til

Measuring Oral Health Literacy of Refugees: Associations with Dental Care Utilization and Oral Health Self-Efficacy

Purpose: The purpose of this study was to analyze associations between the oral health literacy of refugees and two oral health outcomes: dental care utilization and oral health self-efficacy.Methods: A convenience sample of refugees in the greater Los Angeles area attending English as a second language (ESL) classes sponsored by two refugee assistance organizations was used for this cross-sectional, correlational study. Participants responded to a questionnaire using items from the Health Literacy in Dentistry (HeLD) scale, in addition to items concerning dental care utilization and oral health self-efficacy. Descriptive statistics, chi-square and Fisher's Exact tests were used to analyze results.Results: Sixty-two refugees volunteered to participate (n=62). A majority of the respondents were female from Iraq or Syria, and selected the item “with little difficulty” for all oral health literacy tasks. In regards to dental care utilization, more than half of the respondents were considered high utilizers (63%, n=34) meaning they had visited a dental office within the last year; while a little more than one-third (37%, n=20), were low utilizers, indicating they had either never been to a dental office or it had been more than one year since they had dental treatment. Statistical analysis showed associations between oral health literacy and dental care utilization. However, few associations between oral health literacy and oral health self-efficacy were identified (p=0.0045).Conclusions: Results support the provision of easily obtainable and understandable oral health information to increase oral health literacy and dental care utilization among refugee populations. Future research is needed to examine the oral health literacy among refugees resettling in the United States.




til

Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

ABSTRACT

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.




til

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




til

Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To Generate Infectious Particles

ABSTRACT

Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.

IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.




til

The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

ABSTRACT

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis. Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.

IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.




til

Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems

ABSTRACT

The recent discovery of complete ammonia oxidizers (comammox) contradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by two different microorganisms. However, our knowledge of the survival strategies of comammox in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Analyses of genomes and in situ transcriptomes of four comammox organisms from two full-scale WWTPs revealed that comammox were active and showed a surprisingly high metabolic versatility. A gene cluster for the utilization of urea and a gene encoding cyanase suggest that comammox may use diverse organic nitrogen compounds in addition to free ammonia as the substrates. The comammox organisms also encoded the genomic potential for multiple alternative energy metabolisms, including respiration with hydrogen, formate, and sulfite as electron donors. Pathways for the biosynthesis and degradation of polyphosphate, glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help comammox survive unfavorable conditions and facilitate switches between lifestyles in fluctuating environments. One of the comammox strains acquired from the anaerobic tank encoded and transcribed genes involved in homoacetate fermentation or in the utilization of exogenous acetate, both pathways being unexpected in a nitrifying bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase which has not yet been found in any other Nitrospira genome and might confer a selective advantage to this strain over other Nitrospira strains in anoxic conditions.

IMPORTANCE The discovery of comammox in the genus Nitrospira changes our perception of nitrification. However, genomes of comammox organisms have not been acquired from full-scale WWTPs, and very little is known about their survival strategies and potential metabolisms in complex wastewater treatment systems. Here, four comammox metagenome-assembled genomes and metatranscriptomic data sets were retrieved from two full-scale WWTPs. Their impressive and—among nitrifiers—unsurpassed ecophysiological versatility could make comammox Nitrospira an interesting target for optimizing nitrification in current and future bioreactor configurations.




til

Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli

ABSTRACT

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.

IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.




til

Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides

ABSTRACT

The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL.

IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.




til

Human Serum Albumin Facilitates Heme-Iron Utilization by Fungi

ABSTRACT

A large portion of biological iron is found in the form of an iron-protoporphyrin IX complex, or heme. In the human host environment, which is exceptionally poor in free iron, heme iron, particularly from hemoglobin, constitutes a major source of iron for invading microbial pathogens. Several fungi were shown to utilize free heme, and Candida albicans, a major opportunistic pathogen, is able both to capture free heme and to extract heme from hemoglobin using a network of extracellular hemophores. Human serum albumin (HSA) is the most abundant host heme-scavenging protein. Tight binding of heme by HSA restricts its toxic chemical reactivity and could diminish its availability as an iron source for pathogenic microbes. We found, however, that rather than inhibiting heme utilization, HSA greatly increases availability of heme as an iron source for C. albicans and other fungi. In contrast, hemopexin, a low-abundance but high-affinity heme-scavenging serum protein, does inhibit heme utilization by C. albicans. However, inhibition by hemopexin is mitigated in the presence of HSA. Utilization of albumin-bound heme requires the same hemophore cascade as that which mediates hemoglobin-iron utilization. Accordingly, we found that the C. albicans hemophores are able to extract heme bound to HSA in vitro. Since many common drugs are known to bind to HSA, we tested whether they could interfere with heme-iron utilization. We show that utilization of albumin-bound heme by C. albicans can be inhibited by the anti-inflammatory drugs naproxen and salicylic acid.

IMPORTANCE Heme constitutes a major iron source for microorganisms and particularly for pathogenic microbes; to overcome the iron scarcity in the animal host, many pathogenic bacteria and fungi have developed systems to extract and take up heme from host proteins such as hemoglobin. Microbial heme uptake mechanisms are usually studied using growth media containing free heme or hemoglobin as a sole iron source. However, the animal host contains heme-scavenging proteins that could prevent this uptake. In the human host in particular, the most abundant serum heme-binding protein is albumin. Surprisingly, however, we found that in the case of fungi of the Candida species family, albumin promoted rather than prevented heme utilization. Albumin thus constitutes a human-specific factor that can affect heme-iron utilization and could serve as target for preventing heme-iron utilization by fungal pathogens. As a proof of principle, we identify two drugs that can inhibit albumin-stimulated heme utilization.




til

Sensory-Directed Genetic and Biochemical Characterization of Volatile Terpene Production in Kiwifruit

Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A’ kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a–AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A. chinensis. AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia. Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits.




til

Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants

Background

Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth, but the role of the microbiome in its development remains unclear. Therefore, we assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut–lung axis by comparing bacterial communities in the upper and lower airways with stool findings. Finally, we assessed whether the bacterial communities were associated with lung inflammation to suggest dysbiosis.

Methods

We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates), lower airways (tracheal aspirate fluid and bronchoalveolar lavage fluid) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3–V4 region of the 16S rRNA gene.

Results

From 1102 (539 nasopharyngeal aspirates, 276 tracheal aspirate fluid, 89 bronchoalveolar lavage, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16S RNA gene sequencing. Bacterial load was low at birth and quickly increased with time, but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut, with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers.

Conclusions

Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated, such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants.




til

Forced oscillation technique for optimising PEEP in ventilated extremely preterm infants

Ventilatory settings are critical in mechanically ventilated extremely preterm newborn infants due to the risk of ventilation-induced lung injury (VILI) and the subsequent development of bronchopulmonary dysplasia (BPD) [1]. Positive end-expiratory pressure (PEEP) settings usually rely on blood gases, oxygen requirement, lung auscultation, evaluation of chest radiograph and assessment of the pressure/volume curves provided by ventilators. Studies of optimal PEEP settings in the surfactant-treated preterm infant in need of mechanical ventilation are limited and evidence-based clinical guidelines are sparse [2, 3]. A bedside method identifying the PEEP value that comprises maximal lung volume recruitment and minimising tissue overdistension could improve real-time optimisation of PEEP and potentially minimise the risk of VILI and BPD [4, 5].




til

Identifying and Classifying Shared Selective Sweeps from Multilocus Data [Population and Evolutionary Genetics]

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term and to further classify identified shared sweeps as hard or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences. Previously reported candidates include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at C2CD5 between European and East Asian populations that may explain their different insulin responses.




til

A nonlinear beam model of photomotile structures [Engineering]

Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables....




til

Fly eyes are not still: a motion illusion in Drosophila flight supports parallel visual processing [RESEARCH ARTICLE]

Wael Salem, Benjamin Cellini, Mark A. Frye, and Jean-Michel Mongeau

Most animals shift gaze by a ‘fixate and saccade’ strategy, where the fixation phase stabilizes background motion. A logical prerequisite for robust detection and tracking of moving foreground objects, therefore, is to suppress the perception of background motion. In a virtual reality magnetic tether system enabling free yaw movement, Drosophila implemented a fixate and saccade strategy in the presence of a static panorama. When the spatial wavelength of a vertical grating was below the Nyquist wavelength of the compound eyes, flies drifted continuously­ and gaze could not be maintained at a single location. Because the drift occurs from a motionless stimulus—thus any perceived motion stimuli are generated by the fly itself—it is illusory, driven by perceptual aliasing. Notably, the drift speed was significantly faster than under a uniform panorama suggesting perceptual enhancement due to aliasing. Under the same visual conditions in a rigid tether paradigm, wing steering responses to the unresolvable static panorama were not distinguishable from a resolvable static pattern, suggesting visual aliasing is induced by ego motion. We hypothesized that obstructing the control of gaze fixation also disrupts detection and tracking of objects. Using the illusory motion stimulus, we show that magnetically tethered Drosophila track objects robustly in flight even when gaze is not fixated as flies continuously drift. Taken together, our study provides further support for parallel visual motion processing and reveals the critical influence of body motion on visuomotor processing. Motion illusions can reveal important shared principles of information processing across taxa.




til

The Role of Noninvasive Ventilation in Cystic Fibrosis: A Cochrane Review Summary With Commentary




til

Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials

BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials.




til

Esophageal Pressure Versus Gas Exchange to Set PEEP During Intraoperative Ventilation

BACKGROUND:Pneumoperitoneum and Trendelenburg position affect respiratory system mechanics and oxygenation during elective pelvic robotic surgery. The primary aim of this randomized pilot study was to compare the effects of a conventional low tidal volume ventilation with PEEP guided by gas exchange (VGas-guided) versus low tidal volume ventilation tailoring PEEP according to esophageal pressure (VPes-guided) on oxygenation and respiratory mechanics during elective pelvic robotic surgery.METHODS:This study was conducted in a single-center tertiary hospital between September 2017 and January 2019. Forty-nine adult patients scheduled for elective pelvic robotic surgery were screened; 28 subjects completed the full analysis. Exclusion criteria were American Society of Anesthesiologists physical status ≥ 3, contraindications to nasogastric catheter placement, and pregnancy. After dedicated naso/orogastric catheter insertion, subjects were randomly assigned to VGas-guided (FIO2 and PEEP set to achieve SpO2 > 94%) or VPes-guided (PEEP tailored to equalize end-expiratory transpulmonary pressure). Oxygenation (PaO2/FIO2) was evaluated (1) at randomization, after pneumoperitoneum and Trendelenburg application; (2) at 60 min; (3) at 120 min following randomization; and (4) at end of surgery. Respiratory mechanics were assessed during the duration of the study.RESULTS:Compared to VGas-guided, oxygenation was higher with VPes-guided at 60 min (388 ± 90 vs 308 ± 95 mm Hg, P = .02), at 120 min after randomization (400 ± 90 vs 308 ± 81 mm Hg, P = .008), and at the end of surgery (402 ± 95 vs 312 ± 95 mm Hg, P = .009). Respiratory system elastance was lower with VPes-guided compared to VGas-guided at 20 min (24.2 ± 7.3 vs 33.4 ± 10.7 cm H2O/L, P = .001) and 60 min (24.1 ± 5.4 vs 31.9 ± 8.5 cm H2O/L, P = .006) from randomization.CONCLUSIONS:Oxygenation and respiratory system mechanics were improved when applying a ventilatory strategy tailoring PEEP to equalize expiratory transpulmonary pressure in subjects undergoing pelvic robotic surgery compared to a VGas-guided approach. (ClinicalTrials.gov registration NCT03153592).




til

Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children

BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy.




til

Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration [SHORT REPORT]

Yi Liu, Jaeyoun Kim, Reuben Philip, Vaishali Sridhar, Megha Chandrashekhar, Jason Moffat, Mark van Breugel, and Laurence Pelletier

PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85–STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85–STIL complex in modulating PLK4-driven cancer cell migration.

This article has an associated First Person interview with the first author of the paper.




til

LUF7244 plus Dofetilide Rescues Aberrant Kv11.1 Trafficking and Produces Functional IKv11.1 [Articles]

Voltage-gated potassium 11.1 (Kv11.1) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP). Drug-mediated Kv11.1 blockade results in AP prolongation, which poses an increased risk of sudden cardiac death. Many drugs, like pentamidine, interfere with normal Kv11.1 forward trafficking and thus reduce functional Kv11.1 channel densities. Although class III antiarrhythmics, e.g., dofetilide, rescue congenital and acquired forward trafficking defects, this is of little use because of their simultaneous acute channel blocking effect. We aimed to test the ability of a combination of dofetilide plus LUF7244, a Kv11.1 allosteric modulator/activator, to rescue Kv11.1 trafficking and produce functional Kv11.1 current. LUF7244 treatment by itself did not disturb or rescue wild type (WT) or G601S-Kv11.1 trafficking, as shown by Western blot and immunofluorescence microcopy analysis. Pentamidine-decreased maturation of WT Kv11.1 levels was rescued by 10 μM dofetilide or 10 μM dofetilide + 5 μM LUF7244. In trafficking defective G601S-Kv11.1 cells, dofetilide (10 μM) or dofetilide + LUF7244 (10 + 5 μM) also restored Kv11.1 trafficking, as demonstrated by Western blot and immunofluorescence microscopy. LUF7244 (10 μM) increased IKv11.1 despite the presence of dofetilide (1 μM) in WT Kv11.1 cells. In G601S-expressing cells, long-term treatment (24–48 hour) with LUF7244 (10 μM) and dofetilide (1 μM) increased IKv11.1 compared with nontreated or acutely treated cells. We conclude that dofetilide plus LUF7244 rescues Kv11.1 trafficking and produces functional IKv11.1. Thus, combined administration of LUF7244 and an IKv11.1 trafficking corrector could serve as a new pharmacological therapy of both congenital and drug-induced Kv11.1 trafficking defects.

SIGNIFICANCE STATEMENT

Decreased levels of functional Kv11.1 potassium channel at the plasma membrane of cardiomyocytes prolongs action potential repolarization, which associates with cardiac arrhythmia. Defective forward trafficking of Kv11.1 channel protein is an important factor in acquired and congenital long QT syndrome. LUF7244 as a negative allosteric modulator/activator in combination with dofetilide corrected both congenital and acquired Kv11.1 trafficking defects, resulting in functional Kv11.1 current.




til

Therapeutic Inertia: Still a Long Way to Go That Cannot Be Postponed

In the context of type 2 diabetes, the definition of therapeutic inertia should include the failure not only to intensify therapy, but also to deintensify treatment when appropriate and should be distinguished from appropriate inaction in cases justified by particular circumstances. Therapy should be intensified when glycemic control deteriorates to prevent long periods of hyperglycemia, which increase the risk of complications. Strategic plans to overcome therapeutic inertia must include actions focused on patients, prescribers, health systems, and payers. Therapeutic inertia affects the management of glycemia, hypertension, and lipid disorders, all of which increase the risk for cardiovascular diseases. Thus, multifactorial interventions that act on additional therapeutic goals beyond glycemia are needed.




til

Are You Still a Postdoc? How My Scientific Identity Intersects with My Immigrant Status

ABSTRACT

Academics in non-tenure-track positions encounter a unique set of challenges on the road toward tenure. Institutionalized policies and lack of mentors are additional burdens for foreign scientists, resulting in representation differences. Becoming a scientist has been a personal and moving journey in which my multiple selves intersect and clash every now and again. My identity as a scientist is a life project and has intersected with my other identities: a young Latina immigrant in Western Europe. This crossroad has molded, and at times, challenged my participation in science.




til

Diagnostic Utility and Impact on Clinical Decision Making of Focused Assessment With Sonography for HIV-Associated Tuberculosis in Malawi: A Prospective Cohort Study

ABSTRACTBackground:The focused assessment with sonography for HIV-associated tuberculosis (TB) (FASH) ultrasound protocol has been increasingly used to help clinicians diagnose TB. We sought to quantify the diagnostic utility of FASH for TB among individuals with HIV in Malawi.Methods:Between March 2016 and August 2017, 210 adults with HIV who had 2 or more signs and symptoms that were concerning for TB (fever, cough, night sweats, weight loss) were enrolled from a public HIV clinic in Lilongwe, Malawi. The treating clinicians conducted a history, physical exam, FASH protocol, and additional TB evaluation (laboratory diagnostics and chest radiography) on all participants. The clinician made a final treatment decision based on all available information. At the 6-month follow-up visit, we categorized participants based on clinical outcomes and diagnostic tests as having probable/confirmed TB or unlikely TB; association of FASH with probable/confirmed TB was calculated using Fisher's exact tests. The impact of FASH on empiric TB treatment was determined by asking the clinicians prospectively about whether they would start treatment at 2 time points in the baseline visit: (1) after the initial history and physical exam; and (2) after history, physical exam, and FASH protocol.Results:A total of 181 participants underwent final analysis, of whom 56 were categorized as probable/confirmed TB and 125 were categorized as unlikely TB. The FASH protocol was positive in 71% (40/56) of participants with probable/confirmed TB compared to 24% (30/125) of participants with unlikely TB (odds ratio=7.9, 95% confidence interval=3.9,16.1; P<.001). Among those classified as confirmed/probable TB, FASH increased the likelihood of empiric TB treatment before obtaining any other diagnostic studies from 9% (5/56) to 46% (26/56) at the point-of-care. For those classified as unlikely TB, FASH increased the likelihood of empiric treatment from 2% to 4%.Conclusion:In the setting of HIV coinfection in Malawi, FASH can be a helpful tool that augments the clinician's ability to make a timely diagnosis of TB.




til

Multilevel Variation in Diabetes Screening Within an Integrated Health System

OBJECTIVE

Variation in diabetes screening in clinical practice is poorly described. We examined the interplay of patient, provider, and clinic factors explaining variation in diabetes screening within an integrated health care system in the U.S.

RESEARCH DESIGN AND METHODS

We conducted a retrospective cohort study of primary care patients aged 18–64 years with two or more outpatient visits between 2010 and 2015 and no diagnosis of diabetes according to electronic health record (EHR) data. Hierarchical three-level models were used to evaluate multilevel variation in screening at the patient, provider, and clinic levels across 12 clinics. Diabetes screening was defined by a resulted gold standard screening test.

RESULTS

Of 56,818 patients, 70% completed diabetes screening with a nearly twofold variation across clinics (51–92%; P < 0.001). Of those meeting American Diabetes Association (ADA) (69%) and U.S. Preventive Services Task Force (USPSTF) (36%) screening criteria, three-quarters were screened with a nearly twofold variation across clinics (ADA 53–92%; USPSTF 49–93%). The yield of ADA and USPSTF screening was similar for diabetes (11% vs. 9%) and prediabetes (38% vs. 36%). Nearly 70% of patients not eligible for guideline-based screening were also tested. The USPSTF guideline missed more cases of diabetes (6% vs. 3%) and prediabetes (26% vs. 19%) than the ADA guideline. After adjustment for patient, provider, and clinic factors and accounting for clustering, twofold variation in screening by provider and clinic remained (median odds ratio 1.97; intraclass correlation 0.13).

CONCLUSIONS

Screening practices vary widely and are only partially explained by patient, provider, and clinic factors available in the EHR. Clinical decision support and system-level interventions are needed to optimize screening practices.




til

Extensive multilineage analysis in patients with mixed chimerism after allogeneic transplantation for sickle cell disease: insight into hematopoiesis and engraftment thresholds for gene therapy

Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included. A selective advantage of donor RBC and their progenitors/precursors led to full chimerism in mature RBC (despite partial engraftment of other lineages), and resulted in the clinical control of the disease. Six patients with donor chimerism <50% had hemolysis (reticulocytosis) and higher HbS than their donor. Four of them had donor chimerism <30%, including a patient with AA donor (hemoglobin >10 g/dL) and three with AS donors (hemoglobin <10 g/dL). However, only one vaso-occlusive crisis occurred with 68.7% HbS. Except in the patients with the lowest chimerism, the donor engraftment was lower for T cells than for the other lineages. In a context of mixed chimerism after hematopoietic stem cell transplantation for SCD, myeloid (rather than T cell) engraftment was the key efficacy criterion. Results show that myeloid chimerism as low as 30% was sufficient to prevent a vaso-occlusive crisis in transplants from an AA donor but not constantly from an AS donor. However, the correction of hemolysis requires higher donor chimerism levels (i.e. ≥50%) in both AA and AS recipients. In the future, this group of patients may need a different therapeutic approach.




til

Abnormal expression of GABAA receptor subunits and hypomotility upon loss of gabra1 in zebrafish [RESEARCH ARTICLE]

Nayeli G. Reyes-Nava, Hung-Chun Yu, Curtis R. Coughlin II, Tamim H. Shaikh, and Anita M. Quintana

We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease.




til

Different Effects of Soil Fertilization on Bacterial Community Composition in the Penicillium canescens Hyphosphere and in Bulk Soil [Environmental Microbiology]

This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling.

IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil.




til

TnFLX: a Third-Generation mariner-Based Transposon System for Bacillus subtilis [Genetics and Molecular Biology]

Random transposon mutagenesis is a powerful and unbiased genetic approach to answer fundamental biological questions. Here, we introduce an improved mariner-based transposon system with enhanced stability during propagation and versatile applications in mutagenesis. We used a low-copy-number plasmid as a transposon delivery vehicle, which affords a lower frequency of unintended recombination during vector construction and propagation in Escherichia coli. We generated a variety of transposons allowing for gene disruption or artificial overexpression, each in combination with one of four different antibiotic resistance markers. In addition, we provide transposons that will report gene/protein expression due to transcriptional or translational coupling. We believe that the TnFLX system will help enhance the flexibility of future transposon modification and application in Bacillus and other organisms.

IMPORTANCE The stability of transposase-encoding vectors during cloning and propagation is crucial for the reliable application of transposons. Here, we increased the stability of the mariner delivery vehicle in E. coli. Moreover, the TnFLX transposon system will improve the application of forward genetic methods with an increased number of antibiotic resistance markers and the ability to generate unbiased green fluorescent protein (GFP) fusions to report on protein translation and subcellular localization.




til

Correction for Pozsgai et al., "Modified mariner Transposons for Random Inducible-Expression Insertions and Transcriptional Reporter Fusion Insertions in Bacillus subtilis" [Author Correction]




til

Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response

Purpose:

There are several agents in early clinical trials targeting components of the adenosine pathway including A2AR and CD73. The identification of cancers with a significant adenosine drive is critical to understand the potential for these molecules. However, it is challenging to measure tumor adenosine levels at scale, thus novel, clinically tractable biomarkers are needed.

Experimental Design:

We generated a gene expression signature for the adenosine signaling using regulatory networks derived from the literature and validated this in patients. We applied the signature to large cohorts of disease from The Cancer Genome Atlas (TCGA) and cohorts of immune checkpoint inhibitor–treated patients.

Results:

The signature captures baseline adenosine levels in vivo (r2 = 0.92, P = 0.018), is reduced after small-molecule inhibition of A2AR in mice (r2 = –0.62, P = 0.001) and humans (reduction in 5 of 7 patients, 70%), and is abrogated after A2AR knockout. Analysis of TCGA confirms a negative association between adenosine and overall survival (OS, HR = 0.6, P < 2.2e–16) as well as progression-free survival (PFS, HR = 0.77, P = 0.0000006). Further, adenosine signaling is associated with reduced OS (HR = 0.47, P < 2.2e–16) and PFS (HR = 0.65, P = 0.0000002) in CD8+ T-cell–infiltrated tumors. Mutation of TGFβ superfamily members is associated with enhanced adenosine signaling and worse OS (HR = 0.43, P < 2.2e–16). Finally, adenosine signaling is associated with reduced efficacy of anti-PD1 therapy in published cohorts (HR = 0.29, P = 0.00012).

Conclusions:

These data support the adenosine pathway as a mediator of a successful antitumor immune response, demonstrate the prognostic potential of the signature for immunotherapy, and inform patient selection strategies for adenosine pathway modulators currently in development.




til

In Vitro Activity of Ceftazidime-Avibactam against Isolates from Respiratory and Blood Specimens from Patients with Nosocomial Pneumonia, Including Ventilator-Associated Pneumonia, in a Phase 3 Clinical Trial [Susceptibility]

Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.)




til

Tilorone, a Broad-Spectrum Antiviral for Emerging Viruses [Antiviral Agents]

Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV).




til

[Developmental Biology] Reptiles as a Model System to Study Heart Development

A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.




til

Beneficial Agents for Patients With Type 2 Diabetes and Cardiovascular Disease or Obesity: Utilization in an Era of Accumulating Evidence

This study was an analysis of a national sample of U.S. medical office visits from 2014 to 2016, a period when evidence of effectiveness was emerging for a variety of beneficial type 2 diabetes agents with regard to potential reduction in diabetes comorbidities. Ideal therapy was defined as an American Diabetes Association–identified beneficial agent plus metformin. The associations between atherosclerotic cardiovascular disease or obesity and use of these agents were explored.




til

Accuracy of Self-reported Colonic Polyps: Results from the Prostate, Lung, Colorectal, and Ovarian Screening Trial Study of Colonoscopy Utilization

Background:

Colonoscopy follow-up recommendations depend on the presence or absence of polyps, and if found, their number, size, and histology. Patients may be responsible for conveying results between primary and specialty care or providing medical information to family members; thus, accurate reporting is critical. This analysis assessed the accuracy of self-reported colonoscopy findings.

Methods:

3,986 participants from the Study of Colonoscopy Utilization, an ancillary study nested within the Prostate, Lung, Colorectal, and Ovarian Screening Trial, were included. Self-reports of polyp and adenoma were compared to medical records, and measures of sensitivity and specificity were calculated. Correlates of accurate self-report of polyp were assessed using logistic regression and weighted to account for study sampling.

Results:

The sensitivity and specificity of self-reported polyp findings were 88% and 85%, respectively, and for adenoma 11% and 99%, respectively. Among participants with a polyp, older age was associated with lower likelihood while polyp severity and non-white race were associated with increased likelihood of accurate recall. Among participants without a polyp, having multiple colonoscopies was associated with lower likelihood while family history of colorectal cancer was associated with increased likelihood of accurate recall. Among both groups, longer time since colonoscopy was associated with lower likelihood of accurate recall.

Conclusions:

Participants recalled with reasonable accuracy whether they had a prior polyp; however, recall of histology, specifically adenoma, was much less accurate.

Impact:

Identification of strategies to increase accurate self-report of colonic polyps are needed, particularly for patient–provider communications and patient reporting of results to family members.




til

We still don't know how effective the NHS contact-tracing app will be

The UK government will begin trials of its coronavirus contact-tracing app this week, but what impact it will have on slowing the spread of covid-19 is unclear




til

These Physicists Cannot Rest Until They Understand the Motions of Drunk Worms

While this experiment may sound odd, it could represent the start of a whole new field of research.




til

COVIDSafe Still Has Bugs, According To Experts

There has been a lot of discussion surrounding the government's coronavirus tracing app, COVIDSafe, but at the forefront has been issues of privacy and its ability to work properly on devices. With the federal government tying the easing of social restrictions to app downloads, developers have reverse engineered the app to find out what's actually wrong with it. Here's what they've found. More »
    




til

PTC: Pokemon Go-style tech used to speed up ventilator production



COMPUTER services company PTC is using augmented reality , the enhanced visual technology seen in Pokemon Go smartphone games and Iron Man movies, to produce ventilators in record time for the NHS.




til

ESA and Russia delay troubled ExoMars mission launch until 2022

The ExoMars mission, a joint venture between the European and Russian space agencies, will be delayed for two years. It has already been plagued by issues and the coronavirus hasn't helped




til

We still don't understand a basic fact about the universe

Our measurements of the Hubble constant can't seem to come up with a consistent answer. What we learn next may alter our view of the cosmos, writes Chanda Prescod-Weinstein




til

Is the universe conscious? It seems impossible until you do the maths

The question of how the brain gives rise to subjective experience is the hardest of all. Mathematicians think they can help, but their first attempts have thrown up some eye-popping conclusions




til

RPGCast – Episode 335: “Projectile Vomiting Feline”

Alice writes nice notes to people in EVE Online. Anna Marie visits an Adventure Bar. Chris spends time Dancing All Night. Then we all get...




til

Why are the Oscars still so white? – podcast

Following a strikingly white and male list of Bafta nominees, this year’s Academy Awards shortlists are barely more diverse. It’s a chronic problem in an industry running out of excuses for its slow pace of change. Lanre Bakare examines why the Oscars are still so white. Plus: Joan E Greve on a hectic week of US politics

When the lists of nominees for the major film awards in 2020 were announced, there was, once again, a glaring anomaly. Not a single person of colour was nominated in the Bafta acting categories, while the Oscars managed only Cynthia Erivo for her part in Harriet.

It is an issue that the industry is well aware of: in 2015, the ceremony saw #OscarsSoWhite trending on Twitter, while actors such as Eddie Murphy were rebuking the academy from the stage back in the 1990s. So what explains the glacial pace of change? Guardian arts and culture correspondent Lanre Bakare tells Anushka Asthana that there have been plenty of false dawns over the years in the quest for greater diversity.

Continue reading...




til

NCAA president: Sports won't return until campuses reopen

College sports will not resume until all students are back on campus, NCAA president Mark Emmert said Friday.




til

Which covid-19 patients will get a ventilator if there's a shortage?

If there's a ventilator shortage, doctors and ethicists say priority should be given to people with the best chance of recovery and most years likely left to live




til

Why we still don't know what the death rate is for covid-19

Despite data pouring in from many countries, estimates of how many of those infected with covid-19 die still vary widely




til

UK’s coronavirus science advice won’t be published until pandemic ends

The UK government says its coronavirus strategies are based on science, but the scientific advice it has received won’t be made public until after the pandemic




til

Why it’ll still be a long time before we get a coronavirus vaccine

Trials of experimental coronavirus vaccines are already under way, but it’s still likely to be years before one is ready and vaccination may not even be possible