ola CBD Notification SCBD/IMS/JMF/ET/AR/DM/88533 (2019-112): Launch of the Bioland Tool for National Clearing-House Mechanism websites By www.cbd.int Published On :: Mon, 09 Dec 2019 00:00:00 GMT Full Article
ola Corrigendum to “The Łojasiewicz exponent of a continuous subanalytic function at an isolated zero” By www.ams.org Published On :: Thu, 02 Apr 2020 13:59 EDT Phạm Tiến Sơn Proc. Amer. Math. Soc. 148 (2020), 2739-2741. Abstract, references and article information Full Article
ola Lawbreaking violates rule of law By www.news.gov.hk Published On :: Sun, 22 Dec 2019 00:00:00 +0800 The violence and vandalism in recent months sparked a crisis of confidence of our rule of law. The so-called justice lawbreaking or civil disobedience is never justified under the law. I urge all of you not to engage in any illegal activities. The Court of Final Appeal in its judgment (FACC8-10/2017) pointed out that: (1) unlawful assemblies involving violence, even a relatively low degree, will not be condoned and may justifiably attract sentences of immediate imprisonment in the future; and (2) little weight will be given to the mitigation that the offending act was committed in the exercise of constitutional rights or acts of civil disobedience because the fact of a conviction will necessarily mean the offender has crossed the line separating the lawful exercise of his constitutional rights from unlawful activity subject to sanctions and constraints. There are suggestions that deliberate lawbreaking might be considered to achieve objectives, however, this would bring a wrong concept of the rule of law. The escalated violence and vandalism in the last few months have also undermined the perception of the rule of law among the public. My colleagues and I would promote and publicise the correct concept of the rule of law to the citizens through different channels. In analysing the current situation, I hope that we all could remain reasonable and objective by keeping an open mind, being informed and considering all relevant facts before coming to a conclusion. Our rule of law has been highly regarded, and such an achievement was not easy to come by. We should all join hands to cherish and safeguard our rule of law. Abiding by the law is one of the many obligations that ought to be observed by the public. Law exists in practice but it should not only be practised by lawyers, judges and governments. More importantly, the rule of law should be observed and respected by the community as a whole. The Government would continue to be strongly committed to upholding the rule of law. Secretary for Justice Teresa Cheng wrote this article and posted it on her blog on December 22. Full Article
ola Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar Syndrome By spectrum.diabetesjournals.org Published On :: 2002-01-01 Guillermo E. UmpierrezJan 1, 2002; 15:Articles Full Article
ola Dartmouth's Katherine Mirica wins National Teacher-Scholar Honor By www.eurekalert.org Published On :: Tue, 05 May 2020 00:00:00 EDT (Dartmouth College) Annual award supports the research and teaching careers of talented young faculty in the chemical sciences. Full Article
ola Shedding new light on nanolasers using 2D semiconductors By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Arizona State University) Cun-Zheng Ning, a professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and collaborators from Tsinghua University in China discovered a process of physics that enables low-power nanolasers to be produced in 2D semiconductor materials. Understanding the physics behind lasers at nanoscale and how they interact with semiconductors can have major implications for high-speed communication channels for supercomputers and data centers. Full Article
ola Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena. Full Article
ola Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis. Full Article
ola The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes. Full Article
ola MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae. Full Article
ola AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease. Full Article
ola Hong Kong Scholarship for Excellence Scheme opens for applications By www.info.gov.hk Published On :: Wed, 02 Oct 2019 11:32:47 Full Article
ola ASU professor recognized nationally with Camille Dreyfus Teacher-Scholar Award By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Arizona State University) Gary Moore, assistant professor in ASU's School of Molecular Sciences and the Biodesign Institute's Center for Applied Structural Discovery has just been named one of 14 young faculty nationwide to be honored with a 2020 Camille Dreyfus Teacher-Scholar Award by the Camille and Henry Dreyfus Foundation. Full Article
ola Evidence of Late Pleistocene human colonization of isolated islands beyond Wallace's Line By www.eurekalert.org Published On :: Wed, 29 Apr 2020 00:00:00 EDT (Max Planck Institute for the Science of Human History) What makes our species unique compared to other hominins? High profile genetic, fossil and material culture discoveries present scientists working in the Late Pleistocene with an ever-more complex picture of interactions between early hominin populations. One distinctive characteristic of Homo sapiens, however, appears to be its global distribution. Exploring how Homo sapiens colonized most of the world's continents in a relatively short period could reveal the exceptional capacities of humans relative to other hominins. Full Article
ola During tough times, ancient 'tourists' sought solace in Florida oyster feasts By www.eurekalert.org Published On :: Fri, 01 May 2020 00:00:00 EDT (Florida Museum of Natural History) More than a thousand years ago, people from across the Southeast regularly traveled to a small island on Florida's Gulf Coast to bond over oysters, likely as a means of coping with climate change and social upheaval. Full Article
ola Alternative resupply plan for RV Polarstern now in place By www.eurekalert.org Published On :: Fri, 24 Apr 2020 00:00:00 EDT (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research) Thanks to the support of additional German research vessels, the MOSAiC expedition will continue, despite the coronavirus pandemic. The new team will start in May. Full Article
ola Data from 2 space lasers comprehensively estimate polar ice loss and sea level rise By www.eurekalert.org Published On :: Thu, 30 Apr 2020 00:00:00 EDT (American Association for the Advancement of Science) Ice sheet losses from Greenland and Antarctica have outpaced snow accumulation and contributed approximately 14 millimeters to sea level rise over 16 years (2003 to 2019), a new analysis of data from NASA's laser-shooting satellites has revealed. Full Article
ola Tran receives scholarship honoring women in higher education By www.eurekalert.org Published On :: Fri, 08 May 2020 00:00:00 EDT (Medical College of Georgia at Augusta University) Lynn Tran, a student in the University System of Georgia MD/PhD program at the Medical College of Georgia at Augusta University, has received a Louise McBee Scholarship from the Georgia Association for Women in Higher Education. Full Article
ola Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar Syndrome By spectrum.diabetesjournals.org Published On :: 2002-01-01 Guillermo E. UmpierrezJan 1, 2002; 15:Articles Full Article
ola Exploring Public International Law and the Rights of Individuals with Chinese Scholars - Part One By feedproxy.google.com Published On :: Mon, 29 Oct 2018 16:37:47 +0000 17 April 2014 As part of a roundtable series, Chatham House and China University of Political Science and Law (CUPL) jointly organized this four-day meeting at Chatham House for international lawyers to discuss a wide range of issues related to public international law and the rights of individuals. Download PDF Sonya Sceats Associate Fellow, International Law Programme @SonyaSceats 20140624ChinaHumanRights.jpg The Representative of China at the 19th Session of the Human Rights Council, Palais des Nations, Geneva. 27 February 2012. Photo: UN Photo Geneva/Violaine Martin. The specific objectives were to:create a platform for Chinese international law academics working on international human rights law issues to present their thinking and exchange ideas with counterparts from outside China;build stronger understanding within the wider international law community of intellectual debates taking place in China about the international human rights system and China's role within it;support networking between Chinese and non-Chinese academics working on international human rights and related areas of international law.The roundtable forms part of a wider Chatham House project exploring China's impact on the international human rights system and was inspired by early discussions with a burgeoning community of Chinese academics thinking, writing (mainly in Chinese) and teaching about international human rights law.For China University of Political Science and Law, one of the largest and most prestigious law schools in China and perhaps the only university in the world with an entire faculty of international law, the initiative is part of a drive to forge partnerships beyond China in the international law field.The roundtable had a total of 22 participants, 10 Chinese (from universities and other academic institutions in Beijing and Shanghai) and 12 non-Chinese (from Australia, Germany, the Netherlands, Switzerland, the United Kingdom and the United States).All discussions were held in English under the Chatham House Rule. Department/project International Law Programme, China and the Future of the International Legal Order Full Article
ola Exploring Public International Law and the Rights of Individuals with Chinese Scholars - Part Two By feedproxy.google.com Published On :: Tue, 30 Oct 2018 08:46:37 +0000 15 November 2014 As part of a roundtable series, Chatham House and China University of Political Science and Law (CUPL) held a two-day roundtable meeting in Beijing on public international law and the rights of individuals. Download PDF Sonya Sceats Associate Fellow, International Law Programme @SonyaSceats 20140624ChinaHumanRights.jpg The Representative of China at the 19th Session of the Human Rights Council, Palais des Nations, Geneva. 27 February 2012. Photo: UN Photo Geneva/Violaine Martin. The specific objectives were to:create a platform for Chinese international law academics working on international human rights law issues to present their thinking and exchange ideas with counterparts from outside China;build stronger understanding within the wider international law community of intellectual debates taking place in China about the international human rights system and China's role within it;support networking between Chinese and non-Chinese academics working on international human rights and related areas of international law.The roundtable forms part of a wider Chatham House project exploring China's impact on the international human rights system and was inspired by early discussions with a burgeoning community of Chinese academics thinking, writing (mainly in Chinese) and teaching about international human rights law.For CUPL, one of the largest and most prestigious law schools in China and perhaps the only university in the world with an entire faculty of international law, the initiative is part of a drive to forge partnerships beyond China in the international law field.The meeting in Beijing was hosted by CUPL and involved 20 participants, 10 Chinese (from universities and other academic institutions in Beijing) and 10 non-Chinese (from Australia, the Netherlands, South Africa, Switzerland, the United Kingdom and the United States).To ensure continuity while also expanding the experts network being built, the second meeting included a mix of participants from the first meeting and some new participants.All discussions were held in English under the Chatham House Rule. Department/project International Law Programme, China and the Future of the International Legal Order Full Article
ola Exploring Public International Law and the Rights of Individuals with Chinese Scholars - Part Three By feedproxy.google.com Published On :: Tue, 30 Oct 2018 08:55:48 +0000 6 March 2016 As part of a roundtable series, Chatham House, China University of Political Science and Law (CUPL) and the Graduate Institute Geneva held a two-day roundtable meeting in Geneva on public international law and the rights of individuals. Download PDF Sonya Sceats Associate Fellow, International Law Programme @SonyaSceats 20140624ChinaHumanRights.jpg The Representative of China at the 19th Session of the Human Rights Council, Palais des Nations, Geneva. 27 February 2012. Photo: UN Photo Geneva/Violaine Martin. The specific objectives were to:create a platform for Chinese international law academics working on international human rights law issues to present their thinking and exchange ideas with counterparts from outside China;build stronger understanding within the wider international law community of intellectual debates taking place in China about the international human rights system and China's role within it;support networking between Chinese and non-Chinese academics working on international human rights and related areas of international law.The roundtable forms part of a wider Chatham House project exploring China's impact on the international human rights system and was inspired by early discussions with a burgeoning community of Chinese academics thinking, writing (mainly in Chinese) and teaching about international human rights law.For CUPL, one of the largest and most prestigious law schools in China and perhaps the only university in the world with an entire faculty of international law, the initiative is part of a drive to forge partnerships beyond China in the international law field.The meeting in Geneva was co-hosted by the Graduate Institute Geneva and involved 19 participants, 9 Chinese (from six research institutions in Beijing and Shanghai) and 11 non-Chinese (from eight research institutions in Australia, Germany, the Netherlands, Switzerland, the United Kingdom and the United States).To ensure continuity while also expanding the expert network being built, the third meeting included a mix of participants from the first two meetings and some new participantsAll discussions were held in English under the Chatham House Rule. Department/project International Law Programme, China and the Future of the International Legal Order Full Article
ola Exploring Public International Law Issues with Chinese Scholars – Part Four By feedproxy.google.com Published On :: Tue, 30 Oct 2018 09:01:59 +0000 3 June 2018 As part of a roundtable series, Chatham House and the China University of Political Science and Law (CUPL) held a two-day roundtable in Beijing on emerging issues of public international law. Download PDF Harriet Moynihan Senior Research Fellow, International Law Programme @HarrietMoyniha9 20140624ChinaHumanRights.jpg The Representative of China at the 19th Session of the Human Rights Council, Palais des Nations, Geneva. 27 February 2012. Photo: UN Photo Geneva/Violaine Martin. The specific objectives were to:create a platform for Chinese international law academics working on international human rights law issues to present their thinking and exchange ideas with counterparts from outside China;build stronger understanding within the wider international law community of intellectual debates taking place in China about the international human rights system and China's role within it;support networking between Chinese and non-Chinese academics working on international human rights and related areas of international law.The roundtable forms part of a wider Chatham House project exploring China's impact on the international human rights system and was inspired by early discussions with a burgeoning community of Chinese academics thinking, writing (mainly in Chinese) and teaching about international human rights law.For CUPL, one of the largest and most prestigious law schools in China and perhaps the only university in the world with an entire faculty of international law, the initiative is part of a drive to forge partnerships beyond China in the international law field.The meeting was co-hosted with CUPL and involved 28 participants, consisting of 19 Chinese participants (from six leading research institutions in Beijing and Shanghai) and nine nonChinese participants (from eight leading research institutions in Australia, the Netherlands, the UK, Switzerland, Canada and Singapore).To ensure continuity while also expanding the expert network being built, the fifth meeting included a mix of participants from the previous meetings and some new participants.All discussions were held in English under the Chatham House Rule. Department/project International Law Programme, China and the Future of the International Legal Order Full Article
ola Investigating Violations of International Humanitarian Law By feedproxy.google.com Published On :: Wed, 13 Nov 2019 13:25:01 +0000 Research Event 21 January 2020 - 5:30pm to 7:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Andrew Cayley, Director, Service Prosecuting Authority, UK Ministry of DefenceLarry Lewis, Vice President and Director, Center for Autonomy and Artificial Intelligence, CNAJelena Pejic, Senior Legal Adviser, International Committee of the Red CrossChair: Elizabeth Wilmshurst, Distinguished Fellow, International Law Programme, Chatham House Countries should have adequate systems in place for investigating violations of international humanitarian law, for launching criminal prosecutions for war crimes and for inquiring into responsibility for unlawful actions of national armed forces. There also needs to be proper counting and recording of the civilian casualties of military operations. This event, which will be introduced by the director of the UK Service Prosecuting Authority, Andrew Cayley, will discuss the new report by the International Committee of the Red Cross and the Geneva Academy of International Humanitarian Law, Guidelines on Investigating Violations of International Humanitarian Law: Law, Policy and Good Practice, as well as the problems and challenges associated with recording civilian casualties of armed conflict. This meeting is the third in a series of three commemorating the 70th anniversary of the 1949 Geneva Conventions supported by the British Red Cross. It will be followed by a drinks reception. Department/project International Law Programme, The Limits on War and Preserving the Peace Jacqueline Rowe Programme Assistant, International Law Programme 020 7389 3287 Email Full Article
ola MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae. Full Article
ola AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease. Full Article
ola Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups. Full Article
ola Folate Receptor {beta} Targeted PET Imaging of Macrophages in Autoimmune Myocarditis By jnm.snmjournals.org Published On :: 2020-04-13T14:09:24-07:00 Rationale: Currently available imaging techniques have limited specificity for the detection of active myocardial inflammation. Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-N,N',N''-triacetic acid conjugated folate (18F-FOL) is a positron emission tomography (PET) tracer targeting folate receptor β (FR-β) that is expressed on activated macrophages at sites of inflammation. We evaluated 18F-FOL PET for the detection of myocardial inflammation in rats with autoimmune myocarditis and studied expression of FR-β in human cardiac sarcoidosis specimens. Methods: Myocarditis was induced by immunizing rats (n = 18) with porcine cardiac myosin in complete Freund’s adjuvant. Control rats (n = 6) were injected with Freund’s adjuvant alone. 18F-FOL was intravenously injected followed by imaging with a small animal PET/computed tomography (CT) scanner and autoradiography. Contrast-enhanced high-resolution CT or 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) PET images were used for co-registration. Rat tissue sections and myocardial autopsy samples of 6 patients with cardiac sarcoidosis were studied for macrophages and FR-β. Results: The myocardium of 10 out of 18 immunized rats showed focal macrophage-rich inflammatory lesions with FR-β expression occurring mainly in M1-polarized macrophages. PET images showed focal myocardial 18F-FOL uptake co-localizing with inflammatory lesions (SUVmean, 2.1 ± 1.1), whereas uptake in the remote myocardium of immunized rats and controls was low (SUVmean, 0.4 ± 0.2 and 0.4 ± 0.1, respectively; P < 0.01). Ex vivo autoradiography of tissue sections confirmed uptake of 18F-FOL in myocardial inflammatory lesions. Uptake of 18F-FOL to inflamed myocardium was efficiently blocked by a non-labeled FR-β ligand folate glucosamine in vivo. The myocardium of patients with cardiac sarcoidosis showed many FR-β-positive macrophages in inflammatory lesions. Conclusion: In a rat model of autoimmune myocarditis, 18F-FOL shows specific uptake in inflamed myocardium containing macrophages expressing FR-β, which were also present in human cardiac sarcoid lesions. Imaging of FR-β expression is a potential approach for the detection of active myocardial inflammation. Full Article
ola Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms By feedproxy.google.com Published On :: Thu, 16 Jan 2020 16:40:01 +0000 Research Event 21 January 2020 - 2:30pm to 3:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Hon. Manuel José Nunes Júnior, Minister of State for Economic Coordination, Republic of AngolaChair: Dr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme, Chatham House Minister Nunes Júnior will discuss the progress of the Angolan government’s economic stabilization plans and business reform agenda including the privatization of some state-owned enterprises. These reforms could expand Angola’s exports beyond oil and stimulate new industries and more inclusive economic growth.THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED. Department/project Africa Programme, Southern Africa, Inclusive Economic Growth, Governance and Technology Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
ola The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium. Full Article
ola AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease. Full Article
ola ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain By feedproxy.google.com Published On :: 2020-04-23 Kristian K KristensenApr 23, 2020; 0:jlr.ILR120000780v1-jlr.ILR120000780Images in Lipid Research Full Article
ola Ebola virus matrix protein VP40 hijacks the host plasma membrane to form the virus envelope By feedproxy.google.com Published On :: 2020-04-15 Souad AmiarApr 15, 2020; 0:jlr.ILR120000753v1-jlr.ILR120000753Images in Lipid Research Full Article
ola Ebola virus matrix protein VP40 hijacks the host plasma membrane to form the virus envelope [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-15T13:30:25-07:00 Full Article
ola ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-23T08:30:29-07:00 Full Article
ola Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research] By feedproxy.google.com Published On :: 2020-05-06T13:56:38-07:00 Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species. Full Article
ola Rethinking youth bulge theory in policy and scholarship: incorporating critical gender analysis By feedproxy.google.com Published On :: Thu, 07 May 2020 09:26:03 +0000 7 May 2020 , Volume 96, Number 3 Lesley Pruitt Read online For decades ‘youth bulge’ theory has dominated understandings of youth in mainstream International Relations. Youth bulge theory has also become part of some public media analyses, mainstream political rhetoric, and even officially enshrined in the foreign policy of some states. Through the ‘youth bulge’ lens, youth—especially males—have been presented as current or future perpetrators of violence. However, this article argues that the youth bulge thesis postulated in mainstream IR is based on flawed theoretical assumptions. In particular, supporters of youth bulge theory fail to engage with existing research by feminist IR scholars and thus take on a biological essentialist approach. This has led to theoretical and practical misunderstandings of the roles youth play in relation to conflict, peace and security. These partial and biased understandings have also resulted in less effective policy-making. In critically reflecting on the ‘youth bulge’ thesis, this article argues that applying gender analysis is crucial to understanding the involvement of young people in general—and young men in particular—in conflict. Doing so will contribute to advancing more accurate analysis in scholarship and policy-making. Full Article
ola Macrophage polarization is linked to Ca2+-independent phospholipase A2{beta}-derived lipids and cross-cell signaling in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β–/–) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β–/–, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders. Full Article
ola Problem Notes for SAS®9 - 34294: A missing discrete dependent variable in the selection model together with a OUTPUT statement might cause an Access Violation error By feedproxy.google.com Published On :: Tue, 5 May 2020 13:04:13 EST If the following conditions are met in PROC QLIM: the SELECT option and DISCRETE option are specified in the same MODEL statement or ENDOGENOUS statement the same dependent variable with S Full Article ETS+SAS/ETS
ola Advances in regenerative medicine for otolaryngology/head and neck surgery By feeds.bmj.com Published On :: Wednesday, April 29, 2020 - 09:50 Full Article
ola MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae. Full Article
ola Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure. Full Article
ola An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
ola Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena. Full Article
ola An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
ola Giants agree to deal with infielder Solarte By mlb.mlb.com Published On :: Fri, 15 Feb 2019 17:03:05 EDT Seeking to bring another versatile infielder into the fold, the Giants on Friday agreed to terms with Yangervis Solarte on a Minor League contract with an invitation to Major League Spring Training. Full Article
ola Investigating Violations of International Humanitarian Law By feedproxy.google.com Published On :: Wed, 13 Nov 2019 13:25:01 +0000 Research Event 21 January 2020 - 5:30pm to 7:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Andrew Cayley, Director, Service Prosecuting Authority, UK Ministry of DefenceLarry Lewis, Vice President and Director, Center for Autonomy and Artificial Intelligence, CNAJelena Pejic, Senior Legal Adviser, International Committee of the Red CrossChair: Elizabeth Wilmshurst, Distinguished Fellow, International Law Programme, Chatham House Countries should have adequate systems in place for investigating violations of international humanitarian law, for launching criminal prosecutions for war crimes and for inquiring into responsibility for unlawful actions of national armed forces. There also needs to be proper counting and recording of the civilian casualties of military operations. This event, which will be introduced by the director of the UK Service Prosecuting Authority, Andrew Cayley, will discuss the new report by the International Committee of the Red Cross and the Geneva Academy of International Humanitarian Law, Guidelines on Investigating Violations of International Humanitarian Law: Law, Policy and Good Practice, as well as the problems and challenges associated with recording civilian casualties of armed conflict. This meeting is the third in a series of three commemorating the 70th anniversary of the 1949 Geneva Conventions supported by the British Red Cross. It will be followed by a drinks reception. Department/project International Law Programme, The Limits on War and Preserving the Peace Jacqueline Rowe Programme Assistant, International Law Programme 020 7389 3287 Email Full Article
ola Virtual Roundtable: The End of Globalism? Remaining Interconnected While Under Increased Pressure to Isolate By feedproxy.google.com Published On :: Wed, 25 Mar 2020 14:30:01 +0000 Invitation Only Research Event 30 March 2020 - 1:00pm to 2:00pm Zoom Audio Call Event participants Fred Hochberg, Chairman and President, Export-Import Bank of the United States, 2009 -17Chair: Dr Leslie Vinjamuri, Director, US and the Americas Programme, Chatham House This event is part of the Chatham House Global Trade Policy Forum. We would like to take this opportunity to to thank founding partner AIG and supporting partners Clifford Chance LLP, Diageo plc and EY for their generous support of the forum. Department/project US and the Americas Programme, Global Trade Policy Forum US and Americas Programme Email Full Article
ola Pepsi-Cola responds to COVID-19 By jamaica-gleaner.com Published On :: Fri, 17 Apr 2020 00:14:21 -0500 PEPSI-COLA JAMAICA, whose success has been built on the unwavering support of Jamaicans, is raising the bar in humanitarian leadership by aiding in the local COVID-19 fight through a donation valued at over $15 million The donation, made to the... Full Article
ola International donations to the Ebola virus outbreak: too little, too late? By feeds.bmj.com Published On :: Wed, 04 Feb 2015 11:19:32 +0000 Karen Grépin, assistant professor of global health policy at New York University, has been examining the pledges made by the international community to help fight the ebola virus outbreak - was it really too little, too late? Read her full analysis: http://www.bmj.com/content/350/bmj.h376 Full Article