and moving. Using the deconvolution algorithm to remove the convolution effect, the pixel size limitation is finally broken. The algorithm used is not a common one, and suppresses signals at high frequencies, ensuring the reliability of the peak shape after restoration. The feasibility of this method is verified by successfully measuring the crystal truncation rod signal of SrTiO3 single crystal, and the resolution is nearly ten times higher than that of a single pixel. Moreover, this method greatly reduces the noise and improves the signal-to-noise ratio. Full Article text
action Treatment of multiple-beam X-ray diffraction in energy-dependent measurements By journals.iucr.org Published On :: 2024-01-01 During X-ray diffraction experiments on single crystals, the diffracted beam intensities may be affected by multiple-beam X-ray diffraction (MBD). This effect is particularly frequent at higher X-ray energies and for larger unit cells. The appearance of this so-called Renninger effect often impairs the interpretation of diffracted intensities. This applies in particular to energy spectra analysed in resonant experiments, since during scans of the incident photon energy these conditions are necessarily met for specific X-ray energies. This effect can be addressed by carefully avoiding multiple-beam reflection conditions at a given X-ray energy and a given position in reciprocal space. However, areas which are (nearly) free of MBD are not always available. This article presents a universal concept of data acquisition and post-processing for resonant X-ray diffraction experiments. Our concept facilitates the reliable determination of kinematic (MBD-free) resonant diffraction intensities even at relatively high energies which, in turn, enables the study of higher absorption edges. This way, the applicability of resonant diffraction, e.g. to reveal the local atomic and electronic structure or chemical environment, is extended for a vast majority of crystalline materials. The potential of this approach compared with conventional data reduction is demonstrated by the measurements of the Ta L3 edge of well studied lithium tantalate LiTaO3. Full Article text
action Similarity score for screening phase-retrieved maps in X-ray diffraction imaging – characterization in reciprocal space By journals.iucr.org Published On :: 2024-01-01 X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed. Full Article text
action Protocol using similarity score and improved shrink-wrap algorithm for better convergence of phase-retrieval calculation in X-ray diffraction imaging By journals.iucr.org Published On :: 2024-01-01 In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024–1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses. Full Article text
action In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy By journals.iucr.org Published On :: 2024-01-01 The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules. Full Article text
action Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8 By journals.iucr.org Published On :: 2024-02-19 Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes. Full Article text
action xrdPlanner: exploring area detector geometries for powder diffraction and total scattering experiments By journals.iucr.org Published On :: 2024-02-02 xrdPlanner is a software package designed to aid in the planning and preparation of powder X-ray diffraction and total scattering beam times at synchrotron facilities. Many modern beamlines provide a flexible experimental setup and may have several different detectors available. In combination with a range of available X-ray energies, it often makes it difficult for the user to explore the available parameter space relevant for a given experiment prior to the scheduled beam time. xrdPlanner was developed to provide a fast and straightforward tool that allows users to visualize the accessible part of reciprocal space of their experiment at a given combination of photon energy and detector geometry. To plan and communicate the necessary geometry not only saves time but also helps the beamline staff to prepare and accommodate for an experiment. The program is tailored toward powder X-ray diffraction and total scattering experiments but may also be useful for other experiments that rely on an area detector and for which detector placement and achievable momentum-transfer range are important experimental parameters. Full Article text
action Grazing-incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO2 at the Rossendorf beamline By journals.iucr.org Published On :: 2024-02-16 In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented. Full Article text
action Novel correction procedure for compensating thermal contraction errors in the measurement of the magnetic field of superconducting undulator coils in a liquid helium cryostat By journals.iucr.org Published On :: 2024-02-22 Superconducting undulators (SCUs) can offer a much higher on-axis undulator field than state-of-the-art cryogenic permanent-magnet undulators with the same period and vacuum gap. The development of shorter-period and high-field SCUs would allow the free-electron laser and synchrotron radiation source community to reduce both the length of undulators and the dimensions of the accelerator. Magnetic measurements are essential for characterizing the magnetic field quality of undulators for operation in a modern light source. Hall probe scanning is so far the most mature technique for local field characterization of undulators. This article focuses on the systematic error caused by thermal contraction that influences Hall probe measurements carried out in a liquid helium cryostat. A novel procedure, based on the redundant measurement of the magnetic field using multiple Hall probes at known relative distance, is introduced for the correction of such systematic error. Full Article text
action In situ XAFS–XRD study of the Zr–Y2O3 interaction at extra-high temperatures By journals.iucr.org Published On :: 2024-05-31 The in situ measurement technique for a metal/metal-oxide mixture at extra-high temperature above 2000 K has been desired in the field of nuclear safety engineering. In the present study, we succeeded in simultaneous XAFS–XRD measurements of the Zr oxidation [Zr + O → Zr(O) + ZrO2] up to 1952 K and ZrO2–Y2O3 reaction from 1952 to 2519 K. The chemical shift during Zr oxidation was observed in the absorption spectra around the Zr K-edge, and the interatomic cation–cation and cation–oxygen distances obtained by the fitting analysis of EXAFS during the Y2O3–ZrO2 reaction are explained. Also, the temperature dependency of the anharmonic effect was investigated by comparing the fitted second- and third-order cumulants with the theoretical ones in which the Morse potential was applied as an interatomic potential, giving a good explanation about the local structure dynamics. Finally, the applicability of the developed system to investigation of nuclear fuel materials, such as UO2–Zr, is discussed. Full Article text
action New opportunities for time-resolved imaging using diffraction-limited storage rings By journals.iucr.org Published On :: 2024-07-30 The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system. Full Article text
action MuscleX: data analysis software for fiber diffraction patterns from muscle By journals.iucr.org Published On :: 2024-07-30 MuscleX is an integrated, open-source computer software suite for data reduction of X-ray fiber diffraction patterns from striated muscle and other fibrous systems. It is written in Python and runs on Linux, Microsoft Windows or macOS. Most modules can be run either from a graphical user interface or in a `headless mode' from the command line, suitable for incorporation into beamline control systems. Here, we provide an overview of the general structure of the MuscleX software package and describe the specific features of the individual modules as well as examples of applications. Full Article text
action Double-edge scan wavefront metrology and its application in crystal diffraction wavefront measurements By journals.iucr.org Published On :: 2024-07-29 Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals. Full Article text
action In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum By journals.iucr.org Published On :: 2024-08-06 Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected. Full Article text
action Correcting angular distortions in Bragg coherent X-ray diffraction imaging By journals.iucr.org Published On :: 2024-08-08 Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval. Full Article text
action Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging By journals.iucr.org Published On :: 2024-08-05 The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions. Full Article text
action Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients By journals.iucr.org Published On :: 2024-01-28 The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is orthorhombic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3. Full Article text
action Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction By journals.iucr.org Published On :: 2024-02-27 Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclodepsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclodepsipeptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enantiomorphs of beauveriolide I. Full Article text
action Absolute structure determination of Berkecoumarin by X-ray and electron diffraction By journals.iucr.org Published On :: 2024-04-10 X-ray and electron diffraction methods independently identify the S-enantiomer of Berkecoumarin [systematic name: (S)-8-hydroxy-3-(2-hydroxypropyl)-6-methoxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom composition (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination. Full Article text
action Coordination structure and intermolecular interactions in copper(II) acetate complexes with 1,10-phenanthroline and 2,2'-bipyridine By journals.iucr.org Published On :: 2024-08-23 The crystal structures of two coordination compounds, (acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and compared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bipyridine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is pentacoordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all complexes belong to the space group Poverline{1}. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand interactions in these complexes and allow comparison with similar systems. Full Article text
action 3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O) By journals.iucr.org Published On :: 2024-09-04 In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2–3 nm correlation along the c axis and ∼5 nm along the a/b axis. Full Article text
action Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly By journals.iucr.org Published On :: 2024-09-04 Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies unidirectionally. Full Article text
action Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data By journals.iucr.org Published On :: 2024-01-01 Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Å for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Å for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available. Full Article text
action Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting By journals.iucr.org Published On :: 2024-02-16 As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method – tilt-ePDF – is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles. Full Article text
action Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure By journals.iucr.org Published On :: 2024-05-10 Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials. Full Article text
action A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction By journals.iucr.org Published On :: 2024-06-21 The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm. Full Article text
action Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns By journals.iucr.org Published On :: 2024-06-27 Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization. Full Article text
action On the structure refinement of metal complexes against 3D electron diffraction data using multipolar scattering factors By journals.iucr.org Published On :: 2024-08-15 This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal–organic complex, iron(III) acetylacetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetylacetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe—O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65–2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00–0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal–organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED. Full Article text
action Hirshfeld atom refinement and dynamical refinement of hexagonal ice structure from electron diffraction data By journals.iucr.org Published On :: 2024-07-30 Reaching beyond the commonly used spherical atomic electron density model allows one to greatly improve the accuracy of hydrogen atom structural parameters derived from X-ray data. However, the effects of atomic asphericity are less explored for electron diffraction data. In this work, Hirshfeld atom refinement (HAR), a method that uses an accurate description of electron density by quantum mechanical calculation for a system of interest, was applied for the first time to the kinematical refinement of electron diffraction data. This approach was applied here to derive the structure of ordinary hexagonal ice (Ih). The effect of introducing HAR is much less noticeable than in the case of X-ray refinement and it is largely overshadowed by dynamical scattering effects. It led to only a slight change in the O—H bond lengths (shortening by 0.01 Å) compared with the independent atom model (IAM). The average absolute differences in O—H bond lengths between the kinematical refinements and the reference neutron structure were much larger: 0.044 for IAM and 0.046 Å for HAR. The refinement results changed considerably when dynamical scattering effects were modelled – with extinction correction or with dynamical refinement. The latter led to an improvement of the O—H bond length accuracy to 0.021 Å on average (with IAM refinement). Though there is a potential for deriving more accurate structures using HAR for electron diffraction, modelling of dynamical scattering effects seems to be a necessary step to achieve this. However, at present there is no software to support both HAR and dynamical refinement. Full Article text
action From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion By journals.iucr.org Published On :: 2024-08-28 3D electron diffraction (3DED) is increasingly employed to determine molecular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using dichloromethane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations. Full Article text
action Three-dimensional electron diffraction on clinkers: the belite α'H incommensurate modulated structure By journals.iucr.org Published On :: 2024-03-06 Traditional X-ray methods are extensively applied to commercial cement samples in order to determine their physical and chemical properties. Powder patterns are routinely used to quantify the composition of these phase mixtures, but structure determination becomes difficult because of reflection overlapping caused by the high number of different crystal structures. The fast-growing 3D electron diffraction technique and its related automated acquisition protocols arise as a potentially very interesting tool for the cement industry, since they enable the fast and systematic acquisition of diffraction data from individual particles. In this context, electron diffraction has been used in the investigation of the different crystalline phases present in various commercial clinkers for cement. Automated data collection procedures and subsequent data processing have enabled the structural characterization of the different crystal structures from which the α'H polymorph of Ca2SiO4 (belite) exhibited satellite reflections. Its average crystal structure has been known since 1971 and satellite reflections have been reported previously, yet the modulation was never fully described by means of the superspace formalism. Here, the incommensurately modulated structure is solved and refined using harmonic and crenel functions in the superspace group Pnma(α00)0ss, showing the potential of 3D electron diffraction for systematic crystallographic characterizations of cement. A full description of the different belite polymorphs is provided considering this modulated structure. Full Article text
action Crystal structures of two new high-pressure oxynitrides with composition SnGe4N4O4, from single-crystal electron diffraction By journals.iucr.org Published On :: 2024-05-08 SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT. Full Article text
action Importance of powder diffraction raw data archival in a curated database for materials science applications By journals.iucr.org Published On :: 2024-08-26 In recent years, there is a significant interest from the crystallographic and materials science communities to have access to raw diffraction data. The effort in archiving raw data for access by the user community is spearheaded by the International Union of Crystallography (IUCr) Committee on Data. In materials science, where powder diffraction is extensively used, the challenge in archiving raw data is different to that from single crystal data, owing to the very nature of the contributions involved. Powder diffraction (X-ray or neutron) data consist of contributions from the material under study as well as instrument specific parameters. Having raw powder diffraction data can be essential in cases of analysing materials with poor crystallinity, disorder, micro structure (size/strain) etc. Here, the initiative and progress made by the International Centre for Diffraction Data (ICDDR) in archiving powder X-ray diffraction raw data in the Powder Diffraction FileTM (PDFR) database is outlined. The upcoming 2025 release of the PDF-5+ database will have more than 20 800 raw powder diffraction patterns that are available for reference. Full Article text
action Crystal structure, Hirshfeld surface analysis, intermolecular interaction energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one By journals.iucr.org Published On :: 2023-11-21 In the title molecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking interactions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) interactions, showing that hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The molecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap. Full Article text
action Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-phenylpropanoate By journals.iucr.org Published On :: 2024-01-31 The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of molecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) interactions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
action Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks, and DFT calculations of 1-(4-methylbenzyl)indoline-2,3-dione By journals.iucr.org Published On :: 2024-01-31 The indoline portion of the title molecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
action Omadacycline dihydrate, C29H40N4O7·2H2O, from X-ray powder diffraction data By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the title compound {systematic name: (4S,4aS,5aR,12aR)-4,7-bis(dimethylamino)-9-[(2,2-dimethylpropylamino)methyl]-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide dihydrate, C29H40N4O7·2H2O} has been solved and refined using synchrotron X-ray powder diffraction data: it crystallizes in space group R3 with a = 24.34430 (7), c = 14.55212 (4) Å, V = 7468.81 (2) Å3 and Z = 9. Most of the hydrogen bonds are intramolecular, but two classical N—H⋯O intermolecular hydrogen bonds (along with probable weak C—H⋯O and C—H⋯N hydrogen bonds) link the molecules into a three-dimensional framework. The framework contains voids, which contain disordered water molecules. Keto–enol tautomerism is apparently important in this molecule, and the exact molecular structure is ambiguous. Full Article text
action Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, interaction energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine By journals.iucr.org Published On :: 2024-03-26 In the title molecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of molecules extending parallel to the c axis that are connected by C—H⋯π(ring) interactions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized molecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
action Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
action Crystal structure determination and analyses of Hirshfeld surface, crystal voids, intermolecular interaction energies and energy frameworks of 1-benzyl-4-(methylsulfanyl)-3a,7a-dihydro-1H-pyrazolo[3,4-d]pyrimidine By journals.iucr.org Published On :: 2024-06-25 The pyrazolopyrimidine moiety in the title molecule, C13H12N4S, is planar with the methylsulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the molecule an approximate L shape. In the crystal, C—H⋯π(ring) interactions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π interactions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions. Full Article text
action Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluorolactonization products from the reaction of oleanolic acid with SelectfluorTM By journals.iucr.org Published On :: 2024-07-15 The X-ray crystal structure data of 12-α-fluoro-3β-hydroxyolean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hydroxytaraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluorolactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13. Full Article text
action Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
action Coupling between 2-pyridylselenyl chloride and phenylselenocyanate: synthesis, crystal structure and non-covalent interactions By journals.iucr.org Published On :: 2024-09-17 A new pyridine-fused selenodiazolium salt, 3-(phenylselanyl)[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride dichloromethane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridylselenenyl chloride and phenylselenocyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) interactions. Non-covalent interactions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of selenodiazolium moieties arranged in a head-to-tail fashion surrounding disordered dichloromethane molecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C interactions. Full Article text
action Crystal structure and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione By journals.iucr.org Published On :: 2024-10-04 The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy. Full Article text
action Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001) By journals.iucr.org Published On :: 2023-11-29 Time-resolved high-energy X-ray diffraction was used during growth of ultrathin NixFe3−xO4 films with varying Ni content (0 ≤ x ≤ 1.5) deposited on MgO(001) substrates by reactive molecular beam epitaxy, providing an insight into the growth dynamics of these films. In order to obtain structural information, reciprocal-space maps were recorded and the temporal evolution of the Bragg peaks specific to the octahedral and tetrahedral lattice sites of the inverse spinel structure of NixFe3−xO4 was observed during growth of the films. A time delay, corresponding to a coverage of 1.2–1.8 nm, between the appearance of the Bragg reflections originating from octahedral sites and reflections originating exclusively from tetrahedral sites indicates that the ferrite films grow in two stages. In the initial growth phase, a rock salt interface layer is formed. Afterwards, a structural transition occurs and the films grow in an inverse spinel structure. The thickness of the initial rock salt phase was found to increase with Ni content and to be responsible for atypical strain in the thin films. Films with Ni contents x > 1 do not show a structural transition. These films remain in a (deficient) rock salt structure consisting of a mixed Ni–Fe oxide and do not form a spinel structure at all. They show an increased number of NiO clusters as detected by X-ray photoelectron spectroscopy of the valence band, accompanied by a significant roughening of the films. Full Article text
action ProLEED Studio: software for modeling low-energy electron diffraction patterns By journals.iucr.org Published On :: 2024-02-01 Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results. Full Article text
action Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2 By journals.iucr.org Published On :: 2024-02-01 An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure. Full Article text
action Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction By journals.iucr.org Published On :: 2024-02-12 The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples. Full Article text