gh

DOMAS: a data management software framework for advanced light sources

In recent years, China's advanced light sources have entered a period of rapid construction and development. As modern X-ray detectors and data acquisition technologies advance, these facilities are expected to generate massive volumes of data annually, presenting significant challenges in data management and utilization. These challenges encompass data storage, metadata handling, data transfer and user data access. In response, the Data Organization Management Access Software (DOMAS) has been designed as a framework to address these issues. DOMAS encapsulates four fundamental modules of data management software, including metadata catalogue, metadata acquisition, data transfer and data service. For light source facilities, building a data management system only requires parameter configuration and minimal code development within DOMAS. This paper firstly discusses the development of advanced light sources in China and the associated demands and challenges in data management, prompting a reconsideration of data management software framework design. It then outlines the architecture of the framework, detailing its components and functions. Lastly, it highlights the application progress and effectiveness of DOMAS when deployed for the High Energy Photon Source (HEPS) and Beijing Synchrotron Radiation Facility (BSRF).




gh

Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack

This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.




gh

VerSoX B07-B: a high-throughput XPS and ambient pressure NEXAFS beamline at Diamond Light Source

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45–2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.




gh

High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10−3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.




gh

Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline

To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed.




gh

Evaluation of the X-ray/EUV Nanolithography Facility at AS through wavefront propagation simulations

Synchrotron light sources can provide the required spatial coherence, stability and control to support the development of advanced lithography at the extreme ultraviolet and soft X-ray wavelengths that are relevant to current and future fabricating technologies. Here an evaluation of the optical performance of the soft X-ray (SXR) beamline of the Australian Synchrotron (AS) and its suitability for developing interference lithography using radiation in the 91.8 eV (13.5 nm) to 300 eV (4.13 nm) range are presented. A comprehensive physical optics model of the APPLE-II undulator source and SXR beamline was constructed to simulate the properties of the illumination at the proposed location of a photomask, as a function of photon energy, collimation and monochromator parameters. The model is validated using a combination of experimental measurements of the photon intensity distribution of the undulator harmonics. It is shown that the undulator harmonics intensity ratio can be accurately measured using an imaging detector and controlled using beamline optics. Finally, the photomask geometric constraints and achievable performance for the limiting case of fully spatially coherent illumination are evaluated.




gh

Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.




gh

A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging

Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation–matter interactions in these applications.




gh

Laminography as a tool for imaging large-size samples with high resolution

Despite the increased brilliance of the new generation synchrotron sources, there is still a challenge with high-resolution scanning of very thick and absorbing samples, such as a whole mouse brain stained with heavy elements, and, extending further, brains of primates. Samples are typically cut into smaller parts, to ensure a sufficient X-ray transmission, and scanned separately. Compared with the standard tomography setup where the sample would be cut into many pillars, the laminographic geometry operates with slab-shaped sections significantly reducing the number of sample parts to be prepared, the cutting damage and data stitching problems. In this work, a laminography pipeline for imaging large samples (>1 cm) at micrometre resolution is presented. The implementation includes a low-cost instrument setup installed at the 2-BM micro-CT beamline of the Advanced Photon Source. Additionally, sample mounting, scanning techniques, data stitching procedures, a fast reconstruction algorithm with low computational complexity, and accelerated reconstruction on multi-GPU systems for processing large-scale datasets are presented. The applicability of the whole laminography pipeline was demonstrated by imaging four sequential slabs throughout an entire mouse brain sample stained with osmium, in total generating approximately 12 TB of raw data for reconstruction.




gh

Teaching about the birth of synchrotron light: the role of Frascati and a missed opportunity

The users of synchrotron light are now tens of thousands throughout the world. Paradoxically, many of them do not know much about the early history of their domain. This is regrettable, since education about the initial developments makes it easier to fully understand synchrotron radiation and effectively use its amazing features. Scarcely known, in particular, is the key role of scientists working in Frascati, Italy. Partly based on his personal experiences, the author reports here relevant aspects of this story, including a pioneering French–Italian experiment that started in the early 1960s, and the Frascati contributions in the 1970s and 1980s to the birth of synchrotron light research. Finally, the unwise strategic decisions that prevented Italy from achieving absolute leadership in this domain – in spite of its unique initial advantages – are analyzed.




gh

Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.




gh

In situ XAFS–XRD study of the Zr–Y2O3 interaction at extra-high temperatures

The in situ measurement technique for a metal/metal-oxide mixture at extra-high temperature above 2000 K has been desired in the field of nuclear safety engineering. In the present study, we succeeded in simultaneous XAFS–XRD measurements of the Zr oxidation [Zr + O → Zr(O) + ZrO2] up to 1952 K and ZrO2–Y2O3 reaction from 1952 to 2519 K. The chemical shift during Zr oxidation was observed in the absorption spectra around the Zr K-edge, and the interatomic cation–cation and cation–oxygen distances obtained by the fitting analysis of EXAFS during the Y2O3–ZrO2 reaction are explained. Also, the temperature dependency of the anharmonic effect was investigated by comparing the fitted second- and third-order cumulants with the theoretical ones in which the Morse potential was applied as an interatomic potential, giving a good explanation about the local structure dynamics. Finally, the applicability of the developed system to investigation of nuclear fuel materials, such as UO2–Zr, is discussed.




gh

Mapping of lithium ion concentrations in 3D structures through development of in situ correlative imaging of X-ray Compton scattering-computed tomography

Understanding the correlation between chemical and microstructural properties is critical for unraveling the fundamental relationship between materials chemistry and physical structures that can benefit materials science and engineering. Here, we demonstrate novel in situ correlative imaging of the X-ray Compton scattering computed tomography (XCS-CT) technique for studying this fundamental relationship. XCS-CT can image light elements that do not usually exhibit strong signals using other X-ray characterization techniques. This paper describes the XCS-CT setup and data analysis method for calculating the valence electron momentum density and lithium-ion concentration, and provides two examples of spatially and temporally resolved chemical properties inside batteries in 3D. XCS-CT was applied to study two types of rechargeable lithium batteries in standard coin cell casings: (1) a lithium-ion battery containing a cathode of bespoke microstructure and liquid electrolyte, and (2) a solid-state battery containing a solid-polymer electrolyte. The XCS-CT technique is beneficial to a wide variety of materials and systems to map chemical composition changes in 3D structures.




gh

High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.




gh

GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.




gh

High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.




gh

Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source

The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.




gh

A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory

Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles.




gh

Development of a high-performance and cost-effective in-vacuum undulator

In-vacuum undulators (IVUs), which have become an essential tool in synchrotron radiation facilities, have two technical challenges toward further advancement: one is a strong attractive force between top and bottom magnetic arrays, and the other is a stringent requirement on magnetic materials to avoid demagnetization. The former imposes a complicated design on mechanical and vacuum structures, while the latter limits the possibility of using high-performance permanent magnets. To solve these issues, a number of technical developments have been made, such as force cancellation and modularization of magnetic arrays, and enhancement of resistance against demagnetization by means of a special magnetic circuit. The performance of a new IVU built upon these technologies has revealed their effectiveness for constructing high-performance IVUs in a cost-effective manner.




gh

Development of an advanced in-line multilayer deposition system at Diamond Light Source

A state-of-the-art multilayer deposition system with a 4200 mm-long linear substrate translator housed within an ultra-high vacuum chamber has been developed. This instrument is engineered to produce single and multilayer coatings, accommodating mirrors up to 2000 mm in length through the utilization of eight rectangular cathodes. To ensure the quality and reliability of the coatings, the system incorporates various diagnostic tools for in situ thickness uniformity and stress measurement. Furthermore, the system features an annealing process capable of heating up to 700°C within the load-lock chamber. The entire operation, including pump down, deposition and venting processes, is automated through user-friendly software. In addition, all essential log data, power of sputtering source, working pressure and motion positions are automatically stored for comprehensive data analysis. Preliminary commissioning results demonstrate excellent lateral film thickness uniformity, achieving 0.26% along the translation direction over 1500 mm in dynamic mode. The multilayer deposition system is poised for use in fabricating periodic, lateral-graded and depth-graded multilayers, specifically catering to the beamlines for diverse scientific applications at Diamond Light Source.




gh

Accelerating imaging research at large-scale scientific facilities through scientific computing

To date, computed tomography experiments, carried-out at synchrotron radiation facilities worldwide, pose a tremendous challenge in terms of the breadth and complexity of the experimental datasets produced. Furthermore, near real-time three-dimensional reconstruction capabilities are becoming a crucial requirement in order to perform high-quality and result-informed synchrotron imaging experiments, where a large amount of data is collected and processed within a short time window. To address these challenges, we have developed and deployed a synchrotron computed tomography framework designed to automatically process online the experimental data from the synchrotron imaging beamlines, while leveraging the high-performance computing cluster capabilities to accelerate the real-time feedback to the users on their experimental results. We have, further, integrated it within a modern unified national authentication and data management framework, which we have developed and deployed, spanning the entire data lifecycle of a large-scale scientific facility. In this study, the overall architecture, functional modules and workflow design of our synchrotron computed tomography framework are presented in detail. Moreover, the successful integration of the imaging beamlines at the Shanghai Synchrotron Radiation Facility into our scientific computing framework is also detailed, which, ultimately, resulted in accelerating and fully automating their entire data processing pipelines. In fact, when compared with the original three-dimensional tomography reconstruction approaches, the implementation of our synchrotron computed tomography framework led to an acceleration in the experimental data processing capabilities, while maintaining a high level of integration with all the beamline processing software and systems.




gh

Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310–430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2−xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.




gh

Structural insights into 1,4-bis­(neopent­yloxy)pillar[5]arene and the pyridine host–guest system

The crystal structure of 1,4-bis­(neopent­yloxy)pillar[5]arene, C95H140N2O10 (TbuP), featuring two encapsulated pyridine mol­ecules, reveals significant host–guest inter­actions. Inter­estingly, the pyridine guests are positioned near the neopent­yloxy substituents instead of the electron-rich aromatic core of the pillar[5]arene. This spatial arrangement suggests a preference for the pyridine mol­ecules to engage with the aliphatic regions of the host. Detailed analysis of the structural characteristics of this host–guest system (TbuP·2Py), as well as its packing pattern within the crystal network, is presented and discussed.




gh

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




gh

Borotropic shifting of the hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lan­tha­nide com­plexes

The coordination of hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lan­tha­nide(III) ions is achieved for the first time with the com­plex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accom­plished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydro­bis­[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We con­clude that the pres­ence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand.




gh

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




gh

2,4-Di­aryl­pyrroles: synthesis, characterization and crystallographic insights

Three 2,4-di­aryl­pyrroles were synthesized starting from 4-nitro­butano­nes and the crystal structures of two derivatives were analysed. These are 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without sub­stituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Inter­estingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with inter­stitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.




gh

The challenges of growing great crystals – or at least good enough ones!




gh

Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors

 




gh

The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure–temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its inter­actions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule–gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.




gh

The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.




gh

EMinsight: a tool to capture cryoEM microscope configuration and experimental outcomes for analysis and deposition

The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions.




gh

HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening

The Swiss Light Source facilitates fragment-based drug-discovery campaigns for academic and industrial users through the Fast Fragment and Compound Screening (FFCS) software suite. This framework is further enriched by the option to utilize the Smart Digital User (SDU) software for automated data collection across the PXI, PXII and PXIII beamlines. In this work, the newly developed HEIDI webpage (https://heidi.psi.ch) is introduced: a platform crafted using state-of-the-art software architecture and web technologies for sample management of rotational data experiments. The HEIDI webpage features a data-review tab for enhanced result visualization and provides programmatic access through a representational state transfer application programming interface (REST API). The migration of the local FFCS MongoDB instance to the cloud is highlighted and detailed. This transition ensures secure, encrypted and consistently accessible data through a robust and reliable REST API tailored for the FFCS software suite. Collectively, these advancements not only significantly elevate the user experience, but also pave the way for future expansions and improvements in the capabilities of the system.




gh

New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system

Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host–pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.




gh

High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C—I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.




gh

Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.




gh

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies uni­directionally.




gh

STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials

Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.




gh

Structure determination using high-order spatial correlations in single-particle X-ray scattering

Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising technique for observing nanoscale biological samples under near-physiological conditions. However, as the sample's orientation in each diffraction pattern is unknown, advanced algorithms are required to reconstruct the 3D diffraction intensity volume and subsequently the sample's density model. While most approaches perform 3D reconstruction via determining the orientation of each diffraction pattern, a correlation-based approach utilizes the averaged spatial correlations of diffraction intensities over all patterns, making it well suited for processing experimental data with a poor signal-to-noise ratio of individual patterns. Here, a method is proposed to determine the 3D structure of a sample by analyzing the double, triple and quadruple spatial correlations in diffraction patterns. This ab initio method can reconstruct the basic shape of an irregular unsymmetric 3D sample without requiring any prior knowledge of the sample. The impact of background and noise on correlations is investigated and corrected to ensure the success of reconstruction under simulated experimental conditions. Additionally, the feasibility of using the correlation-based approach to process incomplete partial diffraction patterns is demonstrated. The proposed method is a variable addition to existing algorithms for 3D reconstruction and will further promote the development and adoption of XFEL single-particle imaging techniques.




gh

Conformation–aggregation interplay in the simplest aliphatic ethers probed under high pressure

The structures of the simplest symmetric primary ethers [(CnH2n+1)2O, n = 1–3] determined under high pressure revealed their conformational preferences and intermolecular interactions. In three new polymorphs of di­ethyl ether (C2H5)2O, high pressure promotes intermolecular CH⋯O contacts and enforces a conversion from the trans–trans conformer present in the α, β and γ phases to the trans–gauche conformer, which is higher in energy by 6.4 kJ mol−1, in the δ phase. Two new polymorphs of di­methyl ether (CH3)2O display analogous transformations of the CH⋯O bonds. The crystal structure of di-n-propyl ether (C3H7)2O, determined for the first time, is remarkably stable over the whole pressure range investigated from 1.70 up to 5.30 GPa.




gh

Dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval based on deep learning

Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval. The calibration results of a phantom show that the profile of the retrieved phase is highly consistent with the theoretical one. Experiments of polyurethane foaming demonstrated that the proposed method revealed the evolution of the complicated microstructure of the bubbles accurately. The proposed method is a promising solution for dynamic X-ray imaging with high-accuracy phase retrieval, and has extensive applications in metrology and quantitative analysis of dynamics in material science, physics, chemistry and biomedicine.




gh

C-SPAM: an open-source time-resolved specimen vitrification device with light-activated molecules

Molecular structures can be determined in vitro and in situ with cryo-electron microscopy (cryo-EM). Specimen preparation is a major obstacle in cryo-EM. Typical sample preparation is orders of magnitude slower than biological processes. Time-resolved cryo-EM (TR-cryo-EM) can capture short-lived states. Here, Cryo-EM sample preparation with light-activated molecules (C-SPAM) is presented, an open-source, photochemistry-coupled device for TR-cryo-EM that enables millisecond resolution and tunable timescales across broad biological applications.




gh

Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity

Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.




gh

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




gh

Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein

Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP–F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases.




gh

Structural insight into piezo-solvatochromism of Reichardt's dye

To date, accurate modelling of the solvation process is challenging, often over-simplifying the solvent–solute interactions. The interplay between the molecular arrangement associated with the solvation process and crystal nucleation has been investigated by analysis of the piezo-solvatochromic behaviour of Reichardt's dye, ET(1), in methanol, ethanol and acetone under high pressure. High-pressure single-crystal X-ray diffraction and UV–Vis spectroscopy reveal the impact of solute–solvent interactions on the optical properties of ET(1). The study underscores the intricate relationship between solvent properties, molecular conformation and crystal packing. The connection between liquid and solid phases emphasizes the capabilities of high-pressure methods for expanding the field of crystal engineering. The high-pressure environment allowed the determination of the crystal structures reported here that are built from organic molecules fourfold solvated with ethanol or methanol: ET(1)·4CH3OH and ET(1)·4C2H5OH·H2O. The observed piezo-solvatochromic effects highlight the potential of ET(1) in nonlinear optoelectronics and expand the application of solvatochromic chemical indicators to pressure sensors.




gh

Comprehensive encoding of conformational and compositional protein structural ensembles through the mmCIF data structure

In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble–function predictions, analogous to the achievements of AlphaFold with single-structure prediction.




gh

High-accuracy measurement, advanced theory and analysis of the evolution of satellite transitions in manganese Kα using XR-HERFD

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.




gh

Fixed-target pump–probe SFX: eliminating the scourge of light contamination

X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump–probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light–oxygen–voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump–probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thio­ether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.




gh

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.