iva Egypt and the Gulf: Allies and Rivals By feedproxy.google.com Published On :: Sun, 19 Apr 2020 20:38:18 +0000 20 April 2020 There is and will continue to be an edge of rivalry in Egypt’s relations with the dominant Gulf Arab powers. This paper will focus primarily on the Egypt–Gulf relationship during the Sisi era. Read online Download PDF David Butter Associate Fellow, Middle East and North Africa Programme @DavidCButter 2020-04-20-Egypt-Gulf.jpg Crown Prince of Abu Dhabi Mohammed bin Zayed is welcomed by Egypt’s President Abdel-Fattah el-Sisi in Cairo on 19 June 2017. Photo: Getty Images. Summary Egypt and the Gulf Arab region have long been important poles of political, military economic and cultural power and influence in the Middle East. Under the presidency of Gamal Abdel-Nasser, Egypt was the dominant force in the region, but the balance of power shifted towards the Gulf in the 1970s, as Egypt’s economy faltered and the Gulf Arab states reaped the benefits of resurgent oil prices in the wake of the 1973 OPEC embargo. The popular uprising against President Hosni Mubarak’s regime in 2011 elicited divergent reactions in the Gulf. The leaders of Saudi Arabia and the United Arab Emirates (UAE) were concerned about the risks of a movement for revolutionary change spreading to their own region, while Qatar saw an opportunity to strengthen its regional role through supporting the Muslim Brotherhood.The forcible removal of Egypt’s elected president, Mohammed Morsi of the Muslim Brotherhood, in July 2013 by the army commander, Abdel-Fattah el-Sisi, ushered in a new era in Egypt–Gulf relations. The UAE, Saudi Arabia and Kuwait quickly mobilized financial support for the new administration. Abu Dhabi’s crown prince, Mohammed bin Zayed, known for his intense opposition to the Muslim Brotherhood, signalled his strong support for the new regime by visiting Cairo only weeks after hundreds of Morsi’s supporters were killed.Between July 2013 and August 2016, the UAE, Saudi Arabia and Kuwait provided about $30 billion in aid to the Sisi regime through placing deposits with the Central Bank of Egypt and supplying petroleum products as grants. The UAE sought to link its aid to a programme of economic reforms, but the Egyptian government finally decided in mid-2016 to negotiate a loan agreement with the International Monetary Fund (IMF). Since the signing of the $12 billion loan with the IMF in November 2016, Egypt has no longer been reliant on Gulf Arab financial support, although some of the deposits placed previously have been rolled over on reaching maturity.During the Sisi era, Egypt has benefited from its economic links to the Gulf over a wide spectrum of activities. The UAE and Saudi Arabia in particular are increasingly important export markets for Egyptian companies, as well as major sources of foreign direct investment. The financial aid provided by Sisi’s Gulf allies in 2013–16 has also helped to underpin the surge in Egypt’s arms procurement. Another critical element in the economic relationship is the presence of millions of expatriate Egyptian workers in the Gulf, who are responsible for a large share of the annual inflow of about $25 billion in remittances.Egypt’s most important political relationships in the Gulf have been with Saudi Arabia and the UAE. Ties with Saudi Arabia were affected by the death of King Abdullah at the start of 2015 and by the subsequent emergence of Mohammed bin Salman as the most influential figure in the kingdom. During a visit by King Abdullah’s successor, King Salman, to Cairo in April 2016, Egypt announced a decision to cede sovereignty over two Red Sea islands, Tiran and Sanafir, to Saudi Arabia. Relations soured after this decision was challenged in the Egyptian courts, but the issue was resolved in favour of the deal. Egypt played no active role in the Saudi- and UAE-led intervention in Yemen, but joined its two principal Gulf allies and Bahrain in imposing sanctions on Qatar in mid-2017. Relations between Sisi and Crown Prince Mohammed bin Zayed have remained close throughout the past seven years. The UAE and Egypt have been among the most important external supporters of the Libyan National Army, commanded by Field Marshal Khalifa Haftar, although they have not created an overt alliance in this arena. Egypt has adopted a more prominent diplomatic profile in relation to Libya, while the UAE has been more deeply engaged militarily, to judge from assessments by the panel of experts tasked to monitor adherence to the UN embargo on the supply of weapons to Libya. The relationship between the Egyptian and Emirati leaders is underpinned by a strong shared ideological antipathy to the Muslim Brotherhood.Following the completion of the IMF programme in 2019, the Egyptian economy is in a much stronger position than it was in the early period of Sisi’s rule, even though this has exacted a harsh toll on the 60 per cent of the population classified by the World Bank as poor or vulnerable. There is no pressing need for direct financial support from the Gulf, but Egypt still depends on economic linkages through trade, investment, tourism and remittances. In this respect, the balance of power has tilted marginally back towards Egypt. However, Egypt is still beset by deep internal political contradictions, as reflected in the regime’s heavy reliance on coercion and repression, and the economy remains vulnerable to external shocks – of which the coronavirus pandemic is a prime example. Department/project Middle East and North Africa Programme Full Article
iva Economic Crisis and the Delayed Arrival of a New President: Transition Trauma By feedproxy.google.com Published On :: Mon, 20 Apr 2020 13:16:14 +0000 1 November 2008 , Number 1 The new American president will not be inaugurated until January 20. He will certainly face the most difficult economic conditions since Franklin Roosevelt entered the White House in March 1933. The politics of presidential transition – in this year, as seventy-six years ago – seem likely only to exacerbate the global crisis. John Dumbrell Professor of Government, Durham University USCharlesDharapak_AP_PAPhotos.jpg Full Article
iva Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways. Full Article
iva Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment. Full Article
iva A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Bile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data. Cytochrome P450 family 2 subfamily c polypeptide 70 (CYP2C70) was recently proposed to catalyze the formation of rodent-specific muricholic acids (MCAs). With CRISPR/Cas9-mediated somatic genome editing, we generated an acute hepatic Cyp2c70 knockout mouse model (Cyp2c70ako) to clarify the role of CYP2C70 in BA metabolism in vivo and evaluate whether its activity modulates effects of pharmacologic FXR activation on cholesterol homeostasis. In Cyp2c70ako mice, chenodeoxycholic acid (CDCA) increased at the expense of βMCA, resulting in a more hydrophobic human-like BA pool. Tracer studies demonstrated that, in vivo, CYP2C70 catalyzes the formation of βMCA primarily by sequential 6β-hydroxylation and C7-epimerization of CDCA, generating αMCA as an intermediate metabolite. Physiologically, the humanized BA composition in Cyp2c70ako mice blunted the stimulation of fecal cholesterol disposal in response to FXR activation compared with WT mice, predominantly due to reduced stimulation of transintestinal cholesterol excretion. Thus, deletion of hepatic Cyp2c70 in adult mice translates into a human-like BA pool composition and impacts the response to pharmacologic FXR activation. This Cyp2c70ako mouse model may be a useful tool for future studies of BA signaling and metabolism that informs human disease development and treatment. Full Article
iva HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO Full Article
iva Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
iva Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs. Full Article
iva Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway. Full Article
iva Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response By diabetes.diabetesjournals.org Published On :: 2020-04-21T12:16:29-07:00 Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival. Full Article
iva Pharmacologic PPAR-{gamma} Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPCs. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR- activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc-independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In diabetic patients under pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization. Full Article
iva Low Dose IL-2 Combined with Rapamycin Led to an Expansion of CD4+CD25+FOXP3+ Tregs and Prolonged Human Islet-allograft Survival in Humanized Mice By diabetes.diabetesjournals.org Published On :: 2020-05-07T07:53:04-07:00 Islet transplantation is an emerging therapy for type 1 diabetes (T1D) and hypoglycaemic unawareness. However, a key challenge for islet transplantation is cellular rejection and the requirement for long-term immunosuppression. In this study we established a diabetic-humanized NOD-scidIL2Rnull(NSG) mouse model of T cell mediated human islet-allograft rejection and developed a therapeutic regimen of low-dose recombinant human interleukin2(IL-2) combined with low-dose rapamycin to prolong graft survival. NSG-mice that had received renal-subcapsular human islet-allografts and were transfused with 1x107 of human-spleen-mononuclear-cells (hSPMCs), reconstituted human CD45+ cells that were predominantly CD3+ T cells and rejected their grafts with a median survival time of 27 days. IL-2 alone (0.3x106 IU/m2 or 1x106 IU/m2), or rapamycin alone (0.5-1mg/kg) for 3 weeks did not prolong survival. However, the combination of rapamycin with IL-2 for 3 weeks significantly prolonged human islet-allograft survival. Graft survival was associated with expansion of CD4+CD25+FOXP3+ Tregs and enhanced TGF-β production by CD4+ T cells. CD8+ T cells showed reduced IFN- production and reduced expression of perforin-1. The combination of IL-2 and rapamycin has the potential to inhibit human islet-allograft rejection by expanding CD4+FOXP3+ Tregs in vivo and supressing effector cell function, and could be the basis of effective tolerance-based regimens. Full Article
iva Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway By diabetes.diabetesjournals.org Published On :: 2020-05-07T08:35:09-07:00 Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin’s effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression. Full Article
iva The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
iva An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
iva Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
iva A Legionella effector kinase is activated by host inositol hexakisphosphate [Enzymology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis. Full Article
iva An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
iva A Bivariate Genome-Wide Approach to Metabolic Syndrome: STAMPEED Consortium By diabetes.diabetesjournals.org Published On :: 2011-04-01 Aldi T. KrajaApr 1, 2011; 60:1329-1339Genetics Full Article
iva POSTPONED: Supporting Civic Space: The Role and Impact of the Private Sector By feedproxy.google.com Published On :: Wed, 22 Jan 2020 17:05:01 +0000 Invitation Only Research Event 16 March 2020 - 11:00am to 5:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE A healthy civic space is vital for an enabling business environment. In recognition of this, a growing number of private sector actors are challenging, publicly or otherwise, the deteriorating environment for civic freedoms.However, this corporate activism is often limited and largely ad hoc. It remains confined to a small cluster of multinationals leaving potential routes for effective coordination and collaboration with other actors underexplored.This roundtable will bring together a diverse and international group of business actors, civil society actors and foreign policy experts to exchange perspectives and experiences on how the private sector can be involved in issues around civic space. The meeting will provide an opportunity to explore the drivers of – and barriers to – corporate activism, develop a better understanding of existing initiatives, identify good practice and discuss practical strategies for the business community.This meeting will be the first of a series of roundtables at Chatham House in support of initiatives to build broad alliances for the protection of civic space. Attendance at this event is by invitation only. PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE. Department/project International Law Programme, Global Governance and the Rule of Law, Rights, Accountability and Justice Jacqueline Rowe Programme Assistant, International Law Programme 020 7389 3287 Email Full Article
iva Windrush Film Festival to feature young talent By jamaica-gleaner.com Published On :: Sat, 09 May 2020 00:09:06 -0500 Emerging film-makers will have the opportunity to produce a short film based on the theme ‘My Windrush Story – What Windrush Means to Me’ as part of the Windrush Caribbean Film Festival (WCFF), which will be held later this year as part of Black... Full Article
iva Thirty Years of Armenian-Azerbaijani Rivalry: Dynamics, Problems and Prospects By feedproxy.google.com Published On :: Fri, 11 Oct 2019 11:15:01 +0000 Invitation Only Research Event 20 November 2019 - 10:00am to 11:30am Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Laurence Broers, Associate Fellow, Russia and Eurasia Programme, Chatham HouseChair: Lubica Pollakova, Senior Programme Manager, Russia and Eurasia Programme The Armenian–Azerbaijani conflict for control of the mountainous territory of Nagorny Karabakh is the longest-running dispute in post-Soviet Eurasia.Laurence Broers, author of Armenia and Azerbaijan: Anatomy of a Rivalry, will discuss how decades of dynamic territorial politics, shifting power relations, international diffusion and unsuccessful mediation efforts have contributed to the resilience of this stubbornly unresolved dispute. Department/project Russia and Eurasia Programme Anna Morgan Administrator, Ukraine Forum +44 (0)20 7389 3274 Email Full Article
iva JCDC weighs options amid COVID-19 pause - 230 entries received for Festival Song Competition By jamaica-gleaner.com Published On :: Wed, 06 May 2020 00:07:52 -0500 By the month of May in any given year, the many and varied events and competitions staged by the Jamaica Cultural Development Commission (JCDC) islandwide would have been in high gear. Each year the JCDC rolls out its much-anticipated menu board... Full Article
iva Tacrolimus-Induced BMP/SMAD Signaling Associates With Metabolic Stress-Activated FOXO1 to Trigger {beta}-Cell Failure By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:26-08:00 Active maintenance of β-cell identity through fine-tuned regulation of key transcription factors ensures β-cell function. Tacrolimus, a widely used immunosuppressant, accelerates onset of diabetes after organ transplantation, but underlying molecular mechanisms are unclear. Here we show that tacrolimus induces loss of human β-cell maturity and β-cell failure through activation of the BMP/SMAD signaling pathway when administered under mild metabolic stress conditions. Tacrolimus-induced phosphorylated SMAD1/5 acts in synergy with metabolic stress–activated FOXO1 through formation of a complex. This interaction is associated with reduced expression of the key β-cell transcription factor MAFA and abolished insulin secretion, both in vitro in primary human islets and in vivo in human islets transplanted into high-fat diet–fed mice. Pharmacological inhibition of BMP signaling protects human β-cells from tacrolimus-induced β-cell dysfunction in vitro. Furthermore, we confirm that BMP/SMAD signaling is activated in protocol pancreas allograft biopsies from recipients on tacrolimus. To conclude, we propose a novel mechanism underlying the diabetogenicity of tacrolimus in primary human β-cells. This insight could lead to new treatment strategies for new-onset diabetes and may have implications for other forms of diabetes. Full Article
iva Visa issues delay Sucre's arrival to O's camp By mlb.mlb.com Published On :: Wed, 13 Feb 2019 15:14:25 EDT It may take the Orioles a little longer than expected to sift through their crowded catching situation. A club source confirmed that catcher Jesus Sucre is held up by visa issues in his native Venezuela and will report to camp late. Full Article
iva 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle By diabetes.diabetesjournals.org Published On :: 1999-08-01 EJ Kurth-KraczekAug 1, 1999; 48:1667-1671Articles Full Article
iva Evidence for 5'AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport By diabetes.diabetesjournals.org Published On :: 1998-08-01 Tatsuya HayashiAug 1, 1998; 47:1369-1373Rapid Publications Full Article
iva High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells By diabetes.diabetesjournals.org Published On :: 2000-11-01 T InoguchiNov 1, 2000; 49:1939-1945Articles Full Article
iva Protein kinase C activation and the development of diabetic complications By diabetes.diabetesjournals.org Published On :: 1998-06-01 D KoyaJun 1, 1998; 47:859-866Articles Full Article
iva Elevated Levels of Acute-Phase Proteins and Plasminogen Activator Inhibitor-1 Predict the Development of Type 2 Diabetes: The Insulin Resistance Atherosclerosis Study By diabetes.diabetesjournals.org Published On :: 2002-04-01 Andreas FestaApr 1, 2002; 51:1131-1137Complications Full Article
iva Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade By diabetes.diabetesjournals.org Published On :: 1999-06-01 ME GriffinJun 1, 1999; 48:1270-1274Articles Full Article
iva Private sector should rally with Jamaicans By jamaica-gleaner.com Published On :: Wed, 06 May 2020 00:09:48 -0500 THE EDITOR, Madam: In times of great challenge and hardship we must continue, as a people, to uphold the values and attitudes that make us truly Jamaican. It is a time for true patriotism and for us to reach down and pull up those among us with... Full Article
iva Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes. Full Article
iva Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: 64Cu- and 225Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Fibroblast activation protein (FAP), which promotes tumor growth and progression, is overexpressed in cancer-associated fibroblasts of many human epithelial cancers. Because of its low expression in normal organs, FAP is an excellent target for theranostics. In this study, we used radionuclides with relatively long half-lives, 64Cu (half-life, 12.7 h) and 225Ac (half-life, 10 d), to label FAP inhibitors (FAPIs) in mice with human pancreatic cancer xenografts. Methods: Male nude mice (body weight, 22.5 ± 1.2 g) were subcutaneously injected with human pancreatic cancer cells (PANC-1, n = 12; MIA PaCa-2, n = 8). Tumor xenograft mice were investigated after the intravenous injection of 64Cu-FAPI-04 (7.21 ± 0.46 MBq) by dynamic and delayed PET scans (2.5 h after injection). Static scans 1 h after the injection of 68Ga-FAPI-04 (3.6 ± 1.4 MBq) were also acquired for comparisons using the same cohort of mice (n = 8). Immunohistochemical staining was performed to confirm FAP expression in tumor xenografts using an FAP-α-antibody. For radioligand therapy, 225Ac-FAPI-04 (34 kBq) was injected into PANC-1 xenograft mice (n = 6). Tumor size was monitored and compared with that of control mice (n = 6). Results: Dynamic imaging of 64Cu-FAPI-04 showed rapid clearance through the kidneys and slow washout from tumors. Delayed PET imaging of 64Cu-FAPI-04 showed mild uptake in tumors and relatively high uptake in the liver and intestine. Accumulation levels in the tumor or normal organs were significantly higher for 64Cu-FAPI-04 than for 68Ga-FAPI-04, except in the heart, and excretion in the urine was higher for 68Ga-FAPI-04 than for 64Cu-FAPI-04. Immunohistochemical staining revealed abundant FAP expression in the stroma of xenografts. 225Ac-FAPI-04 injection showed significant tumor growth suppression in the PANC-1 xenograft mice, compared with the control mice, without a significant change in body weight. Conclusion: This proof-of-concept study showed that 64Cu-FAPI-04 and 225Ac-FAPI-04 could be used in theranostics for the treatment of FAP-expressing pancreatic cancer. α-therapy targeting FAP in the cancer stroma is effective and will contribute to the development of a new treatment strategy. Full Article
iva Spike in Unaccompanied Child Arrivals at U.S.-Mexico Border Proves Enduring Challenge; Citizenship Question on 2020 Census in Doubt By www.migrationpolicy.org Published On :: Wed, 26 Jun 2019 18:13:59 -0400 Approximately 11,500 unaccompanied children were apprehended at the U.S.-Mexico border in May, putting this year on track to exceed 2014's surge. As the U.S. government struggles to care for these child migrants, with public outrage mounting over reports of unsafe, filthy conditions in initial Border Patrol custody, the failure of the executive branch and Congress to plan for increased shelter and care demands are increasingly apparent, as this article explores. Full Article
iva Superior Long-term Survival for Simultaneous Pancreas-Kidney Transplantation as Renal Replacement Therapy: 30-Year Follow-up of a Nationwide Cohort By care.diabetesjournals.org Published On :: 2020-01-20T12:00:30-08:00 OBJECTIVE In patients with type 1 diabetes and end-stage renal disease, it is controversial whether a simultaneous pancreas-kidney (SPK) transplantation improves survival compared with kidney transplantation alone. We compared long-term survival in SPK and living- or deceased-donor kidney transplant recipients. RESEARCH DESIGN AND METHODS We included all 2,796 patients with type 1 diabetes in the Netherlands who started renal replacement therapy between 1986 and 2016. We used multivariable Cox regression analyses adjusted for recipient age and sex, dialysis modality and vintage, transplantation era, and donor age to compare all-cause mortality between deceased- or living-donor kidney and SPK transplant recipients. Separately, we analyzed mortality between regions where SPK transplant was the preferred intervention (80% SPK) versus regions where a kidney transplant alone was favored (30% SPK). RESULTS Of 996 transplanted patients, 42%, 16%, and 42% received a deceased- or living-donor kidney or SPK transplant, respectively. Mean (SD) age at transplantation was 50 (11), 48 (11), and 42 (8) years, respectively. Median (95% CI) survival time was 7.3 (6.2; 8.3), 10.5 (7.2; 13.7), and 16.5 (15.1; 17.9) years, respectively. SPK recipients with a functioning pancreas graft at 1 year (91%) had the highest survival (median 17.4 years). Compared with deceased-donor kidney transplant recipients, adjusted hazard ratios (95% CI) for 10- and 20-year all-cause mortality were 0.79 (0.49; 1.29) and 0.98 (0.69; 1.39) for living-donor kidney and 0.67 (0.46; 0.98) and 0.79 (0.60; 1.05) for SPK recipients, respectively. A treatment strategy favoring SPK over kidney transplantation alone showed 10- and 20-year mortality hazard ratios of 0.56 (0.40; 0.78) and 0.69 (0.52; 0.90), respectively. CONCLUSIONS Compared with living- or deceased-donor kidney transplantation, SPK transplant was associated with improved patient survival, especially in recipients with a long-term functioning pancreatic graft, and resulted in an almost twofold lower 10-year mortality rate. Full Article
iva FDA approves first at-home saliva test for COVID-19 By www.upi.com Published On :: Sat, 09 May 2020 03:37:06 -0400 The first COVID-19 test using saliva samples that patients collect at home has been approved by the U.S. Food and Drug Administration. Full Article
iva Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study By care.diabetesjournals.org Published On :: 2016-10-01 Khalid A. JadoonOct 1, 2016; 39:1777-1786Emerging Technologies and Therapeutics Full Article
iva Respective Contributions of Glycemic Variability and Mean Daily Glucose as Predictors of Hypoglycemia in Type 1 Diabetes: Are They Equivalent? By care.diabetesjournals.org Published On :: 2020-03-20T11:50:34-07:00 OBJECTIVE To evaluate the respective contributions of short-term glycemic variability and mean daily glucose (MDG) concentration to the risk of hypoglycemia in type 1 diabetes. RESEARCH DESIGN AND METHODS People with type 1 diabetes (n = 100) investigated at the University Hospital of Montpellier (France) underwent continuous glucose monitoring (CGM) on two consecutive days, providing a total of 200 24-h glycemic profiles. The following parameters were computed: MDG concentration, within-day glycemic variability (coefficient of variation for glucose [%CV]), and risk of hypoglycemia (presented as the percentage of time spent below three glycemic thresholds: 3.9, 3.45, and 3.0 mmol/L). RESULTS MDG was significantly higher, and %CV significantly lower (both P < 0.001), when comparing the 24-h glycemic profiles according to whether no time or a certain duration of time was spent below the thresholds. Univariate regression analyses showed that MDG and %CV were the two explanatory variables that entered the model with the outcome variable (time spent below the thresholds). The classification and regression tree procedure indicated that the predominant predictor for hypoglycemia was %CV when the threshold was 3.0 mmol/L. In people with mean glucose ≤7.8 mmol/L, the time spent below 3.0 mmol/L was shortest (P < 0.001) when %CV was below 34%. CONCLUSIONS In type 1 diabetes, short-term glycemic variability relative to mean glucose (i.e., %CV) explains more hypoglycemia than does mean glucose alone when the glucose threshold is 3.0 mmol/L. Minimizing the risk of hypoglycemia requires a %CV below 34%. Full Article
iva Private practice pays $100,000 settlement for potential HIPAA violation By www.ada.org Published On :: Fri, 06 Mar 2020 14:13:00 -0600 Ogden, Utah — The Office for Civil Rights announced March 3 that it had reached a settlement with Dr. Steven A. Porter’s medical practice to settle a potential violation of the Health Insurance Portability and Accountability Act security rule. Full Article
iva Patient portals need proxy options for better privacy protection, study finds By www.upi.com Published On :: Mon, 04 May 2020 15:27:49 -0400 More patient portals and electronic health records should enable users to create "proxy" accounts for nurses and home aids to prevent unintentional sharing of personal health details, researchers said Monday. Full Article
iva Look: Netflix shares teaser for 'Baby-Sitters Club' revival By www.upi.com Published On :: Fri, 08 May 2020 12:42:32 -0400 Netflix shared a premiere date and teaser trailer for its "Baby-Sitters Club" series, based on the Ann M. Martin book series. Full Article
iva [ Cell Phones & Plans ] Open Question : What is the closest android equivalent to the 1st generation iPhone SE? By answers.yahoo.com Published On :: Sat, 09 May 2020 17:15:19 +0000 I am torn, I know it is time to upgrade my phone, but I don't know whether to upgrade to just accept the larger phone size and go with the 2nd gen SE or go with an android. I'd be interested to know what the closest equivalent android device there is to the 1st gen SE. I am open to a bigger screen size, but not a bigger phone. So, if there was an andriod that was all screen on the front, but was similar size to the original SE, I would be open to that. Full Article
iva Care to Know the Motivation Behind That Gift, Love? By www.washingtonpost.com Published On :: Mon, 11 Feb 2008 00:00:00 EST If you happen to stop by a Victoria's Secret store this Wednesday evening, on the eve of Valentine's Day, you will learn something fascinating about human nature that will tell you a lot about people and relationships. Full Article Opinions Care to Know the Motivation Behind That Gift Love?
iva Engaging Communities in Refugee Protection: The Potential of Private Sponsorship in Europe By www.migrationpolicy.org Published On :: Wed, 06 Sep 2017 17:20:24 -0400 Across Europe, grassroots efforts have emerged in the wake of crisis that draw members of the public into the process of receiving refugees and supporting their integration. This policy brief examines the many forms community-based or private sponsorship can take, what benefits such approaches may hold for European communities, and the tradeoffs policymakers face in their implementation. Full Article
iva Recent Asylum Seeker and Refugee Arrivals to Germany Are Getting into Labor Force More Quickly, Survey Finds By www.migrationpolicy.org Published On :: Wed, 18 Dec 2019 08:46:51 -0500 WASHINGTON — Asylum seekers and refugees who arrived in Germany in the leadup to and during the 2015-16 European migration crisis have integrated into the labor market at a slightly faster rate than previous refugee cohorts, a Migration Policy Institute (MPI) report finds. Full Article
iva Effects of MK-0941, a Novel Glucokinase Activator, on Glycemic Control in Insulin-Treated Patients With Type 2 Diabetes By care.diabetesjournals.org Published On :: 2011-11-21T22:32:39-08:00 OBJECTIVE To assess the efficacy and safety of MK-0941, a glucokinase activator (GKA), when added to stable-dose insulin glargine in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this double-blind study, 587 patients taking stable-dose insulin glargine (±metformin ≥1,500 mg/day) were randomized (1:1:1:1:1) to MK-0941 10, 20, 30, or 40 mg or matching placebo t.i.d. before meals (a.c.). This study included an initial 14-week, dose-ranging phase followed by a 40-week treatment phase during which patients were to be uptitrated as tolerated to 40 mg (or placebo) t.i.d. a.c. The primary efficacy end point was change from baseline in A1C at Week 14. RESULTS At Week 14, A1C and 2-h postmeal glucose (PMG) improved significantly versus placebo with all MK-0941 doses. Maximal placebo-adjusted least squares mean changes from baseline in A1C (baseline A1C 9.0%) and 2-h PMG were –0.8% and –37 mg/dL (–2 mmol/L), respectively. No significant effects on fasting plasma glucose were observed at any dose versus placebo. By 30 weeks, the initial glycemic responses noted at 14 weeks were not sustained. MK-0941 at one or more doses was associated with significant increases in the incidence of hypoglycemia, triglycerides, systolic blood pressure, and proportion of patients meeting criteria for predefined limits of change for increased diastolic blood pressure. CONCLUSIONS In patients receiving stable-dose insulin glargine, the GKA MK-0941 led to improvements in glycemic control that were not sustained. MK-0941 was associated with an increased incidence of hypoglycemia and elevations in triglycerides and blood pressure. Full Article
iva Helping Patients Make and Sustain Healthy Changes: A Brief Introduction to Motivational Interviewing in Clinical Diabetes Care By clinical.diabetesjournals.org Published On :: 2008-10-01 Michele HeislerOct 1, 2008; 26:161-165Practical Pointers Full Article
iva How face surveillance threatens your privacy and freedom | Kade Crockford By feedproxy.google.com Published On :: Thu, 07 May 2020 15:54:08 +0000 Privacy isn't dead, but face surveillance technology might kill it, says civil rights advocate Kade Crockford. In an eye-opening talk, Kade outlines the startling reasons why this invasive technology -- powered by often-flawed facial recognition databases that track people without their knowledge -- poses unprecedented threats to your fundamental rights. Learn what can be done to ban government use before it's too late. Full Article Higher Education
iva School Resource Officer Activates Taser to Awaken Sleeping Student in Ohio By feedproxy.google.com Published On :: Tue, 11 Sep 2018 00:00:00 +0000 Police in northeast Ohio have placed a school resource officer on unpaid leave for activating a Taser to wake up a sleeping student. Full Article Ohio