ot

Same Old Politics Will Not Solve Iraq Water Crisis

15 April 2020

Georgia Cooke

Project Manager, Middle East and North Africa Programme

Dr Renad Mansour

Senior Research Fellow, Middle East and North Africa Programme; Project Director, Iraq Initiative

Glada Lahn

Senior Research Fellow, Energy, Environment and Resources Programme
Addressing Iraq’s water crisis should be a priority for any incoming prime minister as it is damaging the country’s attempts to rebuild. But successive governments have allowed the problem to fester.

2020-04-15-Iraq-Water

Punting in the marshes south of the Iraqi city of Ammarah. Photo by Ghaith Abdul-Ahad/Getty Images.

Historically, Iraq lay claim to one of the most abundant water supplies in the Middle East. But the flow of the Tigris and Euphrates rivers has reduced by up to 40% since the 1970s, due in part to the actions of neighbouring countries, in particular Turkey, upstream.

Rising temperatures and reduced rainfall due to climate change are also negatively impacting Iraq’s water reserves. Evaporation from dams and reservoirs is estimated to lose the country up to 8 billion cubic metres of water every year.

A threat to peace and stability

Shortages have dried up previously fertile land, increasing poverty in agricultural areas. Shortages have also served to fuel conflict: communities faced with successive droughts and government inertia proved to be easy targets for ISIS recruiters, who lured farmers into joining them by offering money and food to feed their families. Economic hardship for those whose livelihoods relied upon river water has also driven rural to urban migration, putting significant strain on already over-populated towns and cities, exacerbating housing, job and electricity shortages, and widening the gap between haves and have-nots.

But scarcity isn’t the most crucial element of Iraq’s water crisis – contamination is. Decades of local government mismanagement, corrupt practices and a lack of regulation of dumping (it is estimated up to 70% of Iraq’s industrial waste is dumped directly into water) has left approximately three in every five citizens without a reliable source of potable water.

In 2018, 118,000 residents of Basra province were hospitalised with symptoms brought on by drinking contaminated water, which not only put a spotlight on the inadequacies of a crumbling healthcare system but sparked mass protests and a subsequent violent crackdown.

The water crisis is also undermining the stability of the country’s federal governance model, by occasionally sparking disputes between Baghdad and the Kurdistan Regional Government, as well as between governorates in the south.

The crisis is both a symptom and a cause of poor governance. Iraq is stuck in a cycle whereby government inaction causes shortages and contamination, which result in economic losses, reduced food supply, increased prices and widespread poor health. This in turn leads to increasing levels of poverty, higher demand on services and civil unrest, increasing the pressure on a weak, dysfunctional system of government.

What can be done?

The first priority should be modernising existing water-management infrastructure - a relic of a time when the problem was an excess rather than a shortage of water (the last time Iraq’s flood defences were required was 1968). Bureaucratic hurdles, widespread corruption and an endless cycle of other crises taking precedent prevent good initiatives from being implemented or scaled up.

Diversifying energy sources to improve provision is crucial. Baghdad has a sewage treatment plant that originally ran on its own electricity source, but this capacity was destroyed in 1991 and was never replaced. The city continues to suffer from dangerous levels of water pollution because the electricity supply from the grid is insufficient to power the plant. Solar energy has great potential in sun-drenched Iraq to bridge the gaping hole in energy provision, but successive governments have chosen to focus on fossil fuels rather than promoting investment to grow the renewables sector.

Heightened tension with upstream Turkey could turn water into another cause of regional conflict. But, if approached differently, collaboration between Iraq and its neighbour could foster regional harmony.

Turkey’s elevated geography and cooler climate mean its water reserves suffer 75% less evaporation than Iraq’s. Given that Turkey’s top energy priority is the diversification of its supply of imported hydrocarbons, a win-win deal could see Turkey exchange access to its water-management infrastructure for delivery of reduced cost energy supplies from Iraq.

German-French cooperation on coal and steel in the 1950s and the evolution of economic integration that followed might provide a model for how bilateral cooperation over one issue could result in cooperation with other regional players (in this case Iran and Syria) on a range of other issues. This kind of model would need to consider the future of energy, whereby oil and gas would be replaced by solar-power exports.

These solutions have been open to policymakers for years and yet they have taken little tangible action. While there are leaders and bureaucrats with the will to act, effective action is invariably blocked by a complex and opaque political system replete with vested interests in maintaining power and wealth via a weak state and limited services from central government.

Breaking the cycle

To break this cycle, Iraq needs a group of professional and able actors outside of government to work with willing elements of the state bureaucracy as a taskforce to pressure for action and accountability. Publishing the recommendations from a hitherto withheld report produced in the aftermath of Basra’s 2018 heath crisis would be a great start.

In time, this taskforce could champion the prioritisation of water on the national agenda, the implementation of infrastructure upgrades, and hold more productive conversations with neighbour states.

With such a high degree of state fragmentation and dysfunction in Iraq, looking to the central government to provide leadership will not yield results. Engagement with a coalition of non-state actors can begin to address the water crisis and also open a dialogue around new models of governance for other critical issues. This might even be a starting point for rewriting the tattered social contract in Iraq.

This piece is based on insights and discussion at a roundtable event, Conflict and the Water Crisis in Iraq, held at Chatham House on March 9 as part of the Iraq Initiative.




ot

Legal Provision for Crisis Preparedness: Foresight not Hindsight

21 April 2020

Dr Patricia Lewis

Research Director, Conflict, Science & Transformation; Director, International Security Programme
COVID-19 is proving to be a grave threat to humanity. But this is not a one-off, there will be future crises, and we can be better prepared to mitigate them.

2020-04-21-Nurse-COVID-Test

Examining a patient while testing for COVID-19 at the Velocity Urgent Care in Woodbridge, Virginia. Photo by Chip Somodevilla/Getty Images.

A controversial debate during COVID-19 is the state of readiness within governments and health systems for a pandemic, with lines of the debate drawn on the issues of testing provision, personal protective equipment (PPE), and the speed of decision-making.

President Macron in a speech to the nation admitted French medical workers did not have enough PPE and that mistakes had been made: ‘Were we prepared for this crisis? We have to say that no, we weren’t, but we have to admit our errors … and we will learn from this’.

In reality few governments were fully prepared. In years to come, all will ask: ‘how could we have been better prepared, what did we do wrong, and what can we learn?’. But after every crisis, governments ask these same questions.

Most countries have put in place national risk assessments and established processes and systems to monitor and stress-test crisis-preparedness. So why have some countries been seemingly better prepared?

Comparing different approaches

Some have had more time and been able to watch the spread of the disease and learn from those countries that had it first. Others have taken their own routes, and there will be much to learn from comparing these different approaches in the longer run.

Governments in Asia have been strongly influenced by the experience of the SARS epidemic in 2002-3 and - South Korea in particular - the MERS-CoV outbreak in 2015 which was the largest outside the Middle East. Several carried out preparatory work in terms of risk assessment, preparedness measures and resilience planning for a wide range of threats.

Case Study of Preparedness: South Korea

By 2007, South Korea had established the Division of Public Health Crisis Response in Korea Centers for Disease Control and Prevention (KCDC) and, in 2016, the KCDC Center for Public Health Emergency Preparedness and Response had established a round-the-clock Emergency Operations Center with rapid response teams.

KCDC is responsible for the distribution of antiviral stockpiles to 16 cities and provinces that are required by law to hold and manage antiviral stockpiles.

And, at the international level, there are frameworks for preparedness for pandemics. The International Health Regulations (IHR) - adopted at the 2005 World Health Assembly and binding on member states - require countries to report certain disease outbreaks and public health events to the World Health Organization (WHO) and ‘prevent, protect against, control and provide a public health response to the international spread of disease in ways that are commensurate with and restricted to public health risks, and which avoid unnecessary interference with international traffic and trade’.

Under IHR, governments committed to a programme of building core capacities including coordination, surveillance, response and preparedness. The UN Sendai Framework for Disaster Risk highlights disaster preparedness for effective response as one of its main purposes and has already incorporated these measures into the Sustainable Development Goals (SDGs) and other Agenda 2030 initiatives. UN Secretary-General António Guterres has said COVID-19 ‘poses a significant threat to the maintenance of international peace and security’ and that ‘a signal of unity and resolve from the Council would count for a lot at this anxious time’.

Case Study of Preparedness: United States

The National Institutes of Health (NIH) and the Center for Disease Control (CDC) established PERRC – the Preparedness for Emergency Response Research Centers - as a requirement of the 2006 Pandemic and All-Hazards Preparedness Act, which required research to ‘improve federal, state, local, and tribal public health preparedness and response systems’.

The 2006 Act has since been supplanted by the 2019 Pandemic and All-Hazards Preparedness and Advancing Innovation Act. This created the post of Assistant Secretary for Preparedness and Response (ASPR) in the Department for Health and Human Services (HHS) and authorised the development and acquisitions of medical countermeasures and a quadrennial National Health Security Strategy.

The 2019 Act also set in place a number of measures including the requirement for the US government to re-evaluate several important metrics of the Public Health Emergency Preparedness cooperative agreement and the Hospital Preparedness Program, and a requirement for a report on the states of preparedness and response in US healthcare facilities.

This pandemic looks set to continue to be a grave threat to humanity. But there will also be future pandemics – whether another type of coronavirus or a new influenza virus – and our species will be threatened again, we just don’t know when.

Other disasters too will befall us – we already see the impacts of climate change arriving on our doorsteps characterised by increased numbers and intensity of floods, hurricanes, fires, crop failure and other manifestations of a warming, increasingly turbulent atmosphere and we will continue to suffer major volcanic eruptions, earthquakes and tsunamis. All high impact, unknown probability events.

Preparedness for an unknown future is expensive and requires a great deal of effort for events that may not happen within the preparers’ lifetimes. It is hard to imagine now, but people will forget this crisis, and revert to their imagined projections of the future where crises don’t occur, and progress follows progress. But history shows us otherwise.

Preparations for future crises always fall prey to financial cuts and austerity measures in lean times unless there is a mechanism to prevent that. Cost-benefit analyses will understandably tend to prioritise the urgent over the long-term. So governments should put in place legislation – or strengthen existing legislation – now to ensure their countries are as prepared as possible for whatever crisis is coming.

Such a legal requirement would require governments to report back to parliament every year on the state of their national preparations detailing such measures as:

  • The exact levels of stocks of essential materials (including medical equipment)
  • The ability of hospitals to cope with large influx of patients
  • How many drills, exercises and simulations had been organised – and their findings
  • What was being done to implement lessons learned & improve preparedness

In addition, further actions should be taken:

  • Parliamentary committees such as the UK Joint Committee on the National Security Strategy should scrutinise the government’s readiness for the potential threats outlined in the National Risk register for Civil Emergencies in-depth on an annual basis.
  • Parliamentarians, including ministers, with responsibility for national security and resilience should participate in drills, table-top exercises and simulations to see for themselves the problems inherent with dealing with crises.
  • All governments should have a minister (or equivalent) with the sole responsibility for national crisis preparedness and resilience. The Minister would be empowered to liaise internationally and coordinate local responses such as local resilience groups.
  • There should be ring-fenced budget lines in annual budgets specifically for preparedness and resilience measures, annually reported on and assessed by parliaments as part of the due diligence process.

And at the international level:

  • The UN Security Council should establish a Crisis Preparedness Committee to bolster the ability of United Nations Member States to respond to international crisis such as pandemics, within their borders and across regions. The Committee would function in a similar fashion as the Counter Terrorism Committee that was established following the 9/11 terrorist attacks in the United States.
  • States should present reports on their level of preparedness to the UN Security Council. The Crisis Preparedness Committee could establish a group of experts who would conduct expert assessments of each member state’s risks and preparedness and facilitate technical assistance as required.
  • Regional bodies such as the OSCE, ASEAN and ARF, the AU, the OAS, the PIF etc could also request national reports on crisis preparedness for discussion and cooperation at the regional level.

COVID-19 has been referred to as the 9/11 of crisis preparedness and response. Just as that shocking terrorist attack shifted the world and created a series of measures to address terrorism, we now recognise our security frameworks need far more emphasis on being prepared and being resilient. Whatever has been done in the past, it is clear that was nowhere near enough and that has to change.

Case Study of Preparedness: The UK

The National Risk Register was first published in 2008 as part of the undertakings laid out in the National Security Strategy (the UK also published the Biological Security Strategy in July 2018). Now entitled the National Risk Register for Civil Emergencies it has been updated regularly to analyse the risks of major emergencies that could affect the UK in the next five years and provide resilience advice and guidance.

The latest edition - produced in 2017 when the UK had a Minister for Government Resilience and Efficiency - placed the risk of a pandemic influenza in the ‘highly likely and most severe’ category. It stood out from all the other identified risks, whereas an emerging disease (such as COVID-19) was identified as ‘highly likely but with moderate impact’.

However, much preparatory work for an influenza pandemic is the same as for COVID-19, particularly in prepositioning large stocks of PPE, readiness within large hospitals, and the creation of new hospitals and facilities.

One key issue is that the 2017 NHS Operating Framework for Managing the Response to Pandemic Influenza was dependent on pre-positioned ’just in case’ stockpiles of PPE. But as it became clear the PPE stocks were not adequate for the pandemic, it was reported that recommendations about the stockpile by NERVTAG (the New and Emerging Respiratory Virus Threats Advisory Group which advises the government on the threat posed by new and emerging respiratory viruses) had been subjected to an ‘economic assessment’ and decisions reversed on, for example, eye protection.

The UK chief medical officer Dame Sally Davies, when speaking at the World Health Organization about Operation Cygnus – a 2016 three-day exercise on a flu pandemic in the UK – reportedly said the UK was not ready for a severe flu attack and ‘a lot of things need improving’.

Aware of the significance of the situation, the UK Parliamentary Joint Committee on the National Security Strategy launched an inquiry in 2019 on ‘Biosecurity and human health: preparing for emerging infectious diseases and bioweapons’ which intended to coordinate a cross-government approach to biosecurity threats. But the inquiry had to postpone its oral hearings scheduled for late October 2019 and, because of the general election in December 2019, the committee was obliged to close the inquiry.




ot

Can Protest Movements in the MENA Region Turn COVID-19 Into an Opportunity for Change?

29 April 2020

Dr Georges Fahmi

Associate Fellow, Middle East and North Africa Programme
The COVID-19 pandemic will not in itself result in political change in the MENA region, that depends on the ability of both governments and protest movements to capitalize on this moment. After all, crises do not change the world - people do.

2020-04-28-covid-19-protest-movement-mena.jpg

An aerial view shows the Lebanese capital Beirut's Martyrs Square that was until recent months the gathering place of anti-government demonstrators, almost deserted during the novel coronavirus crisis, on 26 March 2020. Photo by -/AFP via Getty Images.

COVID-19 has offered regimes in the region the opportunity to end popular protest. The squares of Algiers, Baghdad, and Beirut – all packed with protesters over the past few months – are now empty due to the pandemic, and political gatherings have also been suspended. In Algeria, Iraq and Lebanon, COVID-19 has achieved what snipers, pro-regime propaganda, and even the economic crisis, could not.

Moreover, political regimes have taken advantage of the crisis to expand their control over the political sphere by arresting their opponents, such as in Algeria where the authorities have cracked down on a number of active voices of the Hirak movement. Similarly, in Lebanon, security forces have used the pandemic as an excuse to crush sit-ins held in Martyr’s Square in Beirut and Nour Square in Tripoli.

However, despite the challenges that the pandemic has brought, it also offers opportunities for protest movements in the region. While the crisis has put an end to popular mobilization in the streets, it has  created new forms of activism in the shape of solidarity initiatives to help those affected by its consequences.

In Iraq, for example, protest groups have directed their work towards awareness-raising and sharing essential food to help mitigate the problem of food shortages and rising prices across the country. In Algeria, Hirak activists have run online campaigns to raise awareness about the virus and have encouraged people to stay at home. Others have been cleaning and disinfecting public spaces. These initiatives increase the legitimacy of the protest movement, and if coupled with political messages, could offer these movements an important chance to expand their base of popular support.

Exposes economic vulnerability

Economic grievances, corruption and poor provision of public services have been among the main concerns of this recent wave of protests. This pandemic only further exposes the levels of economic vulnerability in the region. COVID-19 is laying bare the socio-economic inequalities in MENA countries; this is particularly evident in the numbers of people engaged in the informal economy with no access to social security, including health insurance and pensions.

Informal employment, approximately calculated by the share of the labour force not contributing to social security, is estimated to amount to 65.5% of total employment in Lebanon, 64.4% in Iraq, and 63.3% in Algeria. The crisis has underscored the vulnerability of this large percentage of the labour force who have been unable to afford the economic repercussions of following state orders to stay at home.

The situation has also called attention to the vital need for efficient public services and healthcare systems. According to the fifth wave of the Arab Barometer, 74.4% of people in Lebanon are dissatisfied with their country’s healthcare services, as are 67.8% of people in Algeria and 66.5% in Iraq.

Meanwhile, 66.2% of people in Lebanon believe it is necessary to pay a bribe in order to receive better healthcare, as do 56.2% of people in Iraq and 55.9% in Algeria. The COVID-19 crisis has highlighted the need for more government investment in public healthcare systems to render them more efficient and less corrupt, strengthening the protesters’ case for the need for radical socio-economic reforms.

On the geopolitical level, the crisis puts into question the stability-focused approach of Western powers towards the region. For years, Western powers have directed their aid towards security forces in the interests of combating terrorism but COVID-19 has proved itself to be a much more lethal challenge to both the region and the West.

Facing this new challenge requires international actors to reconsider their approach to include supporting health and education initiatives, as well as freedom of expression and transparency. As argued by Western policymakers themselves, it was China’s lack of transparency and slow response that enabled the proliferation of the virus, when it could have been contained in Wuhan back in December 2019.

This crisis therefore offers regional protest movements the opportunity to capitalize on this moment and push back against the policies of Western powers that have invested in regional stability only to the extent of combating Islamic jihad. 

But crises do not change the world, people do. The COVID-19 pandemic will not in itself result in political change in the MENA region. Rather, it brings opportunities and risks that, when exploited, will allow political actors to advance their own agendas. While the crisis has put an end to popular mobilization and allowed regimes to tighten their grip over the political sphere, behind these challenges lie real opportunities for protest movements.

The current situation represents a possibility for them to expand their popular base through solidarity initiatives and has exposed more widely the importance of addressing socio-economic inequalities. Finally, it offers the chance to challenge the stability-focused approach of Western powers towards the region which until now has predominantly focused on combating terrorism.




ot

Nuclear Tensions Must Not Be Sidelined During Coronavirus

1 May 2020

Ana Alecsandru

Research Assistant, International Security Programme
Although the pandemic means the Nuclear Non-Proliferation Treaty (NPT) Review Conference (RevCon) is postponed, the delay could be an opportunity to better the health of the NPT regime.

2020-05-01-Iran-Peace-Nuclear

Painted stairs in Tehran, Iran symbolizing hope. Photo by Fatemeh Bahrami/Anadolu Agency/Getty Images.

Despite face-to-face diplomatic meetings being increasingly rare during the current disruption, COVID-19 will ultimately force a redefinition of national security and defence spending priorities, and this could provide the possibility of an improved political climate at RevCon when it happens in 2021.

With US presidential elections due in November and a gradual engagement growing between the EU and Iran, there could be a new context for more cooperation between states by 2021. Two key areas of focus over the coming months will be the arms control talks between the United States and Russia, and Iran’s compliance with the 2015 Joint Comprehensive Plan of Action (JCPOA), also known as the Iran Nuclear Deal.

It is too early to discern the medium- and longer-term consequences of COVID-19 for defence ministries, but a greater focus on societal resilience and reinvigorating economic productivity will likely undercut the rationale for expensive nuclear modernization.

Therefore, extending the current New START (Strategic Arms Reduction Treaty) would be the best, most practical option to give both Russia and the United States time to explore more ambitious multilateral arms control measures, while allowing their current focus to remain on the pandemic and economic relief.

Continuing distrust

But with the current treaty — which limits nuclear warheads, missiles, bombers, and launchers — due to expire in February 2021, the continuing distrust between the United States and Russia makes this extension hard to achieve, and a follow-on treaty even less likely.

Prospects for future bilateral negotiations are hindered by President Donald Trump’s vision for a trilateral arms control initiative involving both China and Russia. But China opposes this on the grounds that its nuclear arsenal is far smaller than that of the two others.

While there appears to be agreement that the nuclear arsenals of China, France, and the UK (the NPT nuclear-weapons states) and those of the states outside the treaty (India, Pakistan, North Korea, and Israel) will all have to be taken into account going forward, a practical mechanism for doing so proves elusive.

If Joe Biden wins the US presidency he seems likely to pursue an extension of the New START treaty and could also prevent a withdrawal from the Open Skies treaty, the latest arms control agreement targeted by the Trump administration.

Under a Biden administration, the United States would also probably re-join the JCPOA, provided Tehran returned to strict compliance with the deal. Biden could even use the team that negotiated the Iran deal to advance the goal of denuclearization of the Korean peninsula.

For an NPT regime already confronted by a series of longstanding divergences, it is essential that Iran remains a signatory especially as tensions between Iran and the United States have escalated recently — due to the Qassim Suleimani assassination and the recent claim by Iran’s Revolutionary Guard Corps to have successfully placed the country’s first military satellite into orbit.

This announcement raised red flags among experts about whether Iran is developing intercontinental ballistic missiles due to the dual-use nature of space technology. The satellite launch — deeply troubling for Iran’s neighbours and the EU countries — may strengthen the US argument that it is a cover for the development of ballistic missiles capable of delivering nuclear weapons.

However, as with many other countries, Iran is struggling with a severe coronavirus crisis and will be pouring its scientific expertise and funds into that rather than other efforts — including the nuclear programme.

Those European countries supporting the trading mechanism INSTEX (Instrument in Support of Trade Exchanges) for sending humanitarian goods into Iran could use this crisis to encourage Iran to remain in compliance with the JCPOA and its NPT obligations.

France, Germany and the UK (the E3) have already successfully concluded the first transaction, which was to facilitate the export of medical goods from Europe to Iran. But the recent Iranian escalatory steps will most certainly place a strain on the preservation of this arrangement.

COVID-19 might have delayed Iran’s next breach of the 2015 nuclear agreement but Tehran will inevitably seek to strengthen its hand before any potential negotiations with the United States after the presidential elections.

As frosty US-Iranian relations — exacerbated by the coronavirus pandemic — prevent diplomatic negotiations, this constructive engagement between the E3 and Iran might prove instrumental in reviving the JCPOA and ensuring Iran stays committed to both nuclear non-proliferation and disarmament.

While countries focus their efforts on tackling the coronavirus pandemic, it is understandable resources may be limited for other global challenges, such as the increasing risk of nuclear weapons use across several regions.

But the potential ramifications of the COVID-19 crisis for the NPT regime are profound. Ongoing tensions between the nuclear-armed states must not be ignored while the world’s focus is elsewhere, and the nuclear community should continue to work together to progress nuclear non-proliferation and disarmament, building bridges of cooperation and trust that can long outlast the pandemic.




ot

WITHDRAWN: Extraordinary apolipoprotein oxidation in chronic hepatitis C and liver cirrhosis [13. Other]

Withdrawn by Author.




ot

Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays [11. Microarrays/Combinatorics/Display Technology]

Ankylosing Spondylitis (AS) is a common, inflammatory rheumatic disease, which primarily affects the axial skeleton and is associated with sacroiliitis, uveitis and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine if plasma from patients with AS contained autoantibodies and if so, characterize and quantify this response in comparison to patients with Rheumatoid Arthritis (RA) and healthy controls. Two high-density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis in order to determine patterns of signalling cascades or tissue origin. 44% of patients with Ankylosing Spondylitis demonstrated a broad autoantibody response, as compared to 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The AS patients autoantibody responses were targeted towards connective, skeletal and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic Acid Programmable Protein Arrays constitute a powerful tool to study autoimmune diseases.




ot

Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis [13. Other]

Colorectal cancer (CRC) arises as the consequence of progressive changes from normal epithelial cells through polyp to tumor, and thus is an useful model for studying metabolic shift. In the present study, we studied the metabolomic profiles using high analyte specific gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) to attain a systems-level view of the shift in metabolism in cells progressing along the path to CRC. Colonic tissues including tumor, polyps and adjacent matched normal mucosa from 26 patients with sporadic CRC from freshly isolated resections were used for this study. The metabolic profiles were obtained using GC/MS and LC/MS/MS. Our data suggest there was a distinct profile change of a wide range of metabolites from mucosa to tumor tissues. Various amino acids and lipids in the polyps and tumors were elevated, suggesting higher energy needs for increased cellular proliferation. In contrast, significant depletion of glucose and inositol in polyps revealed that glycolysis may be critical in early tumorigenesis. In addition, the accumulation of hypoxanthine and xanthine, and the decrease of uric acid concentration, suggest that the purine biosynthesis pathway could have been substituted by the salvage pathway in CRC. Further, there was a step-wise reduction of deoxycholic acid concentration from mucosa to tumors. It appears that to gain a growth advantage, cancer cells may adopt alternate metabolic pathways in tumorigenesis and this flexibility allows them to adapt and thrive in harsh environment.




ot

Multiple hypothesis testing in proteomics: A strategy for experimental work [Invited]

In quantitative proteomics work, the differences in expression of many separate proteins are routinely examined to test for significant differences between treatments. This leads to the multiple hypothesis testing problem: when many separate tests are performed many will be significant by chance and be false positive results. Statistical methods such as the false discovery rate (FDR) method that deal with this problem have been disseminated for more than one decade. However a survey of proteomics journals shows that such tests are not widely implemented in one commonly used technique, quantitative proteomics using two-dimensional electrophoresis (2-DE). We outline a selection of multiple hypothesis testing methods, including some that are well known and some lesser known, and present a simple strategy for their use by the experimental scientist in quantitative proteomics work generally. The strategy focuses on the desirability of simultaneous use of several different methods, the choice and emphasis dependent on research priorities and the results in hand. This approach is demonstrated using case scenarios with experimental and simulated model data.




ot

Oxidative stress-mediated regulation of proteasome complexes [Other]

Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways.




ot

The Beauty of Proteomics [Invited]

Cover art by Julie Newdoll for MCP April issue.




ot

The human proteome project: Current state and future direction [Invited]

After successful completion of the Human Genome Project (HGP), HUPO has recently officially launched a global Human Proteome Project (HPP) which is designed to map the entire human protein set. Given the presence of about 30% undisclosed proteins out of 20,300 protein gene products, a systematic global effort is necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP groups employ the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge base. The HPP participants will take advantage of the output and cross-analyses from the ongoing HUPO initiatives and a chromosome-based protein mapping strategy, termed C-HPP with many national teams currently engaged. In addition, numerous biologically-driven projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents and tools for protein studies and analyses, and a stronger basis for personalized medicine. HUPO urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators.




ot

The ProteoRed MIAPE web toolkit: A user-friendly framework to connect and share proteomics standards [Technology]

The development of the HUPO-PSI's (Proteomics Standards Initiative) standard data formats and MIAPE (Minimum Information About a Proteomics Experiment) guidelines should improve proteomics data sharing within the scientific community. Proteomics journals have encouraged the use of these standards and guidelines to improve the quality of experimental reporting and ease the evaluation and publication of manuscripts. However, there is an evident lack of bioinformatics tools specifically designed to create and edit standard file formats and reports, or embed them within proteomics workflows. In this article, we describe a new web-based software suite (The ProteoRed MIAPE web toolkit) that performs several complementary roles related to proteomic data standards. Firstly, it can verify the reports fulfill the minimum information requirements of the corresponding MIAPE modules, highlighting inconsistencies or missing information. Secondly, the toolkit can convert several XML-based data standards directly into human readable MIAPE reports stored within the ProteoRed MIAPE repository. Finally, it can also perform the reverse operation, allowing users to export from MIAPE reports into XML files for computational processing, data sharing or public database submission. The toolkit is thus the first application capable of automatically linking the PSI's MIAPE modules with the corresponding XML data exchange standards, enabling bidirectional conversions. This toolkit is freely available at http://www.proteored.org/MIAPE/.




ot

Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements [Technology]

As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.




ot

The Proteomics of Networks and Pathways: A Movie is Worth a Thousand Pictures [Editorial]

none




ot

Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays [Technology]

Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring (PRM)-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor (EGF)-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported upregulation of MET, but also with upregulation of FLK2 and downregulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with PRM data. Multiplexed PRM assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706.




ot

WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research]

This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review.




ot

Translating Divergent Environmental Stresses into a Common Proteome Response through Hik33 in a Model Cyanobacterium [Research]

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (hik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in hik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.




ot

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.




ot

MaxQuant software for ion mobility enhanced shotgun proteomics [Technological Innovation and Resources]

Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the potential to boost proteome coverage, quantification accuracy and dynamic range.  Required for this is suitable software that extracts the information contained in the four-dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes the added data dimension. It offers an end to end computational workflow for the identification and quantification of peptides and proteins in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly parallelizable 4D feature detection algorithm extracts peaks which are assembled to isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion mobility and signal intensity dependent model, based on peptides from the sample. A new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) values of MS1 features in the matching process significantly gains specificity from the extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the ion mobility values between the runs. The missing value problem in protein quantification over many samples is greatly reduced by CCS aware MBR.MS1 level label-free quantification is also implemented which proves to be highly precise and accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-MS/MS is part of the basic MaxQuant release and can be downloaded from http://maxquant.org.




ot

DEqMS: a method for accurate variance estimation in differential protein expression analysis [Technological Innovation and Resources]

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t-test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all datasets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several datasets including E.coli proteome spike-in data, using both label-free and TMT-labelled quantification. In comparison to previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared to other statistical methods in both label-free and labelled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.




ot

Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments [Research]

In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g., precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary removed from the dataset. We evaluated the proposed approach on a series of benchmark controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it can facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats.




ot

Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling [Research]

Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.




ot

Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation [Research]

Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF).  We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts. This is the largest dataset of cardiac protein expression from human samples collected in vivo. It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.




ot

Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses [Research]

Accumulation and propagation of hyperphosphorylated tau (p-tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-tau pathology after injection into mouse brain.  To gain an understanding of the mTau exosome cargo involved in tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in (1) proteins uniquely present only in mTau, and not control exosomes, (2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and (3) shared proteins which were significantly up-regulated or down-regulated in mTau compared to control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-tau.  Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes.  Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or down-regulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-tau neuropathology in mouse brain. 




ot

Proteaphagy in mammalian cells can function independent of ATG5/ATG7 [Research]

The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Since these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.




ot

Developments and Applications of Functional Protein Microarrays [Review]

Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.




ot

Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries [Perspective]

Data independent acquisition (DIA) is an attractive alternative to standard shotgun proteomics methods for quantitative experiments. However, most DIA methods require collecting exhaustive, sample-specific spectrum libraries with data dependent acquisition (DDA) to detect and quantify peptides. In addition to working with non-human samples, studies of splice junctions, sequence variants, or simply working with small sample yields can make developing DDA-based spectrum libraries impractical. Here we illustrate how to acquire, queue, and validate DIA data without spectrum libraries, and provide a workflow to efficiently generate DIA-only chromatogram libraries using gas-phase fractionation (GPF). We present best-practice methods for collecting DIA data using Orbitrap-based instruments, and develop an understanding for why DIA using an Orbitrap mass spectrometer should be approached differently than when using time-of-flight instruments. Finally, we discuss several methods for analyzing DIA data without libraries.




ot

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility [Research]

Molecular mechanisms underlying sperm motility have not been fully explained, particularly in chickens. The objective was to identify seminal plasma proteins associated with chicken sperm motility by comparing the seminal plasma proteomic profile of roosters with low sperm motility (LSM, n = 4) and high sperm motility (HSM, n = 4). Using a label-free MS-based method, a total of 522 seminal plasma proteins were identified, including 386 (~74%) previously reported and 136 novel ones. A total of 70 differentially abundant proteins were defined, including 48 more-abundant, 15 less-abundant, and seven proteins unique to the LSM group (specific proteins). Key secretory proteins like less-abundant ADGRG2 and more-abundant SPINK2 in the LSM suggested that the corresponding secretory tissues played a crucial role in maintaining sperm motility. Majority (80%) of the more-abundant and five specific proteins were annotated to the cytoplasmic domain which might be a result of higher plasma membrane damage and acrosome dysfunction in LSM. Additionally, more-abundant mitochondrial proteins were detected in LSM seminal plasma associated with lower spermatozoa mitochondrial membrane potential (m) and ATP concentrations. Further studies showed that the spermatozoa might be suffering from oxidative stress, as the amount of spermatozoa reactive oxygen species (ROS) were largely enhanced, seminal malondialdehyde (MDA) concentrations were increased, and the seminal plasma total antioxidant capacity (T-AOC) were decreased. Our study provides an additional catalog of chicken seminal plasma proteome and supports the idea that seminal plasma could be as an indicator of spermatozoa physiology. More-abundant of acrosome, mitochondria and sperm cytoskeleton proteins in the seminal plasma could be a marker of sperm dysfunction and loss of motility. The degeneration of spermatozoa caused the reduced seminal T-AOC and enhanced oxidative stress might be potential determinants of low sperm motility. These results could extend our understanding of sperm motility and sperm physiology regulation.




ot

Robust summarization and inference in proteome-wide label-free quantification [Research]

Label-Free Quantitative mass spectrometry based workflows for differential expression (DE) analysis of proteins impose important challenges on the data analysis due to peptide-specific effects and context dependent missingness of peptide intensities. Peptide-based workflows, like MSqRob, test for DE directly from peptide intensities and outperform summarization methods which first aggregate MS1 peptide intensities to protein intensities before DE analysis. However, these methods are computationally expensive, often hard to understand for the non-specialised end-user, and do not provide protein summaries, which are important for visualisation or downstream processing. In this work, we therefore evaluate state-of-the-art summarization strategies using a benchmark spike-in dataset and discuss why and when these fail compared to the state-of-the-art peptide based model, MSqRob. Based on this evaluation, we propose a novel summarization strategy, MSqRobSum, which estimates MSqRob’s model parameters in a two-stage procedure circumventing the drawbacks of peptide-based workflows. MSqRobSum maintains MSqRob’s superior performance, while providing useful protein expression summaries for plotting and downstream analysis. Summarising peptide to protein intensities considerably reduces the computational complexity, the memory footprint and the model complexity, and makes it easier to disseminate DE inferred on protein summaries. Moreover, MSqRobSum provides a highly modular analysis framework, which provides researchers with full flexibility to develop data analysis workflows tailored towards their specific applications.




ot

Flow-induced reorganization of laminin-integrin networks within the endothelial basement membrane uncovered by proteomics [Research]

The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 hours, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.




ot

A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria [Research]

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labelling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labelled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly due to the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8 mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.




ot

Organellar maps through proteomic profiling - a conceptual guide [Review]

Protein subcellular localization is an essential and highly regulated determinant of protein function. Major advances in mass spectrometry and imaging have allowed the development of powerful spatial proteomics approaches for determining protein localization at the whole cell scale. Here, a brief overview of current methods is presented, followed by a detailed discussion of organellar mapping through proteomic profiling. This relatively simple yet flexible approach is rapidly gaining popularity, due to its ability to capture the localizations of thousands of proteins in a single experiment. It can be used to generate high-resolution cell maps, and as a tool for monitoring protein localization dynamics. This review highlights the strengths and limitations of the approach, and provides guidance to designing and interpreting profiling experiments. 




ot

Peptide-based interaction proteomics [Review]

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.




ot

Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research]

Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.




ot

Molecular & Cellular Proteomics




ot

Promoting a Just Transition to an Inclusive Circular Economy

1 April 2020

Considerations of justice and social equity are as important for the circular economy transition as they are in the contexts of low-carbon transitions and digitalization of the economy. This paper sets out the just transition approach, and its relevance in climate change and energy transition debates.

Patrick Schröder

Senior Research Fellow, Energy, Environment and Resources Programme

2020-04-01-circular-economy.jpg

Residents of Mount Ijen take sulphur at Ijen Crater, Banyuwangi, East Java, on 2 July 2018. Photo: Getty Images.

Summary

  • Many social and political issues have so far been neglected in planning for the circular economy transition. This paper aims to redress this by considering how ‘just transition’ and social equity may be achieved through policy and practice.
  • The prevailing economic model is linear, in that resources are extracted, transformed into products, used, and finally discarded. In contrast, the circular economy recognizes that natural resources are finite, and aims to keep the materials in products in circulation for as long as possible: reusing, repairing, remanufacturing, sharing and recycling. While the concept of the circular economy is largely focused on developing new technologies and businesses to enable keeping materials in circulation, it also includes the notions of ‘designing out’ waste, substituting renewable materials for non-renewable ones, and restoring natural systems.
  • The UN 2030 Agenda demonstrates that environmental, social and economic sustainability objectives cannot be separated. As the links between the environmental issues of climate change, overconsumption of resources and waste generation, and social issues of inequality and the future of work become increasingly obvious, the urgency to connect environmental with social justice is gaining in significance. The language of ‘just transition’ – a transition that ensures environmental sustainability, decent work, social inclusion and poverty eradication – has started to penetrate debates and research on sustainability policy, particularly in the contexts of climate change and low-carbon energy transition.
  • A just transition framework for the circular economy can identify opportunities that reduce waste and stimulate product innovation, while at the same time contributing positively to sustainable human development. And a just transition is needed to reduce inequalities within and between countries, and to ensure that the commitment of the UN Sustainable Development Goals to leave no one behind is fulfilled.
  • It is important to identify the likely impacts on employment as a result of digitalization and industrial restructuring. Combining circular economy policies with social protection measures will be important in order to ensure that the burden of efforts to promote circularity will not fall on the poor through worsening working conditions and health impacts, reduced livelihoods, or job losses. Identifying potential winners and losers through participatory ‘roadmapping’ can help shape effective cooperation mechanisms and partnerships nationally and internationally.
  • Many low- and middle-income countries that rely heavily on ‘linear’ sectors such as mining, manufacturing of non-repairable fast-moving consumer goods, textiles and agriculture, and the export of these commodities to higher-income countries, are likely to be negatively affected by the shift to circularity. These countries will need support from the international community through targeted assistance programmes if international trade in established commodities and manufactures declines in the medium to long term. 
  • International cooperation to create effective and fair governance mechanisms, and policy coordination at regional, national and local levels will play an important role in shaping a just transition. Multilateral technical assistance programmes will need to be designed and implemented, in particular to support low- and middle-income countries.
  • Governments, international development finance institutions and banks are among the bodies beginning to establish circular economy investment funds and programmes. Just transition principles are yet to be applied to many of these new finance mechanisms, and will need to be integrated into development finance to support the circular economy transition.
  • New international cooperation programmes, and a global mechanism to mobilize dedicated support funds for countries in need, will be critical to successful implementation across global value chains. Transparent and accountable institutions will also be important in ensuring that just transition funds reach those affected as intended.




ot

Europe and the Mediterranean: Eyeing Other Shores

1 July 2008 , Number 3

Ahead of the French holiday rush for relaxation in warm waters, President Nicolas Sarkozy has flung himself into the Mediterranean policy pool. Not content with existing arrangements, plans and processes for dealing with those on the other shore, the President has built his very own scheme, now adopted by the European Union. But the tides have not been altogether kind.

Claire Spencer

Head, Middle East Programme, Chatham House




ot

Nigerian Elections: Big Men and Ballot Boxes

1 March 2007 , Number 6

The minister paused, leaned forward and fiddled with his cufflinks, ‘It wasn’t about whether the election was rigged or not,’ he said. ‘The truth is, everybody rigged it. We just rigged it better than them.’ Does the next Nigerian presidential election in April promise anything different?

Sola Tayo

Journalist, HARDtalk, BBC News

GettyImages-73130322.jpg

Supporters of the ruling Peoples Democratic Party wave banners and posters




ot

Political Will Was Not Enough for Justice Reform in Moldova

27 November 2019

Cristina Gherasimov

Former Academy Associate, Russia and Eurasia Programme
The pro-reform Sandu government had the will to dismantle oligarchic power structures, but was taken down by limited political experience.

2019-11-26-Sandu.jpg

Maia Sandu in Germany in July. Photo: Getty Images.

The lack of political will to carry out rule of law reforms is frequently the reason why reforms are not fully implemented. The case of Moldova proves that in societies where strong vested interests still persist, political savviness is equally as important as political will.

Old and new political power brokers in Moldova struck a fragile pact in June to oust Vladimir Plahotniuc. Plahotniuc had built a network of corruption and patronage with the help of the Democratic Party, which he treated as a personal vehicle and which allowed him and a small economic elite circle to enrich themselves off of government institutions and state-owned enterprises, to the detriment of Moldovan citizens and the health of their political process.

Maia Sandu, co-leader of the pro-reform ACUM electoral bloc, then formed a technocratic government with a remit to implement Moldova’s lagging reform agenda. Though made up of ministers with the integrity and political will to implement difficult transformational reforms, its biggest weakness was its coalition partner – the pro-Russian Socialists’ Party and its informal leader, Igor Dodon, the president of Moldova.

Now the Socialists – threatened by how key reforms to the justice system would impact their interests – have joined forces with Plahotniuc’s former allies, the Democratic Party, to oust ACUM, exploiting the party’s lack of political savviness. 

Reform interrupted

It was always clear the coalition would be short-lived. President Dodon and the co-ruling Socialists joined to buy themselves time, with the hope that they could restrict the most far-reaching reforms and tie the hands of ACUM ministers. In less than five months, however, the Sandu government initiated key reforms in the judicial system, aimed at dismantling Plahotniuc’s networks of patronage but also impacting the Socialists, who to a large degree also profited from the previous status quo.

The red line came over a last-minute change in the selection process of the prosecutor general proposed by Sandu on 6 November, which the Socialists claimed was unconstitutional and gave them the justification to put forward a motion of no confidence in the Sandu government. This was conveniently supported by the Democratic Party, who appeared threatened by an independent prosecutor’s office and saw an opportunity to return to power.

Thus, the political will to reform proved insufficient in the absence of a clear strategy on how to address the concerns of the old regime that they would be prosecuted and their vested interests threatened. Here, ACUM’s lack of political experience let them down. With their hands tied from the beginning in a fragile coalition with the Socialists, ACUM were unable to prevent sabotage from within state institutions and their own coalition, and could not find consensus to proceed with more radical methods to tackle corruption.

Less than two days after the Sandu government was out, a new government was sworn in on 14 November. Prime Minister Ion Chicu was an adviser to President Dodon before taking office and former minister of finance under the Plahotniuc-backed government of Pavel Filip, as part of a cabinet of ministers consisting largely of other presidential advisers and former high-level bureaucrats and ministers from the Plahotniuc era. 

The new government

A top priority for the Chicu government is to convince the international community that it is independent from President Dodon, and that its ‘technocrats’ will keep the course of reforms of the Sandu government. This is critical to preserving the financial assistance of Western partners, which the Moldovan government heavily relies on, particularly with a presidential election campaign next year, when they will likely want to create fiscal space for various giveaways to voters.

But within its first week in office, Chicu appears incapable of walking this line. Reverting to the initially proposed pre-selection process of prosecutor general signals that the post could be filled by a loyal appointee of President Dodon. Moreover, Chicu’s first visit abroad was to Russia, allegedly a major financial contributor of the Socialists’ Party. With the Socialists now holding the presidency, government, Chisinau mayoralty, and the parliament speaker’s seat, the danger of an increased Russian influence on key political decisions is very real.

A government steered by President Dodon risks bringing Moldova back to where it was before June, with a political elite mimicking reforms while misusing power for private gains. The biggest danger is that instead of continuing the reform process to bring Moldova back on its European integration path, the new government may focus on strengthening the old patronage system, this time with President Dodon at the top of the pyramid.

Lessons

This new minority government, supported by the Democrats, is a more natural one for President Dodon and therefore has more chances to survive, at least until presidential elections in autumn of 2020. Both the Socialists and the Democrats will likely seek to use this time to rebuild their own methods of capturing state resources. But with the Socialists relying on the Democrats’ votes in parliament, this is a recipe for further political instability.

Similar to Moldova, several other states across the post-Soviet space such as Ukraine and Armenia have had new political forces come to power with the political will and mandate to carry out difficult reforms to strengthen rule of law and fight systemic corruption in their countries. What they all have in common is the lack of political experience of how to create change, while old elites, used to thinking on their feet to defend their vested interests, retain their connections and economic and political influence.

Moldova is a good example of why political will needs to be backed up by clear strategy on how to deal with threatened vested interests in order for new political forces to be able to maintain themselves in power and reforms to be sustainable. When the chance comes again for fresh leaders to come to power, it is importantthey are politically prepared to use it swiftly and wisely.




ot

Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH [Methods]

APOA5 is a low-abundance exchangeable apolipoprotein that plays critical roles in human triglyceride (TG) metabolism. Indeed, aberrations in the plasma concentration or structure of APOA5 are linked to hypertriglyceridemia, hyperchylomicronemia, myocardial infarction risk, obesity, and coronary artery disease. While it has been successfully produced at low yield in bacteria, the resulting protein had limitations for structure-function studies due to its low solubility under physiological buffer conditions. We hypothesized that the yield and solubility of recombinant APOA5 could be increased by: i) engineering a fusion protein construct in a codon optimized expression vector, ii) optimizing an efficient refolding protocol, and iii) screening buffer systems at physiological pH. The result was a high-yield (25 mg/l) bacterial expression system that produces lipid-free APOA5 soluble at concentrations of up to 10 mg/ml at a pH of 7.8 in bicarbonate buffers. Physical characterization of lipid-free APOA5 indicated that it exists as an array of multimers in solution, and far UV circular dichroism analyses show differences in total α-helicity between acidic and neutral pH buffering conditions. The protein was functional in that it bound and emulsified multilamellar dimyristoyl-phosphatidylcholine vesicles and could inhibit postprandial plasma TG accumulation when injected into C57BL/6J mice orally gavaged with Intralipid.




ot

Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles]

Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways.




ot

Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles]

We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.­.




ot

Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles]

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.




ot

Separation of postprandial lipoproteins: improved purification of chylomicrons using an ApoB100 immunoaffinity method [Methods]

Elevated levels of triglyceride-rich lipoproteins (TRLs), both fasting and postprandial, are associated with increased risk for atherosclerosis. However, guidelines for treatment are defined solely by fasting lipid levels, even though postprandial lipids may be more informative. In the postprandial state, circulating lipids consist of dietary fat transported from the intestine in chylomicrons (CMs; containing ApoB48) and fat transported from the liver in VLDL (containing ApoB100). Research into the roles of endogenous versus dietary fat has been hindered because of the difficulty in separating these particles by ultracentrifugation. CM fractions have considerable contamination from VLDL (purity, 10%). To separate CMs from VLDL, we produced polyclonal antibodies against ApoB100 and generated immunoaffinity columns. TRLs isolated by ultracentrifugation of plasma were applied to these columns, and highly purified CMs were collected (purity, 90–94%). Overall eight healthy unmedicated adult volunteers (BMI, 27.2 ± 1.4 kg/m2; fasting triacylglycerol, 102.6 ± 19.5 mg/dl) participated in a feeding study, which contained an oral stable-isotope tracer (1-13C acetate). We then used this technique on plasma samples freshly collected during an 8 h human feeding study from a subset of four subjects. We analyzed fractionated lipoproteins by Western blot, isolated and derivatized triacylglycerols, and calculated fractional de novo lipogenesis. The results demonstrated effective separation of postprandial lipoproteins and substantially improved purity compared with ultracentrifugation protocols, using the immunoaffinity method. This method can be used to better delineate the role of dietary sugar and fat on postprandial lipids in cardiovascular risk and explore the potential role of CM remnants in atherosclerosis.




ot

High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia [Patient-Oriented and Epidemiological Research]

Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer’s disease pathology.




ot

Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage [Research Articles]

Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.




ot

The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK [Research Articles]

Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1–/–), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1–/– hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1–/–, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms.




ot

Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi [Research Articles]

Angiopoietin-like protein 3 (ANGPTL3) inhibits lipid clearance and is a promising target for managing cardiovascular disease. Here we investigated the effects of a high-sugar (high-fructose) diet on circulating ANGPTL3 concentrations in rhesus macaques. Plasma ANGPTL3 concentrations increased ~30% to 40% after 1 and 3 months of a high-fructose diet (both P < 0.001 vs. baseline). During fructose-induced metabolic dysregulation, plasma ANGPTL3 concentrations were positively correlated with circulating indices of insulin resistance [assessed with fasting insulin and the homeostatic model assessment of insulin resistance (HOMA-IR)], hypertriglyceridemia, adiposity (assessed as leptin), and systemic inflammation [C-reactive peptide (CRP)] and negatively correlated with plasma levels of the insulin-sensitizing hormone adropin. Multiple regression analyses identified a strong association between circulating APOC3 and ANGPTL3 concentrations. Higher baseline plasma levels of both ANGPTL3 and APOC3 were associated with an increased risk for fructose-induced insulin resistance. Fish oil previously shown to prevent insulin resistance and hypertriglyceridemia in this model prevented increases of ANGPTL3 without affecting systemic inflammation (increased plasma CRP and interleukin-6 concentrations). ANGPTL3 RNAi lowered plasma concentrations of ANGPTL3, triglycerides (TGs), VLDL-C, APOC3, and APOE. These decreases were consistent with a reduced risk of atherosclerosis. In summary, dietary sugar-induced increases of circulating ANGPTL3 concentrations after metabolic dysregulation correlated positively with leptin levels, HOMA-IR, and dyslipidemia. Targeting ANGPTL3 expression with RNAi inhibited dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and APOE levels in rhesus macaques.




ot

Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles]

Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization.




ot

Serum amyloid A is not incorporated into HDL during HDL biogenesis [Research Articles]

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA’s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.