pti

Auphonic Adaptive Leveler Customization (Beta Update)

In late August, we launched the private beta program of our advanced audio algorithm parameters. After feedback by our users and many new experiments, we are proud to release a complete rework of the Adaptive Leveler parameters:

In the previous version, we based our Adaptive Leveler parameters on the Loudness Range descriptor (LRA), which is included in the EBU R128 specification.
Although it worked, it turned out that it is very difficult to set a loudness range target for diverse audio content, which does include speech, background sounds, music parts, etc. The results were not predictable and it was hard to find good target values.
Therefore we developed our own algorithm to measure the dynamic range of audio signals, which works similarly for speech, music and other audio content.

The following advanced parameters for our Adaptive Leveler allow you to customize which parts of the audio should be leveled (foreground, all, speech, music, etc.), how much they should be leveled (dynamic range), and how much micro-dynamics compression should be applied.

To try out the new algorithms, please join our private beta program and let us know your feedback!

Leveler Preset

The Leveler Preset defines which parts of the audio should be adjusted by our Adaptive Leveler:

  • Default Leveler:
    Our classic, default leveling algorithm as demonstrated in the Leveler Audio Examples. Use it if you are unsure.
  • Foreground Only Leveler:
    This preset reacts slower and levels foreground parts only. Use it if you have background speech or background music, which should not be amplified.
  • Fast Leveler:
    A preset which reacts much faster. It is built for recordings with fast and extreme loudness differences, for example, to amplify very quiet questions from the audience in a lecture recording, to balance fast-changing soft and loud voices within one audio track, etc.
  • Amplify Everything:
    Amplify as much as possible. Similar to the Fast Leveler, but also amplifies non-speech background sounds like noise.

Leveler Dynamic Range

Our default Leveler tries to normalize all speakers to a similar loudness so that a consumer in a car or subway doesn't feel the need to reach for the volume control.
However, in other environments (living room, cinema, etc.) or in dynamic recordings, you might want more level differences (Dynamic Range, Loudness Range / LRA) between speakers and within music segments.

The parameter Dynamic Range controls how much leveling is applied: Higher values result in more dynamic output audio files (less leveling). If you want to increase the dynamic range by 3dB (or LU), just increase the Dynamic Range parameter by 3dB.
We also like to call this Loudness Comfort Zone: above a maximum and below a minimum possible level (the comfort zone), no leveling is applied. So if your input file already has a small dynamic range (is within the comfort zone), our leveler will be just bypassed.

Example Use Cases:
Higher dynamic range values should be used if you want to keep more loudness differences in dynamic narration or dynamic music recordings (live concert/classical).
It is also possible to utilize this parameter to generate automatic mixdowns with different loudness range (LRA) values for different target environments (very compressed ones like mobile devices or Alexa, very dynamic ones like home cinema, etc.).

Compressor

Controls Micro-Dynamics Compression:
The compressor reduces the volume of short and loud spikes like "p", "t" or laughter ( short-term dynamics) and also shapes the sound of your voice (it will sound more or less "processed").
The Leveler, on the other hand, adjusts mid-term level differences, as done by a sound engineer, using the faders of an audio mixer, so that a listener doesn't have to adjust the playback volume all the time.
For more details please see Loudness Normalization and Compression of Podcasts and Speech Audio.

Possible values are:
  • Auto:
    The compressor setting depends on the selected Leveler Preset. Medium compression is used in Foreground Only and Default Leveler presets, Hard compression in our Fast Leveler and Amplify Everything presets.
  • Soft:
    Uses less compression.
  • Medium:
    Our default setting.
  • Hard:
    More compression, especially tries to compress short and extreme level overshoots. Use this preset if you want your voice to sound very processed, our if you have extreme and fast-changing level differences.
  • Off:
    No short-term dynamics compression is used at all, only mid-term leveling. Switch off the compressor if you just want to adjust the loudness range without any additional micro-dynamics compression.

Separate Music/Speech Parameters

Use the switch Separate MusicSpeech Parameters (top right), to see separate Adaptive Leveler parameters for music and speech segments, to control all leveling details separately for speech and music parts:

For dialog intelligibility improvements in films and TV, it is important that the speech/dialog level and loudness range is not too soft compared to the overall programme level and loudness range. This parameter allows you to use more leveling in speech parts while keeping music and FX elements less processed.
Note: Speech, music and overall loudness and loudness range of your production are also displayed in our Audio Processing Statistics!

Example Use Case:
Music live recordings or dynamic music mixes, where you want to amplify all speakers (speech dynamic range should be small) but keep the dynamic range within and between music segments (music dynamic range should be high).
Dialog intelligibility improvements for films and TV, without effecting music and FX elements.

Other Advanced Audio Algorithm Parameters

We also offer advanced audio parameters for our Noise, Hum Reduction and Global Loudness Normalization algorithms:

For more details, please see the Advanced Audio Algorithms Documentation.

Want to know more?

If you want to know more details about our advanced algorithm parameters (especially the leveler parameters), please listen to the following podcast interview with Chris Curran (Podcast Engineering School):
Auphonic’s New Advanced Features, with Georg Holzmann – PES 108

Advanced Parameters Private Beta and Feedback

At the moment the advanced algorithm parameters are for beta users only. This is to allow us to get user feedback, so we can change the parameters to suit user needs.
Please let us know your case studies, if you need any other algorithm parameters or if you have any questions!

Here are some private beta invitation codes:

jbwCVpLYrl 6zmLqq8o3z RXYIUbC6al QDmIZLuPKa JIrnGRZBgl SWQOWeZOBD ISeBCA9gTy w5FdsyhZVI qWAvANQ5mC twOjdHrit3
KwnL2Le6jB 63SE2V54KK G32AULFyaM 3H0CLYAwLU mp1GFNVZHr swzvEBRCVa rLcNJHUNZT CGGbL0O4q1 5o5dUjruJ9 hAggWBpGvj
ykJ57cFQSe 0OHAD2u1Dx RG4wSYTLbf UcsSYI78Md Xedr3NPCgK mI8gd7eDvO 0Au4gpUDJB mYLkvKYz1C ukrKoW5hoy S34sraR0BU
J2tlV0yNwX QwNdnStYD3 Zho9oZR2e9 jHdjgUq420 51zLbV09p4 c0cth0abCf 3iVBKHVKXU BK4kTbDQzt uTBEkMnSPv tg6cJtsMrZ
BdB8gFyhRg wBsLHg90GG EYwxVUZJGp HLQ72b65uH NNd415ktFS JIm2eTkxMX EV2C5RAUXI a3iwbxWjKj X1AT7DCD7V y0AFIrWo5l
We are happy to send further invitation codes to all interested users - please do not hesitate to contact us!

If you have an invitation code, you can enter it here to activate the advanced audio algorithm parameters:
Auphonic Algorithm Parameters Private Beta Activation







pti

Need Help Choosing the Right Plugin for Your Website? Check These Options

WordPress is an ideal platform for building your own portfolio, blog, or eCommerce site. It’s packed with all the basic tools you need to build a professional-looking site. Plus, it has tools that can take your web-building skills to an even higher level. Get even more impressive results or add features to a website that […]

The post Need Help Choosing the Right Plugin for Your Website? Check These Options appeared first on WebAppers.




pti

Corruption Is Bad, But Sabotage Is Worse

By Jill Richardson Otherwords Both are bad, but Scott Pruitt’s abuse of our environment is far more dangerous than his abuse of taxpayer money. Did you hear that the head of the Environmental Protection Agency (EPA), Scott Pruitt, is so … Continue reading




pti

"What is deceptive, especially in the West, is our assumption that repetitive and mindless jobs are..."

What is deceptive, especially in the West, is our assumption that repetitive and mindless jobs are dehumanizing. On the other hand, the jobs that require us to use the abilities that are uniquely human, we assume to be humanizing. This is not necessarily true. The determining factor is not so much the nature of our jobs, but for whom they serve.

‘Burnout’ is a result of consuming yourself for something other than yourself. You could be burnt out for an abstract concept, ideal, or even nothing (predicament). You end up burning yourself as fuel for something or someone else. This is what feels dehumanizing. In repetitive physical jobs, you could burn out your body for something other than yourself. In creative jobs, you could burn out your soul. Either way, it would be dehumanizing. Completely mindless jobs and incessantly mindful jobs could both be harmful to us.



- Dsyke Suematsu from his white paper discussed at Why Ad People Burn Out.




pti

How to Create a Full-Screen Welcome Mat Optin Form in WordPress

Want to create a full-screen optin form in WordPress? Love it or hate it… using a welcome mat is one of the easiest ways to capture your users’ attention. Even big brands like Forbes use a welcome mat to promote their campaigns. In this article, we’ll show you how to properly create a welcome mat […]

The post How to Create a Full-Screen Welcome Mat Optin Form in WordPress appeared first on IsItWP - Free WordPress Theme Detector.




pti

3 Ways to Optimise Blog Content so it Ranks Well on Google

When it comes to your blog’s position within search engine results, there’s far more than just sheer luck at play. Search Engine Optimisation is a skill that any content creator – professional or amateur – should develop in order to make their content as discoverable as possible. It involves making certain tweaks to your blog […]

Original post: 3 Ways to Optimise Blog Content so it Ranks Well on Google

The post 3 Ways to Optimise Blog Content so it Ranks Well on Google appeared first on Daily Blog Tips.




pti

Limiting your options on purpose

Being a photographer with some spending money and a bad habit of lusting after gear, I have amassed a lot of photo gear. Due to that I am often carrying at least two lenses and also prefer zoom lenses versus […]




pti

On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations. (arXiv:2004.12660v3 [math.AP] UPDATED)

In this paper, we mainly establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for a class of fully nonlinear second-order elliptic equations related to the eigenvalues of the Hessian, with prescribed generalized symmetric asymptotic behavior at infinity. Moreover, we give some new results for the Hessian equations, Hessian quotient equations and the special Lagrangian equations, which have been studied previously.




pti

Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization. (arXiv:1912.12110v2 [math.OC] UPDATED)

This paper considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first propose a distributed first-order primal-dual algorithm. We show that it converges sublinearly to the stationary point if each local cost function is smooth and linearly to the global optimum under an additional condition that the global cost function satisfies the Polyak-{L}ojasiewicz condition. This condition is weaker than strong convexity, which is a standard condition for proving the linear convergence of distributed optimization algorithms, and the global minimizer is not necessarily unique or finite. Motivated by the situations where the gradients are unavailable, we then propose a distributed zeroth-order algorithm, derived from the proposed distributed first-order algorithm by using a deterministic gradient estimator, and show that it has the same convergence properties as the proposed first-order algorithm under the same conditions. The theoretical results are illustrated by numerical simulations.




pti

Data-driven parameterizations of suboptimal LQR and H2 controllers. (arXiv:1912.07671v2 [math.OC] UPDATED)

In this paper we design suboptimal control laws for an unknown linear system on the basis of measured data. We focus on the suboptimal linear quadratic regulator problem and the suboptimal H2 control problem. For both problems, we establish conditions under which a given data set contains sufficient information for controller design. We follow up by providing a data-driven parameterization of all suboptimal controllers. We will illustrate our results by numerical simulations, which will reveal an interesting trade-off between the number of collected data samples and the achieved controller performance.




pti

Optimal construction of Koopman eigenfunctions for prediction and control. (arXiv:1810.08733v3 [math.OC] UPDATED)

This work presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a rich set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [12] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples with code available online demonstrate the approach, both for prediction and feedback control.




pti

On $p$-groups with automorphism groups related to the exceptional Chevalley groups. (arXiv:1810.08365v3 [math.GR] UPDATED)

Let $hat G$ be the finite simply connected version of an exceptional Chevalley group, and let $V$ be a nontrivial irreducible module, of minimal dimension, for $hat G$ over its field of definition. We explore the overgroup structure of $hat G$ in $mathrm{GL}(V)$, and the submodule structure of the exterior square (and sometimes the third Lie power) of $V$. When $hat G$ is defined over a field of odd prime order $p$, this allows us to construct the smallest (with respect to certain properties) $p$-groups $P$ such that the group induced by $mathrm{Aut}(P)$ on $P/Phi(P)$ is either $hat G$ or its normaliser in $mathrm{GL}(V)$.




pti

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




pti

A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC])

We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path.




pti

On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph])

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.




pti

Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP])

We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian.




pti

Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schr"odinger term. (arXiv:2005.03281v1 [math.AP])

Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schr"odinger term: $-Delta_p u + mathbb{V}|u|^{p-2}u$ with bound constraints $psi_1 le u le psi_2$ in non-smooth domains. This problem has its own interest in mathematics, engineering, physics and other branches of science. Our approach makes a novel connection between the study of Calder'on-Zygmund theory for nonlinear Schr"odinger type equations and variational inequalities for double obstacle problems.




pti

Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT])

We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly.




pti

Towards Embodied Scene Description. (arXiv:2004.14638v2 [cs.RO] UPDATED)

Embodiment is an important characteristic for all intelligent agents (creatures and robots), while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real world robotic platform demonstrating the effectiveness and extendability of the developed method.




pti

Optimal Adjacent Vertex-Distinguishing Edge-Colorings of Circulant Graphs. (arXiv:2004.12822v2 [cs.DM] UPDATED)

A k-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value k for which G admits such coloring is denoted by $chi$'a (G). We prove that $chi$'a (G) = 2R + 1 for most circulant graphs Cn([[1, R]]).




pti

Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED)

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude.




pti

Provenance for the Description Logic ELHr. (arXiv:2001.07541v2 [cs.LO] UPDATED)

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.




pti

Games Where You Can Play Optimally with Arena-Independent Finite Memory. (arXiv:2001.03894v2 [cs.GT] UPDATED)

For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies.

In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us.

In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our results with regard to the literature: our work completely covers the case of arena-independent memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).




pti

Safe non-smooth black-box optimization with application to policy search. (arXiv:1912.09466v3 [math.OC] UPDATED)

For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem $min f^0(x)$ subject to $f^i(x)leq 0,~ i = 1,ldots, m$, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.




pti

Multi-group Multicast Beamforming: Optimal Structure and Efficient Algorithms. (arXiv:1911.08925v2 [eess.SP] UPDATED)

This paper considers the multi-group multicast beamforming optimization problem, for which the optimal solution has been unknown due to the non-convex and NP-hard nature of the problem. By utilizing the successive convex approximation numerical method and Lagrangian duality, we obtain the optimal multicast beamforming solution structure for both the quality-of-service (QoS) problem and the max-min fair (MMF) problem. The optimal structure brings valuable insights into multicast beamforming: We show that the notion of uplink-downlink duality can be generalized to the multicast beamforming problem. The optimal multicast beamformer is a weighted MMSE filter based on a group-channel direction: a generalized version of the optimal downlink multi-user unicast beamformer. We also show that there is an inherent low-dimensional structure in the optimal multicast beamforming solution independent of the number of transmit antennas, leading to efficient numerical algorithm design, especially for systems with large antenna arrays. We propose efficient algorithms to compute the multicast beamformer based on the optimal beamforming structure. Through asymptotic analysis, we characterize the asymptotic behavior of the multicast beamformers as the number of antennas grows, and in turn, provide simple closed-form approximate multicast beamformers for both the QoS and MMF problems. This approximation offers practical multicast beamforming solutions with a near-optimal performance at very low computational complexity for large-scale antenna systems.




pti

Over-the-Air Computation Systems: Optimization, Analysis and Scaling Laws. (arXiv:1909.00329v2 [cs.IT] UPDATED)

For future Internet of Things (IoT)-based Big Data applications (e.g., smart cities/transportation), wireless data collection from ubiquitous massive smart sensors with limited spectrum bandwidth is very challenging. On the other hand, to interpret the meaning behind the collected data, it is also challenging for edge fusion centers running computing tasks over large data sets with limited computation capacity. To tackle these challenges, by exploiting the superposition property of a multiple-access channel and the functional decomposition properties, the recently proposed technique, over-the-air computation (AirComp), enables an effective joint data collection and computation from concurrent sensor transmissions. In this paper, we focus on a single-antenna AirComp system consisting of $K$ sensors and one receiver (i.e., the fusion center). We consider an optimization problem to minimize the computation mean-squared error (MSE) of the $K$ sensors' signals at the receiver by optimizing the transmitting-receiving (Tx-Rx) policy, under the peak power constraint of each sensor. Although the problem is not convex, we derive the computation-optimal policy in closed form. Also, we comprehensively investigate the ergodic performance of AirComp systems in terms of the average computation MSE and the average power consumption under Rayleigh fading channels with different Tx-Rx policies. For the computation-optimal policy, we prove that its average computation MSE has a decay rate of $O(1/sqrt{K})$, and our numerical results illustrate that the policy also has a vanishing average power consumption with the increasing $K$, which jointly show the computation effectiveness and the energy efficiency of the policy with a large number of sensors.




pti

Learning Direct Optimization for Scene Understanding. (arXiv:1812.07524v2 [cs.CV] UPDATED)

We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent variables z (such as object appearance, camera position). Given a current estimate of z we can render a prediction of the image g(z), which can be compared to the image x. The standard way to proceed is then to measure the error E(x, g(z)) between the two, and use an optimizer to minimize the error. However, it is unknown which error measure E would be most effective for simultaneously addressing issues such as misaligned objects, occlusions, textures, etc. In contrast, the LiDO approach trains a Prediction Network to predict an update directly to correct z, rather than minimizing the error with respect to z. Experiments show that our LiDO method converges rapidly as it does not need to perform a search on the error landscape, produces better solutions than error-based competitors, and is able to handle the mismatch between the data and the fitted scene model. We apply LiDO to a realistic synthetic dataset, and show that the method also transfers to work well with real images.




pti

The Perceptimatic English Benchmark for Speech Perception Models. (arXiv:2005.03418v1 [cs.CL])

We present the Perceptimatic English Benchmark, an open experimental benchmark for evaluating quantitative models of speech perception in English. The benchmark consists of ABX stimuli along with the responses of 91 American English-speaking listeners. The stimuli test discrimination of a large number of English and French phonemic contrasts. They are extracted directly from corpora of read speech, making them appropriate for evaluating statistical acoustic models (such as those used in automatic speech recognition) trained on typical speech data sets. We show that phone discrimination is correlated with several types of models, and give recommendations for researchers seeking easily calculated norms of acoustic distance on experimental stimuli. We show that DeepSpeech, a standard English speech recognizer, is more specialized on English phoneme discrimination than English listeners, and is poorly correlated with their behaviour, even though it yields a low error on the decision task given to humans.




pti

A LiDAR-based real-time capable 3D Perception System for Automated Driving in Urban Domains. (arXiv:2005.03404v1 [cs.RO])

We present a LiDAR-based and real-time capable 3D perception system for automated driving in urban domains. The hierarchical system design is able to model stationary and movable parts of the environment simultaneously and under real-time conditions. Our approach extends the state of the art by innovative in-detail enhancements for perceiving road users and drivable corridors even in case of non-flat ground surfaces and overhanging or protruding elements. We describe a runtime-efficient pointcloud processing pipeline, consisting of adaptive ground surface estimation, 3D clustering and motion classification stages. Based on the pipeline's output, the stationary environment is represented in a multi-feature mapping and fusion approach. Movable elements are represented in an object tracking system capable of using multiple reference points to account for viewpoint changes. We further enhance the tracking system by explicit consideration of occlusion and ambiguity cases. Our system is evaluated using a subset of the TUBS Road User Dataset. We enhance common performance metrics by considering application-driven aspects of real-world traffic scenarios. The perception system shows impressive results and is able to cope with the addressed scenarios while still preserving real-time capability.




pti

Simultaneous topology and fastener layout optimization of assemblies considering joint failure. (arXiv:2005.03398v1 [cs.CE])

This paper provides a method for the simultaneous topology optimization of parts and their corresponding joint locations in an assembly. Therein, the joint locations are not discrete and predefined, but continuously movable. The underlying coupling equations allow for connecting dissimilar meshes and avoid the need for remeshing when joint locations change. The presented method models the force transfer at a joint location not only by using single spring elements but accounts for the size and type of the joints. When considering riveted or bolted joints, the local part geometry at the joint location consists of holes that are surrounded by material. For spot welds, the joint locations are filled with material and may be smaller than for bolts. The presented method incorporates these material and clearance zones into the simultaneously running topology optimization of the parts. Furthermore, failure of joints may be taken into account at the optimization stage, yielding assemblies connected in a fail-safe manner.




pti

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR])

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.




pti

Bitvector-aware Query Optimization for Decision Support Queries (extended version). (arXiv:2005.03328v1 [cs.DB])

Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query optimization is not well understood.

In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear.

Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries.




pti

Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR])

XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output.

Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners.

Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications.




pti

Boosting Cloud Data Analytics using Multi-Objective Optimization. (arXiv:2005.03314v1 [cs.DB])

Data analytics in the cloud has become an integral part of enterprise businesses. Big data analytics systems, however, still lack the ability to take user performance goals and budgetary constraints for a task, collectively referred to as task objectives, and automatically configure an analytic job to achieve these objectives. This paper presents a data analytics optimizer that can automatically determine a cluster configuration with a suitable number of cores as well as other system parameters that best meet the task objectives. At a core of our work is a principled multi-objective optimization (MOO) approach that computes a Pareto optimal set of job configurations to reveal tradeoffs between different user objectives, recommends a new job configuration that best explores such tradeoffs, and employs novel optimizations to enable such recommendations within a few seconds. We present efficient incremental algorithms based on the notion of a Progressive Frontier for realizing our MOO approach and implement them into a Spark-based prototype. Detailed experiments using benchmark workloads show that our MOO techniques provide a 2-50x speedup over existing MOO methods, while offering good coverage of the Pareto frontier. When compared to Ottertune, a state-of-the-art performance tuning system, our approach recommends configurations that yield 26\%-49\% reduction of running time of the TPCx-BB benchmark while adapting to different application preferences on multiple objectives.




pti

Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI])

Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts.




pti

Cotatron: Transcription-Guided Speech Encoder for Any-to-Many Voice Conversion without Parallel Data. (arXiv:2005.03295v1 [eess.AS])

We propose Cotatron, a transcription-guided speech encoder for speaker-independent linguistic representation. Cotatron is based on the multispeaker TTS architecture and can be trained with conventional TTS datasets. We train a voice conversion system to reconstruct speech with Cotatron features, which is similar to the previous methods based on Phonetic Posteriorgram (PPG). By training and evaluating our system with 108 speakers from the VCTK dataset, we outperform the previous method in terms of both naturalness and speaker similarity. Our system can also convert speech from speakers that are unseen during training, and utilize ASR to automate the transcription with minimal reduction of the performance. Audio samples are available at https://mindslab-ai.github.io/cotatron, and the code with a pre-trained model will be made available soon.




pti

Online Proximal-ADMM For Time-varying Constrained Convex Optimization. (arXiv:2005.03267v1 [eess.SY])

This paper considers a convex optimization problem with cost and constraints that evolve over time. The function to be minimized is strongly convex and possibly non-differentiable, and variables are coupled through linear constraints.In this setting, the paper proposes an online algorithm based on the alternating direction method of multipliers(ADMM), to track the optimal solution trajectory of the time-varying problem; in particular, the proposed algorithm consists of a primal proximal gradient descent step and an appropriately perturbed dual ascent step. The paper derives tracking results, asymptotic bounds, and linear convergence results. The proposed algorithm is then specialized to a multi-area power grid optimization problem, and our numerical results verify the desired properties.




pti

Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification with Chest CT. (arXiv:2005.03264v1 [eess.IV])

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.




pti

Coding for Optimized Writing Rate in DNA Storage. (arXiv:2005.03248v1 [cs.IT])

A method for encoding information in DNA sequences is described. The method is based on the precision-resolution framework, and is aimed to work in conjunction with a recently suggested terminator-free template independent DNA synthesis method. The suggested method optimizes the amount of information bits per synthesis time unit, namely, the writing rate. Additionally, the encoding scheme studied here takes into account the existence of multiple copies of the DNA sequence, which are independently distorted. Finally, quantizers for various run-length distributions are designed.




pti

End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. (arXiv:2005.03222v1 [cs.CV])

Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets.




pti

An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC])

We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.




pti

Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE])

Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two.




pti

Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR])

Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem.




pti

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




pti

Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies. (arXiv:2005.03153v1 [cs.RO])

In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots have no explicit communication network among them, and they do no know the mass or friction properties of the object, or where they are attached to the object. However, we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, and with hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodelled effects, such as discretization errors and complex frictional interactions.




pti

Optimally Convergent Mixed Finite Element Methods for the Stochastic Stokes Equations. (arXiv:2005.03148v1 [math.NA])

We propose some new mixed finite element methods for the time dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known [16] that the pressure solution has a low regularity, which manifests in sub-optimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations, see [10]. We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods, and that this conceptual idea may be used to retool numerical methods that are well-known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptional usefulness of the proposed numerical approach.




pti

Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR])

We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context.




pti

Optimal Location of Cellular Base Station via Convex Optimization. (arXiv:2005.03099v1 [cs.IT])

An optimal base station (BS) location depends on the traffic (user) distribution, propagation pathloss and many system parameters, which renders its analytical study difficult so that numerical algorithms are widely used instead. In this paper, the problem is studied analytically. First, it is formulated as a convex optimization problem to minimize the total BS transmit power subject to quality-of-service (QoS) constraints, which also account for fairness among users. Due to its convex nature, Karush-Kuhn-Tucker (KKT) conditions are used to characterize a globally-optimum location as a convex combination of user locations, where convex weights depend on user parameters, pathloss exponent and overall geometry of the problem. Based on this characterization, a number of closed-form solutions are obtained. In particular, the optimum BS location is the mean of user locations in the case of free-space propagation and identical user parameters. If the user set is symmetric (as defined in the paper), the optimal BS location is independent of pathloss exponent, which is not the case in general. The analytical results show the impact of propagation conditions as well as system and user parameters on optimal BS location and can be used to develop design guidelines.




pti

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




pti

Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks. (arXiv:2005.03091v1 [cs.IT])

Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAV's trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.