to Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection. Full Article
to AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion. Full Article
to NETosis occurs independently of neutrophil serine proteases [Enzymology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity. Full Article
to Visualizing, quantifying, and manipulating mitochondrial DNA in vivo [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells. Full Article
to Wildtype {sigma}1 receptor and the receptor agonist improve ALS-associated mutation-induced insolubility and toxicity [Neurobiology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Genetic mutations related to ALS, a progressive neurological disease, have been discovered in the gene encoding σ-1 receptor (σ1R). We previously reported that σ1RE102Q elicits toxicity in cells. The σ1R forms oligomeric states that are regulated by ligands. Nevertheless, little is known about the effect of ALS-related mutations on oligomer formation. Here, we transfected NSC-34 cells, a motor neuronal cell line, and HEK293T cells with σ1R-mCherry (mCh), σ1RE102Q-mCh, or nontagged forms to investigate detergent solubility and subcellular distribution using immunocytochemistry and fluorescence recovery after photobleaching. The oligomeric state was determined using crosslinking procedure. σ1Rs were soluble to detergents, whereas the mutants accumulated in the insoluble fraction. Within the soluble fraction, peak distribution of mutants appeared in higher sucrose density fractions. Mutants formed intracellular aggregates that were co-stained with p62, ubiquitin, and phosphorylated pancreatic eukaryotic translation initiation factor-2-α kinase in NSC-34 cells but not in HEK293T cells. The aggregates had significantly lower recovery in fluorescence recovery after photobleaching. Acute treatment with σ1R agonist SA4503 failed to improve recovery, whereas prolonged treatment for 48 h significantly decreased σ1RE102Q-mCh insolubility and inhibited apoptosis. Whereas σ1R-mCh formed monomers and dimers, σ1RE102Q-mCh also formed trimers and tetramers. SA4503 reduced accumulation of the four types in the insoluble fraction and increased monomers in the soluble fraction. The σ1RE102Q insolubility was diminished by σ1R-mCh co-expression. These results suggest that the agonist and WT σ1R modify the detergent insolubility, toxicity, and oligomeric state of σ1RE102Q, which may lead to promising new treatments for σ1R-related ALS. Full Article
to Fibrillar {alpha}-synuclein toxicity depends on functional lysosomes [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron–derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD. Full Article
to Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1. Full Article
to BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9–mediated internalization of ALK-1, BMP-9–dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9–induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9–mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis. Full Article
to NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX. Full Article
to PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
to Murine GFP-Mx1 forms nuclear condensates and associates with cytoplasmic intermediate filaments: Novel antiviral activity against VSV [Immunology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Type I and III interferons induce expression of the “myxovirus resistance proteins” MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles (“biomolecular condensates”). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40–50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20–30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV. Full Article
to Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis By www.jlr.org Published On :: 2020-12-30 Priyanka TripathiDec 30, 2020; 0:jlr.RA120001190v1-jlr.RA120001190Research Articles Full Article
to Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous By www.jlr.org Published On :: 2020-12-01 Melissa GómezDec 1, 2020; 61:1658-1674Research Articles Full Article
to Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood By www.jlr.org Published On :: 2020-12-01 Ryunosuke OhkawaDec 1, 2020; 61:1577-1588Research Articles Full Article
to Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition By www.jlr.org Published On :: 2020-12-01 Genta KakiyamaDec 1, 2020; 61:1629-1644Research Articles Full Article
to The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis By www.jlr.org Published On :: 2020-12-01 Natalie BruinersDec 1, 2020; 61:1617-1628Research Articles Full Article
to Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS By www.jlr.org Published On :: 2020-12-01 Junhwan KimDec 1, 2020; 61:1707-1719Research Articles Full Article
to Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet By www.jlr.org Published On :: 2020-12-11 Thibaut BourgeoisDec 11, 2020; 0:jlr.RA120000737v1-jlr.RA120000737Research Articles Full Article
to Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice By www.jlr.org Published On :: 2020-12-01 Abudukadier AbuliziDec 1, 2020; 61:1565-1576Research Articles Full Article
to Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux By www.jlr.org Published On :: 2020-11-17 Oktawia NilssonNov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920Research Articles Full Article
to Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes By www.jlr.org Published On :: 2020-12-08 Jenny E. KanterDec 8, 2020; 0:jlr.ILR120001217v1-jlr.ILR120001217Images in Lipid Research Full Article
to Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
to Problem Notes for SAS®9 - 66438: You see the message "The informat $ could not be loaded, probably due to insufficient memory" after attempting to insert data into a MySQL database By Published On :: Wed, 2 Sep 2020 10:39:14 EST For data that is being loaded from a SAS Stored Process Server, an insertion process might fail to a MySQL database with a warning, as well as an error message that says "During insert: Incorrect datetime value " Full Article BASE+Base+SAS
to Problem Notes for SAS®9 - 66537: SAS Customer Intelligence Studio becomes non-responsive when you delete a calculated variable from the Edit Value dialog box By Published On :: Tue, 1 Sep 2020 14:25:38 EST In SAS Customer Intelligence Studio, you might notice that the user interface becomes unresponsive, as shown below: imgalt="SAS Customer Intelligence Studio UI becomes unresponsive" src="{fusion_66537 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
to Problem Notes for SAS®9 - 66539: A new calculated variable that you create in the Edit Value dialog box is not available for selection in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:44:23 EST In SAS Customer Intelligence Studio, you can choose to create a new calculated variable in the Edit Value dialog box when you populate a treatment custom detail. Following creation of the new calculated Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
to Problem Notes for SAS®9 - 66544: You cannot clear warnings for decision campaign nodes in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:41:53 EST In SAS Customer Intelligence Studio, you might notice that you cannot clear warnings for decision campaign nodes by selecting either the Clear Warnings option or the Clear All Warnin Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
to Problem Notes for SAS®9 - 66527: Updating counts in a Link node in SAS Customer Intelligence Studio produces the error "Link: MAIQService:executeFastPath:" By Published On :: Tue, 1 Sep 2020 10:53:01 EST In SAS Customer Intelligence Studio, the following error is displayed when you update a new Link node in a diagram: imgalt="Link: MAIQService:executeFastPath:" src="{fusion_665 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
to Problem Notes for SAS®9 - 66540: SAS Management Console and SAS Data Integration Studio might return the message "table failed to update" when you use the Update Metadata tool By Published On :: Tue, 1 Sep 2020 09:06:18 EST You encounter this issue when the table metadata matches the data source. In this scenario, no metadata update is required. Full Article MGMTCONSOLE+SAS+Management+Console
to Problem Notes for SAS®9 - 66487: Authentication to the CAS server fails with the error "Access denied..." when initiated on a SAS/CONNECT server in a Microsoft Windows environment By Published On :: Mon, 31 Aug 2020 10:33:55 EST You might see the following error messages: "ERROR: Connection failed. Server returned: SAS Logon Manager authentication failed: Access denied." and "ERROR: Unable to connect to Cloud Analytic Services host-name on port 5570. Veri Full Article CONNECT+SAS/CONNECT
to Problem Notes for SAS®9 - 55516: Opening the Edit Action Columns dialog box requires that you wait up to a minute to display a window By Published On :: Fri, 28 Aug 2020 11:23:00 EST Editing and/or saving an action column can take up to a minute to display a window. There are no workarounds identified at this time. Full Article SCDOFR+SAS+Visual+Scenario+Designer
to Problem Notes for SAS®9 - 33449: An error might occur when you use SAS 9 BULKLOAD= and BULKEXTRACT= options to load data to or extract data from the HP Neoview database on the HP Itanium platform By Published On :: Wed, 26 Aug 2020 16:21:08 EST An error might occur when you use the SAS 9 BULKLOAD= and BULKEXTRACT= options load data to or extract data from HP Neoview on the HP Itanium platform. The problem occurs because Hewlett-Packard changed the name of one of Full Article NEOVIEW+SAS/ACCESS+Interface+to+HP+Neovi
to Problem Notes for SAS®9 - 48028: Custom Time Frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels By Published On :: Wed, 26 Aug 2020 16:17:42 EST In SAS Merchandise Financial Planning, custom time frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels. The data does not aggregate correctly from l Full Article MMFINANCPLN+SAS+Merchandise+Financial+Pl
to Problem Notes for SAS®9 - 46544: Store layout view has some areas displayed with black fill rather than gray in SAS® Retail Space Management By Published On :: Wed, 26 Aug 2020 16:14:45 EST In SAS Retail Space Management, it should be possible to click on any location object, then Show Properties, and change the location fill color. This can be done on the gray-filled objects. However, w Full Article RTLSPCMGT+SAS+Retail+Space+Management
to Problem Notes for SAS®9 - 61815: SAS Episode Analytics 3.1 - Audit table is required in order to capture user interactions with the user interface By Published On :: Wed, 26 Aug 2020 16:09:53 EST SAS Episode Analytics 3.1 requires the ability to capture user interactions with the user interface for auditing purposes. To support the required functionality a new table has been add Full Article AVAECROFR+SAS+Episode+Analytics
to Problem Notes for SAS®9 - 66505: The OBS= option does not generate a limit clause when you use SAS/ACCESS Interface to PostgreSQL to access a Yellowbrick database By Published On :: Wed, 26 Aug 2020 11:35:41 EST When you use SAS/ACCESS Interface to PostgreSQL to query a Yellowbrick database, the SAS OBS= option is not generating a limit clause on the query that is passed to the database. Click the Full Article POSTGRESOFR+SAS/ACCESS+Interface+to+Post
to Problem Notes for SAS®9 - 66511: A Russian translation shows the same value for two different variables in the Define Value dialog box for the Reply node in SAS Customer Intelligence Studio By Published On :: Mon, 24 Aug 2020 14:23:55 EST In SAS Customer Intelligence Studio, when you add Reply- node variable values in the Define Value dialog box, you might notice that two identically labeled data-grid variables are Full Article POLICYOFR+SAS+Real-Time+Decision+Manager
to Problem Notes for SAS®9 - 66095: The message "ERROR: Could not move and link one or more files to..." occurs while running a job-flow instance By Published On :: Fri, 21 Aug 2020 15:33:44 EST In SAS Infrastructure for Risk Management, the message "ERROR: Could not move and link one or more files to..." occurs while running a job-flow instance if an orphaned folder exists in the persistent area. Full Article IRMOFR+SAS+Infrastructure+for+Risk+Manag
to Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error By Published On :: Fri, 21 Aug 2020 09:34:11 EST When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for Full Article MMGROFR+SAS+Model+Manager
to Problem Notes for SAS®9 - 66504: Clicking a link to pass a group break value to a SAS Web Report Studio report returns an HTTP 400 error By Published On :: Thu, 20 Aug 2020 14:07:26 EST SAS Web Report Studio enables you to link reports based on a group break value. However, when you click the link, it might fail with an HTTP 400 error. The exact message you see depends on which browser you are u Full Article CITATIONWEB+SAS+Web+Report+Studio
to Problem Notes for SAS®9 - 66500: A content release on the SAS Risk Governance Framework fails to load when you use SAS 9.4M7 (TS1M7) on the Microsoft Windows operating system By Published On :: Wed, 19 Aug 2020 17:45:15 EST When you log on to the SAS Risk Governance Framework and choose a solution, the web application might fail to load the solution content. When the problem occurs, you continue to see "Loading..." on the screen, an Full Article RGPBNDL+SAS+Risk+Governance+Framework
to Problem Notes for SAS®9 - 66294: The SAS Federation Server SPD driver fails to create a table that has a column name in UTF-8 encoding that also contains Latin5 characters By Published On :: Wed, 19 Aug 2020 15:57:34 EST Certain tables that are created in SAS Scalable Performance Data (SPD) Server might not be displayed correctly by SAS Federation Server Manager. Tables that have Latin5 characters in column names encounter this Full Article SPDS+SAS+Scalable+Peformance+Data+Server
to WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
to Fatty acid oxidation and photoreceptor metabolic needs [Thematic Reviews] By www.jlr.org Published On :: 2020-02-24T12:30:36-08:00 Photoreceptors have high energy-demands and a high density of mitochondria that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for central nervous system (CNS) brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the crosstalk among retinal cells to provide energy to photoreceptors is not yet known. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism. Full Article
to Retinoids in the visual cycle: Role of the retinal G protein-coupled receptor [Thematic Reviews] By www.jlr.org Published On :: 2020-06-03T16:30:29-07:00 Driven by the energy of a photon, the visual pigments in rod and cone photoreceptor cells isomerize 11-cis-retinal to the all-trans configuration. This photochemical reaction initiates the signal transduction pathway that eventually leads to the transmission of a visual signal to the brain and leaves the opsins insensitive to further light stimulation. For the eye to restore light sensitivity, opsins require recharging with 11-cis-retinal. This trans–cis back conversion is achieved through a series of enzymatic reactions composing the retinoid (visual) cycle. Although it is evident that the classical retinoid cycle is critical for vision, the existence of an adjunct pathway for 11-cis-retinal regeneration has been debated for many years. Retinal pigment epithelium (RPE)–retinal G protein-coupled receptor (RGR) has been identified previously as a mammalian retinaldehyde photoisomerase homologous to retinochrome found in invertebrates. Using pharmacological, genetic, and biochemical approaches, researchers have now established the physiological relevance of the RGR in 11-cis-retinal regeneration. The photoisomerase activity of RGR in the RPE and Müller glia explains how the eye can remain responsive in daylight. In this review, we will focus on retinoid metabolism in the eye and visual chromophore regeneration mediated by RGR. Full Article
to FH through the Retrospectoscope [Thematic Reviews] By www.jlr.org Published On :: 2020-07-10T14:36:31-07:00 AbstractAfter training as a gastroenterologist in the UK the author became interested in lipidology while he was a research fellow in the USA and switched careers after returning home. Together with Nick Myant he introduced the use of plasma exchange to treat FH homozygotes and undertook non-steady state studies of LDL kinetics, which showed that the fractional catabolic rate of LDL remained constant irrespective of pool size. Subsequent steady-state turnover studies showed that FH homozygotes had an almost complete lack of receptor-mediated LDL catabolism, providing in vivo confirmation of the Nobel Prize-winning discovery by Goldstein and Brown that LDL receptor dysfunction was the cause of FH. Further investigation of metabolic defects in FH revealed that a significant proportion of LDL in homozygotes and heterozygotes was produced directly via a VLDL-independent pathway.Management of heterozygous FH has been greatly facilitated by statins and PCSK9 inhibitors but remains dependent upon lipoprotein apheresis in homozygotes. In a recent analysis of a large cohort treated with a combination of lipid-lowering measures survival was markedly enhanced in homozygotes in the lowest quartile of on-treatment serum cholesterol. Emerging therapies could further improve the prognosis of homozygous FH whereas in heterozygotes the current need is better detection. Full Article
to Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors [Thematic Reviews] By www.jlr.org Published On :: 2020-10-26T14:30:21-07:00 The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRC), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine (PC), amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (VLC-PUFAs,n-3, ≥ 28 carbons) are at the sn-1 of this PC molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of anti-apoptotic and pro-survival protein expression with concomitant downregulation of pro-apoptotic proteins when RPE is confronted with uncompensated oxidative stress (UOS). ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix (IPM), as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration (AMD), Alzheimer’s disease (AD), and other pathologies. Full Article
to Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics. Full Article
to Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes [Images in Lipid Research] By www.jlr.org Published On :: 2020-12-08T14:30:11-08:00 Full Article
to Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles] By www.jlr.org Published On :: 2020-12-11T09:30:19-08:00 Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation. Full Article
to Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis [Research Articles] By www.jlr.org Published On :: 2020-12-30T10:30:23-08:00 Microtubules are polymers composed of αβ-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human iPS cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in C. reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms (CRPs) in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that CRPs mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function. Full Article