io The Glymphatic System: A Novel Component of Fundamental Neurobiology By www.jneurosci.org Published On :: 2021-09-15 Lauren M. HablitzSep 15, 2021; 41:7698-7711Review Full Article
io Psychedelics and Neural Plasticity: Therapeutic Implications By www.jneurosci.org Published On :: 2022-11-09 Steven F. GriecoNov 9, 2022; 42:8439-8449Symposium and Mini-Symposium Full Article
io Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System By www.jneurosci.org Published On :: 2024-10-02 Tsuneya IkezuOct 2, 2024; 44:e1170242024-e1170242024Symposium Full Article
io Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions By www.jneurosci.org Published On :: 2022-11-09 Wen Grace ChenNov 9, 2022; 42:8498-8507Symposium and Mini-Symposium Full Article
io Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation By www.jneurosci.org Published On :: 2006-10-04 Holly OakleyOct 4, 2006; 26:10129-10140Neurobiology of Disease Full Article
io Pathological Choice: The Neuroscience of Gambling and Gambling Addiction By www.jneurosci.org Published On :: 2013-11-06 Luke ClarkNov 6, 2013; 33:17617-17623Symposium and Mini-Symposium Full Article
io Intracranially Administered Anti-A{beta} Antibodies Reduce {beta}-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation By www.jneurosci.org Published On :: 2003-05-01 Donna M. WilcockMay 1, 2003; 23:3745-3751Development Plasticity Repair Full Article
io Adding Insult to Injury: Cochlear Nerve Degeneration after "Temporary" Noise-Induced Hearing Loss By www.jneurosci.org Published On :: 2009-11-11 Sharon G. KujawaNov 11, 2009; 29:14077-14085BehavioralSystemsCognitive Full Article
io Stressed Memories: How Acute Stress Affects Memory Formation in Humans By www.jneurosci.org Published On :: 2009-08-12 Marloes J. A. G. HenckensAug 12, 2009; 29:10111-10119BehavioralSystemsCognitive Full Article
io Atp13a5 Marker Reveals Pericyte Specification in the Mouse Central Nervous System By www.jneurosci.org Published On :: 2024-10-23 Xinying GuoOct 23, 2024; 44:e0727242024-e0727242024Cellular Full Article
io On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function By www.jneurosci.org Published On :: 2017-10-18 Rafael G. AlmeidaOct 18, 2017; 37:10023-10034Viewpoints Full Article
io Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type By www.jneurosci.org Published On :: 1998-12-15 Guo-qiang BiDec 15, 1998; 18:10464-10472Articles Full Article
io Right Temporoparietal Junction Underlies Avoidance of Moral Transgression in Autism Spectrum Disorder By www.jneurosci.org Published On :: 2021-02-24 Yang HuFeb 24, 2021; 41:1699-1715BehavioralSystemsCognitive Full Article
io Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations By www.jneurosci.org Published On :: 2024-10-23 Mahsa AltafiOct 23, 2024; 44:e0518242024-e0518242024Systems/Circuits Full Article
io Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem By www.jneurosci.org Published On :: 2012-12-12 Christelle AnacletDec 12, 2012; 32:17970-17976BehavioralSystemsCognitive Full Article
io Aperiodic EEG Predicts Variability of Visual Temporal Processing By www.jneurosci.org Published On :: 2024-10-02 Michele DeodatoOct 2, 2024; 44:e2308232024-e2308232024BehavioralSystemsCognitive Full Article
io Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action By www.jneurosci.org Published On :: 2023-11-08 Lindsay P. CameronNov 8, 2023; 43:7472-7482Symposium and Mini-Symposium Full Article
io Revisiting the Stress Concept: Implications for Affective Disorders By www.jneurosci.org Published On :: 2020-01-02 Bruce S. McEwenJan 2, 2020; 40:12-21Viewpoints Full Article
io Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions By www.jneurosci.org Published On :: 2019-09-11 Tessa E.S. CharlesworthSep 11, 2019; 39:7228-7243Viewpoints Full Article
io Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia By www.jneurosci.org Published On :: 2015-11-18 Fadel ZeidanNov 18, 2015; 35:15307-15325BehavioralSystemsCognitive Full Article
io Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys By www.jneurosci.org Published On :: 2024-10-16 Corey M. ZiembaOct 16, 2024; 44:e0349242024-e0349242024Systems/Circuits Full Article
io Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep By www.jneurosci.org Published On :: 2019-07-03 Jesse J. LangilleJul 3, 2019; 39:5244-5246Journal Club Full Article
io Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male By www.jneurosci.org Published On :: 2024-05-29 Hannah GrotzingerMay 29, 2024; 44:e1856232024-e1856232024BehavioralSystemsCognitive Full Article
io Cognitive-Affective Functions of the Cerebellum By www.jneurosci.org Published On :: 2023-11-08 Stephanie RudolphNov 8, 2023; 43:7554-7564Symposium and Mini-Symposium Full Article
io Preservation and conservation By www.sl.nsw.gov.au Published On :: Mon, 18 Mar 2024 00:01:16 +0000 Come behind the scenes to see the Conservation Laboratory and the work undertaken by the Collection Care Branch. Full Article
io Make a Diorama Workshop By www.sl.nsw.gov.au Published On :: Tue, 19 Mar 2024 03:00:19 +0000 Create a 3D diorama inspired by the Library’s collection and see where your imagination takes you! Full Article
io Discover our new photography exhibition: Shot By www.sl.nsw.gov.au Published On :: Tue, 26 Mar 2024 04:01:13 +0000 Join a curator-led tour of Shot, and immerse yourself in Australia’s past as seen through the lens of Australian photogr Full Article
io An Implicit Plan Overrides an Explicit Strategy during Visuomotor Adaptation By www.jneurosci.org Published On :: 2006-04-05 Pietro MazzoniApr 5, 2006; 26:3642-3645BRIEF COMMUNICATION Full Article
io Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory By www.jneurosci.org Published On :: 2005-08-24 Randy L. BucknerAug 24, 2005; 25:7709-7717Neurobiology of Disease Full Article
io Genomic Analysis of Reactive Astrogliosis By www.jneurosci.org Published On :: 2012-05-02 Jennifer L. ZamanianMay 2, 2012; 32:6391-6410Neurobiology of Disease Full Article
io On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex By www.jneurosci.org Published On :: 1982-11-01 AP GeorgopoulosNov 1, 1982; 2:1527-1537Articles Full Article
io Age-Related Changes in 1/f Neural Electrophysiological Noise By www.jneurosci.org Published On :: 2015-09-23 Bradley VoytekSep 23, 2015; 35:13257-13265BehavioralSystemsCognitive Full Article
io Explicit and Implicit Contributions to Learning in a Sensorimotor Adaptation Task By www.jneurosci.org Published On :: 2014-02-19 Jordan A. TaylorFeb 19, 2014; 34:3023-3032BehavioralSystemsCognitive Full Article
io Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs By www.jneurosci.org Published On :: 2007-09-12 Shiaoching GongSep 12, 2007; 27:9817-9823Toolbox Full Article
io A Recurrent Network Mechanism of Time Integration in Perceptual Decisions By www.jneurosci.org Published On :: 2006-01-25 Kong-Fatt WongJan 25, 2006; 26:1314-1328BehavioralSystemsCognitive Full Article
io Rich-Club Organization of the Human Connectome By www.jneurosci.org Published On :: 2011-11-02 Martijn P. van den HeuvelNov 2, 2011; 31:15775-15786BehavioralSystemsCognitive Full Article
io Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation By www.jneurosci.org Published On :: 2006-10-04 Holly OakleyOct 4, 2006; 26:10129-10140Neurobiology of Disease Full Article
io Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream By www.jneurosci.org Published On :: 2015-07-08 Umut GüçlüJul 8, 2015; 35:10005-10014BehavioralSystemsCognitive Full Article
io Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to -9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization. Full Article
io Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans. Full Article
io A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses. Full Article
io Role of the STING->IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Targeting altered expression and/or activity of GABA (-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING->GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits. Full Article
io Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota–gut–brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD. Full Article
io A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation. Full Article
io Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain. Full Article
io Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior. Full Article
io Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior. Full Article
io TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling, or fasciculation, of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo, we examined male and female TRIM46 knock-out mice. Contrary to previous reports, we find that TRIM46 is dispensable for axon specification and AIS formation. TRIM46 knock-out mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. However, we confirm that TRIM46 is required for microtubule fasciculation. We also show TRIM46 enrichment in the first ~100 μm of axon occurs independently of ankyrinG (AnkG) in vivo, although AnkG is required to restrict TRIM46 only to the AIS. Our results highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function. Full Article
io GABAergic Inhibition Underpins Hidden Hearing Loss By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Full Article
io Hand-Jaw Coordination as Mice Handle Food Is Organized around Intrinsic Structure-Function Relationships By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Rodent jaws evolved structurally to support dual functionality, for either biting or chewing food. Rodent hands also function dually during food handling, for actively manipulating or statically holding food. How are these oral and manual functions coordinated? We combined electrophysiological recording of muscle activity and kilohertz kinematic tracking to analyze masseter and hand actions as mice of both sexes handled food. Masseter activity was organized into two modes synchronized to hand movement modes. In holding/chewing mode, mastication occurred as rhythmic (~5 Hz) masseter activity while the hands held food below the mouth. In oromanual/ingestion mode, bites occurred as lower-amplitude aperiodic masseter events that were precisely timed to follow regrips (by ~200 ms). Thus, jaw and hand movements are flexibly coordinated during food handling: uncoupled in holding/chewing mode and tightly coordinated in oromanual/ingestion mode as regrip–bite sequences. Key features of this coordination were captured in a simple model of hierarchically orchestrated mode-switching and intramode action sequencing. We serendipitously detected an additional masseter-related action, tooth sharpening, identified as bouts of higher-frequency (~13 Hz) rhythmic masseter activity, which was accompanied by eye displacement, including rhythmic proptosis, attributable to masseter contractions. Collectively, the findings demonstrate how a natural, complex, and goal-oriented activity is organized as an assemblage of distinct modes and complex actions, adapted for the divisions of function arising from anatomical structure. These results reveal intricate, high-speed coordination of disparate effectors and show how natural forms of dexterity can serve as a model for understanding the behavioral neurobiology of multi-body-part coordination. Full Article