to The Annual Journal Impact Factor Saga By jnm.snmjournals.org Published On :: 2021-07-08T14:20:31-07:00 Full Article
to The Translation of Dosimetry into Clinical Practice: What It Takes to Make Dosimetry a Mandatory Part of Clinical Practice By jnm.snmjournals.org Published On :: 2024-09-05T07:37:49-07:00 Full Article
to Theranostics for Meningioma on the Rise: New EANM/EANO/RANO/SNMMI Guidelines Pave the Way to Improved Patient Outcomes Using Radiolabeled Somatostatin Receptor Ligands By jnm.snmjournals.org Published On :: 2024-10-10T08:33:38-07:00 Full Article
to Diagnostic Radiopharmaceuticals: A Sustainable Path to the Improvement of Patient Care By jnm.snmjournals.org Published On :: 2024-10-10T08:33:38-07:00 Full Article
to MIRD Pamphlet No. 31: MIRDcell V4--Artificial Intelligence Tools to Formulate Optimized Radiopharmaceutical Cocktails for Therapy By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Visual Abstract Full Article
to Head-to-Head Comparison of [68Ga]Ga-NOTA-RM26 and [18F]FDG PET/CT in Patients with Gastrointestinal Stromal Tumors: A Prospective Study By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Visual Abstract Full Article
to Intraarterial Administration of Peptide Receptor Radionuclide Therapy in Patients with Advanced Meningioma: Initial Safety and Efficacy By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Visual Abstract Full Article
to Comparison Between Brain and Cerebellar Autoradiography Using [18F]Flortaucipir, [18F]MK6240, and [18F]PI2620 in Postmortem Human Brain Tissue By jnm.snmjournals.org Published On :: 2024-10-30T08:04:16-07:00 Visual Abstract Full Article
to CT Enhancement of a Nasal Leech After Thrombectomy By jnm.snmjournals.org Published On :: 2024-10-30T08:04:14-07:00 Full Article
to FAP and PSMA Expression by Immunohistochemistry and PET Imaging in Castration-Resistant Prostate Cancer: A Translational Pilot Study By jnm.snmjournals.org Published On :: 2024-10-30T08:04:15-07:00 Visual Abstract Full Article
to Oncologist, Business Leader, and Investor Arie S. Belldegrun Discusses a Career in Innovative Medical Entrepreneurship: A Conversation with Ken Herrmann and Johannes Czernin By jnm.snmjournals.org Published On :: 2024-10-30T08:04:15-07:00 Full Article
to Feasibility, Tolerability, and Preliminary Clinical Response of Fractionated Radiopharmaceutical Therapy with 213Bi-FAPI-46: Pilot Experience in Patients with End-Stage, Progressive Metastatic Tumors By jnm.snmjournals.org Published On :: 2024-10-30T08:04:15-07:00 Visual Abstract Full Article
to International Metabolic Prognostic Index Is Superior to Other Metabolic Tumor Volume-Based Prognostication Methods in a Real-Life Cohort of Diffuse Large B-Cell Lymphoma By jnm.snmjournals.org Published On :: 2024-11-07T04:28:32-08:00 Visual Abstract Full Article
to SophosAI team presents three papers on AI applied to cybersecurity at CAMLIS By news.sophos.com Published On :: Wed, 23 Oct 2024 15:02:39 +0000 On October 24 and 25, SophosAI presents ideas on how to use models large and small—and defend against malignant ones. Full Article AI Research AI Trojans anti-phishing CAMLIS featured Google LLM small model machine learning
to Digital Detritus: The engine of Pacific Rim and a call to the industry for action By news.sophos.com Published On :: Thu, 31 Oct 2024 12:34:51 +0000 Decades of obsolete and unpatched hardware and software endanger us all Full Article Security Operations digital detritus featured Pacific Rim Pacific Rim thought leadership Sophos X-Ops
to Pacific Rim: Learning to eat soup with a knife By news.sophos.com Published On :: Thu, 31 Oct 2024 12:36:53 +0000 What our incident responders know from five years of fighting an octopus Full Article Security Operations Pacific Rim Pacific Rim Defense PSIRT Sophos X-Ops
to Pacific Rim: What’s it to you? By news.sophos.com Published On :: Thu, 31 Oct 2024 12:38:52 +0000 Thirty-five years after the first great cat-and-mouse infosecurity story, here we are again Full Article Security Operations Pacific Rim Pacific Rim thought leadership Sophos X-Ops
to Pacific Rim: Inside the Counter-Offensive—The TTPs Used to Neutralize China-Based Threats By news.sophos.com Published On :: Thu, 31 Oct 2024 12:56:23 +0000 Sophos X-Ops unveils five-year investigation tracking China-based groups targeting perimeter devices Full Article Security Operations Chinese APT Chinese spying featured Pacific Rim Story Sophos Firewall state-sponsored attackers
to Re: Voluntary assisted death: how to ensure access and safety By www.bmj.com Published On :: Monday, November 11, 2024 - 22:52 Full Article
to A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages By www.mcponline.org Published On :: 2020-12-01 Felicia GrassoDec 1, 2020; 19:1986-1996Research Full Article
to Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals By www.mcponline.org Published On :: 2020-12-01 Tricia RowlisonDec 1, 2020; 19:2090-2103Research Full Article
to Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry By www.mcponline.org Published On :: 2020-12-01 Yadong YuDec 1, 2020; 19:1997-2014Research Full Article
to Identification of novel serological autoantibodies in Takayasu arteritis patients using HuProt arrays By www.mcponline.org Published On :: 2020-12-17 Xiao-Ting WenDec 17, 2020; 0:RA120.002119v1-mcp.RA120.002119Research Full Article
to OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS By www.mcponline.org Published On :: 2020-12-01 Eugen NetzDec 1, 2020; 19:2157-2167Technological Innovation and Resources Full Article
to Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target By www.mcponline.org Published On :: 2020-12-01 Alison M. KurimchakDec 1, 2020; 19:2068-2089Research Full Article
to Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries By www.mcponline.org Published On :: 2020-12-01 Peter LaschDec 1, 2020; 19:2125-2138Technological Innovation and Resources Full Article
to Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor By www.mcponline.org Published On :: 2020-12-28 Sylwia StrukDec 28, 2020; 0:RA119.001766v1-mcp.RA119.001766Research Full Article
to CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics By www.mcponline.org Published On :: 2020-12-22 Weixian DengDec 22, 2020; 0:RA120.002411v1-mcp.RA120.002411Research Full Article
to On the robustness of graph-based clustering to random network alterations By www.mcponline.org Published On :: 2020-11-04 R. Greg StaceyNov 4, 2020; 0:RA120.002275v1-mcp.RA120.002275Research Full Article
to Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis By www.mcponline.org Published On :: 2020-11-18 Madison T WrightNov 18, 2020; 0:RA120.002168v1-mcp.RA120.002168Research Full Article
to A proteomics-based assessment of inflammation signatures in endotoxemia By www.mcponline.org Published On :: 2020-12-07 Sean A BurnapDec 7, 2020; 0:RA120.002305v1-mcp.RA120.002305Research Full Article
to Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production By www.mcponline.org Published On :: 2020-11-24 Mingkun YangNov 24, 2020; 0:RA120.002144v1-mcp.RA120.002144Research Full Article
to A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia By www.mcponline.org Published On :: 2020-11-30 Ka-Won KangNov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169Research Full Article
to Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics By www.mcponline.org Published On :: 2020-11-30 Kailun FangNov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081Research Full Article
to Proteomic identification of Coxiella burnetii effector proteins targeted to the host cell mitochondria during infection By www.mcponline.org Published On :: 2020-11-11 Laura F FieldenNov 11, 2020; 0:RA120.002370v1-mcp.RA120.002370Research Full Article
to Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches By www.mcponline.org Published On :: 2020-11-17 Congcong LuNov 17, 2020; 0:R120.002257v1-mcp.R120.002257Review Full Article
to ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis By www.mcponline.org Published On :: 2020-12-01 Johannes GrissDec 1, 2020; 19:2115-2124Technological Innovation and Resources Full Article
to ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping By www.mcponline.org Published On :: 2020-12-01 Diana SamodovaDec 1, 2020; 19:2139-2156Technological Innovation and Resources Full Article
to Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate. Full Article
to Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function. Full Article
to VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity. Full Article
to Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved. Full Article
to ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity. Full Article
to Cell adhesion molecule IGPR-1 activates AMPK connecting cell adhesion to autophagy [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target. Full Article
to Human pancreatic cancer cells under nutrient deprivation are vulnerable to redox system inhibition [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Large regions in tumor tissues, particularly pancreatic cancer, are hypoxic and nutrient-deprived because of unregulated cell growth and insufficient vascular supply. Certain cancer cells, such as those inside a tumor, can tolerate these severe conditions and survive for prolonged periods. We hypothesized that small molecular agents, which can preferentially reduce cancer cell survival under nutrient-deprived conditions, could function as anticancer drugs. In this study, we constructed a high-throughput screening system to identify such small molecules and screened chemical libraries and microbial culture extracts. We were able to determine that some small molecular compounds, such as penicillic acid, papyracillic acid, and auranofin, exhibit preferential cytotoxicity to human pancreatic cancer cells under nutrient-deprived compared with nutrient-sufficient conditions. Further analysis revealed that these compounds target to redox systems such as GSH and thioredoxin and induce accumulation of reactive oxygen species in nutrient-deprived cancer cells, potentially contributing to apoptosis under nutrient-deprived conditions. Nutrient-deficient cancer cells are often deficient in GSH; thus, they are susceptible to redox system inhibitors. Targeting redox systems might be an attractive therapeutic strategy under nutrient-deprived conditions of the tumor microenvironment. Full Article
to The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled. Full Article
to Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein–coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule–binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR. Full Article
to Integrin and autocrine IGF2 pathways control fasting insulin secretion in {beta}-cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes. Full Article
to Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors. Full Article
to G{alpha}s directly drives PDZ-RhoGEF signaling to Cdc42 [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42. Full Article