nuclear

Method for temporary or permanent disposal of nuclear waste

A method of disposing nuclear waste in underground rock formations is presented. The method includes the steps of selecting a land area having a rock formation positioned there-below of a depth able to prevent radioactive material placed therein from reaching the surface and drilling a vertical wellbore from the surface, to a depth ranging between 5,000 feet and 25,000 feet, into the underground rock formation or repository. A plurality of horizontal laterals or horizontal wellbores, ranging in length from 500 feet to 40,000 feet, are drilled from the vertical wellbore into the underground rock formation or repository. Nuclear waste to be stored within these laterals is encapsulated in a special waste canister and these nuclear waste canisters are positioned within the horizontal laterals wherein they are sealed to prevent loss and leakage. Means are also provided by which these canisters are adapted to allow retrievability of the canisters from the wellbore at a later date and to return the waste to the surface for use after retrieval.




nuclear

Method for limiting the degassing of tritiated waste issued from the nuclear industry

A method and device for limiting the degassing of tritiated waste issued from the nuclear industry are provided. The method reduces an amount of generated tritiated hydrogen (T2 or HT) and/or tritiated water (HTO or T2O) including at least one piece of tritiated waste from the nuclear industry. The method includes placing the package in contact with a mixture including manganese dioxide (MnO2) combined with a component that includes silver; and placing the package in contact with a molecular sieve.




nuclear

Dinitroxide-type biradical compounds optimized for dynamic nuclear polarization (DNP)

The present invention relates to the field of organic chemistry and in particular to organic free radicals used as polarizing agents in the technique of Dynamic Nuclear Polarization (DNP), which involves transferring the polarization of electron spins to the nuclei of a compound whose Nuclear Magnetic Resonance (NMR) is being observed. It concerns Dinitroxide-type Biradical polarizing agents characterized by a rigid linkage between the aminoxyl groups of said nitroxide units. This particular structure enables, at low temperatures and high fields, optimal transfer of polarization and optimal enhancement of NMR/MAS signals of the polarized nuclei of the compound studied.




nuclear

Nuclear fuel reprocessing

A spent fuel reprocessing method including the steps of partitioning U and Pu(III) in a solvent by solvent extraction and subsequently polishing the solvent in a neptunium rejection operation for removing Np therefrom. The solvent obtained from the neptunium rejection operation (the polished solvent or NpA solvent product) is then recycled to a U/Pu partitioning operation. The method enables a reduction in solvent feed and solvent effluent volumes.




nuclear

Method for dissolving plutonium or a plutonium alloy and converting it into nuclear fuel

The present invention relates to a process to dissolve plutonium or a plutonium alloy, by placing it in contact with an aqueous dissolution mixture, wherein said dissolution mixture comprises nitric acid, a carboxylic acid with complexing properties with respect to plutonium, and a compound comprising at least one —NH2 radical such as urea. The invention also relates to a process to convert plutonium or a plutonium alloy into plutonium oxide and to manufacture nuclear fuel from said oxide.The invention particularly applies to the dismantling of plutonium contained in nuclear weapons with a view to its use in civilian nuclear reactors, particularly in the form of MOX fuel.




nuclear

Pyrochemical reprocessing method for spent nuclear fuel and induction heating system to be used in pyrochemical reprocessing method

This invention is provided for improvement of corrosion-resistant property of a crucible and for promotion of safety in a pyrochemical reprocessing method for the spent nuclear fuel. The spent nuclear fuel is dissolved in a molten salt placed in the crucible. In a pyrochemical reprocessing method, the nuclear fuel is deposited, and the crucible (2) is heated by induction heating. Cooling media (5, 6) are supplied to cool down, and a molten salt layer (7) is maintained by keeping balance between the heating and the cooling, and a solidified salt layer (8) is formed on inner wall surface of the crucible.




nuclear

Method of separating uranium from irradiated nuclear fuel

The invention provides a method of separating uranium from at least fission products in irradiated nuclear fuel, said method comprising reacting said irradiated nuclear fuel with a solution of ammonium fluoride in hydrogen fluoride fluorinating said reacted irradiated nuclear fuel to form a volatile uranium fluoride compound and separating said volatile uranium fluoride compound from involatile fission products. The invention thus provides a reprocessing scheme for irradiated nuclear fuel. The method is also capable of reacting, and breaking down Zircaloy cladding and stainless steel assembly components. Thus, whole fuel elements may be dissolved as one thereby simplifying procedures over conventional Purex processes.




nuclear

Vol-oxidizer for spent nuclear fuel

A vol-oxidizer of spent nuclear fuel, the spent nuclear fuel is injected to a reaction portion, the reaction portion is connected to a driving portion and oxidizes the spent nuclear fuel by rotating and back-rotating the spent nuclear fuel. The oxidized powder of the spent nuclear fuel is gathered in a discharge portion located in a lower portion of the reaction portion. By providing minute powder particles for recycling and a post process of the spent nuclear fuel, even though a size of an apparatus is small, processing a large amount is possible. Time required for oxidation can be reduced, and the powder is readily discharged by gravity since the apparatus is vertically configured.




nuclear

Separation and receiving device for spent nuclear fuel rods

Disclosed is a separation and receiving apparatus for a spent nuclear fuel rod. The spent nuclear fuel rod is mounted and downwardly transferred by a pin. At this time, a blade peels the hull of the spent nuclear fuel rod. The hull and a pellet positioned therein are separated by a separator. The peeled hull and pellet are each received in respective receiving vessels. Accordingly, since the hull and pellet made of uranium oxide (UO2) may be automatically separated and received in each respective vessel, safety and automation may be guaranteed.




nuclear

Nuclear fuel cell repair tool

A method of repairing a nuclear fuel cell wall and tools useful for performing that repair are described. A repair tool may be used to align a jack near a region of a bent or distorted structural component of nuclear fuel cell and that jack may be used to apply a force to that structural component. Application of such a force may serve to bend the structural component of a nuclear fuel cell in a way to restore the structural component to its position before damage occurred. The repair tool includes a way of mounting that tool to a fuel cell, positioning elements to align the tool near a structural deformation or bent element and a jack that may be use to apply a force to at least one structural component in a fuel cell.




nuclear

Nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Illustrative embodiments provide a nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system.




nuclear

Compositions and methods for treating nuclear fuel

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.




nuclear

Method for designing a fuel assembly optimized as a function of the stresses in use in light-water nuclear reactors, and resulting fuel assembly

A method for design of a fuel assembly for nuclear reactors, including structural components made from zirconium alloy: the mean uniaxial tensile or compressive stress to which the components are subjected during the assembly life is calculated, the zirconium alloy of which the components are made is selected according to the following criteria: those components subjected to an axial or transverse compressive stress of between −10 et −20 MPa are made from an alloy with a content of Sn between Sn=(=0.025σ−0.25)% and Sn=−0.05σ%: those components subjected to such a stress of between 0 et −10 MPa are made from an alloy the Sn content of which is between Sn=traces and Sn=(0.05σ+1)%: those components subjected to such a stress of between 0 and +10 MPa are made from an alloy the Sn content of which is between Sn=0.05% and Sn=(0.07σ+1)%: and those components subjected to such a stress of between +10 and +20 MPa are made from an alloy the content of SN of which is between 0.05% and 1.70%. A fuel assembly made according to the method.




nuclear

Compositions and methods for treating nuclear fuel

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.




nuclear

Storage rack arrangement for the storage of nuclear fuel elements

A storage rack arrangement (10) for the storage of nuclear fuel elements in a storage pool includes at least two storage racks (1.1-1.3) which each contain a plurality of vertical channels (9) arranged next to one another for the reception of the fuel elements, with positioning elements (6) being provided at the storage racks at the bottom. The storage racks are connected to one another at the top and the storage rack arrangement (10) additionally includes one or more base plates (2.1-2.3) which are provided with positioning members (8) which fit with the positioning elements (6) of the storage racks (1.1-1.3) and which, together with the positioning elements, position the storage racks with respect to the base plate or base plates (2.1-2.3) to prevent a displacement of the storage racks on the base plate or plates.




nuclear

Nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Illustrative embodiments provide a nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system.




nuclear

Method for measuring the neutron flux in the core of a nuclear reactor using a cobalt detector and associated device

A method for measuring the neutron flux in the core of a nuclear reactor, the method including several steps recurrently performed at instants separated by a period, the method comprising at each given instant the following steps: acquiring a total signal by a cobalt neutron detector placed inside the core of the reactor; assessing a calibration factor representative of the delayed component of the total signal due to the presence of cobalt 60 in the neutron detector; assessing a corrected signal representative of the neutron flux at the detector from the total signal and from the calibration factor; assessing a slope representative of the time-dependent change of the calibration factor between the preceding instant and the given instant; the calibration factor at the given instant being assessed as a function of the calibration factor assessed at the preceding instant, of the slope, and of the time period separating the given instant from the preceding instant.




nuclear

Nuclear fission reactor, vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system

Disclosed embodiments include methods of assembling a vented nuclear fission fuel module. Given by way of non-limiting example and not of limitation, an illustrative method of assembling a vented nuclear fission fuel module includes receiving a nuclear fission fuel element capable of generating a gaseous fission product. A valve body is coupled to the nuclear fission fuel element, and the valve body defines a plenum therein for receiving the gaseous fission product. A valve is disposed in communication with the plenum for controllably venting the gaseous fission product from the plenum. A flexible diaphragm is coupled to the valve for moving the valve. A cap is mounted on the valve, and a manipulator extendable to the cap for manipulating the cap is received.




nuclear

Mutant receptors and their use in a nuclear receptor-based inducible gene expression system

This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to novel substitution mutant receptors and their use in a nuclear receptor-based inducible gene expression system and methods of modulating the expression of a gene in a host cell for applications such as gene therapy, large scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.




nuclear

Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

A zirconium alloy nuclear reactor cylindrical cladding has an inner Zr substrate surface (10), an outer volume of protective material (22), and an integrated middle volume (20) of zirconium oxide, zirconium and protective material, where the protective material is applied by impaction at a velocity greater than 340 meters/second to provide the integrated middle volume (20) resulting in structural integrity for the cladding.




nuclear

Integral helical coil pressurized water nuclear reactor

An integral pressurized water nuclear reactor for the production of steam utilizing a helical coil steam generator, a plurality of internal circulation pumps, and an internal control rod drive mechanism structure.




nuclear

Nuclear power plant using nanoparticles in emergency systems and related method

A nuclear power plant with an improved cooling system using nanoparticles in solid or fluid form is provided. The nanoparticles are delivered in locations such as the cold leg accumulator and high and low pressure pumps of an emergency core cooling system. Motor driven valves and pressurization can aid in the delivery. Methods for providing the nanoparticles are also provided.




nuclear

Apparatus, method and program for monitoring nuclear thermal hydraulic stability of nuclear reactor

An apparatus for monitoring nuclear thermal hydraulic stability of a nuclear reactor, contains: a calculation unit configured to calculate a stability index of a nuclear thermal hydraulic phenomenon based on nuclear instrumentation signals, the signals being outputted by a plurality of nuclear instrumentation detectors placed at regular intervals in a reactor core; a simulation unit configured to simulate the nuclear thermal hydraulic phenomenon based on a physical model by using information on an operating state of the nuclear reactor as an input condition; a limit value updating unit configured to update a limit value of the nuclear thermal hydraulic phenomenon based on a result of the simulation; and a determination unit configured to determine, based on the stability index and the limit value, whether or not to activate a power oscillation suppressing device.




nuclear

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Compact nuclear reactor

A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.




nuclear

Uranium dioxide nuclear fuel containing Mn and Al as additives and method of fabricating the same

UO2 nuclear fuel pellets are fabricated by adding additive powder comprising Mn compound and Al compound into UO2 powder.




nuclear

Lid frame for nuclear fuel assembly shipping container and shipping container for nuclear fuel assemblies

A lid frame for a nuclear fuel assembly shipping container and a shipping container for nuclear fuel assemblies are provided. The shipping container can include a lower container in which a cradle is installed, an upper container detachably coupled to the lower container, and a base frame coupled to the cradle with at least one nuclear fuel assembly placed thereon. The lid frame can include a plurality of supports installed apart from each other so as to surround the nuclear fuel assembly placed on the base frame, and a plurality of clamps separated from each other, coupled to the plurality of supports perpendicular to the plurality of supports, rotatably hinged to the base frame, and configured to clamp the nuclear fuel assembly. The lid frame safely protects the nuclear fuel assembly that is being transported.




nuclear

Chemistry probe assemblies and methods of using the same in nuclear reactors

Electrochemical corrosion potential (ECP) probe assemblies may be used to monitor ECP of materials due to coolant chemistry in an operating nuclear reactor. Example embodiment assemblies include at least one ECP probe that detects ECP of potentially several different materials, a structural body providing a fluid flow path for the coolant over the ECP probes, and a signal transmitter that transmits or carries ECP data to an external receiver. The ECP probes may be of any number and/or type, so as to detect ECP for different component materials, including stainless steel, a zirconium alloys, etc. The ECP probes may further detect ECP due to ion concentration, pH, etc. The ECP data may be transmitted through wired or wireless signal transmitters. Example methods include installing and using example embodiment ECP probe assemblies in nuclear reactors and facilities.




nuclear

System and method for reclaiming energy from heat emanating from spent nuclear fuel

The present invention provides a system and method for reclaiming energy from the heat emanating from spent nuclear fuel contained within a canister-based dry storage system. The inventive system and method provides continuous passive cooling of the loaded canisters by utilizing the chimney-effect and reclaims the energy from the air that is heated by the canisters. The inventive system and method, in one embodiment, is particularly suited to store the canisters below-grade, thereby utilizing the natural radiation shielding properties of the sub-grade while still facilitating passive air cooling of the canisters. In another embodiment, the invention focuses on a special arrangement of the spent nuclear fuel within the canisters so that spent nuclear fuel that is hotter than that which is typically allowed to be withdrawn from the spent fuel pools can be used in a dry-storage environment, thereby increasing the amount energy that can be reclaimed.




nuclear

Method and system for in situ depositon and regeneration of high efficiency target materials for long life nuclear reaction devices

Aspects of the invention relate to several methods to deposit and regenerate target materials in neutron generators and similar nuclear reaction devices. In situ deposition and regeneration of a target material reduces tube degradation of the nuclear reaction device and covers impurities on the surface of the target material at the target location. Further aspects of the invention include a method of designing a target to generate neutrons at a high efficiency rate and at a selected neutron energy from a neutron energy spectrum.




nuclear

Sheathed, annular metal nuclear fuel

A sheathed, annular metal fuel system is described. A metal fuel pin system is described that includes an annular metal nuclear fuel alloy. A sheath may surround the metal nuclear fuel alloy, and a cladding may surround the sheath. A gas plenum may also be present. Mold arrangements and methods of fabrication of the sheathed, annular metal fuel are also described.




nuclear

System and method for annealing nuclear fission reactor materials

Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.




nuclear

Nuclear fuel assembly tie plate, upper nozzle and nuclear fuel assembly comprising such a tie plate

A nuclear fuel assembly tie plate is provided. The nuclear fuel assembly tie plate is formed by intersecting strips delimiting between them tubular guide cells each for allowing a fuel rod to extend through the tie plate. The strips delimit between them tubular flow cells separate from the guide cells, each flow cell for allowing coolant flow through the tie plate. Guide cells and flow cells are arranged at nodes of a lattice defined by a repeating pattern comprising four corner nodes in a square lattice arrangement and a central node at the center of the four corner nodes, with one guide cell at each corner nodes, separated by a pair of parallel spaced strips intersecting a pair of parallel spaced strips, the two pairs of strips delimiting a four-walled central flow cell at the center node.




nuclear

Nuclear fuel assembly with a lock-support spacer grid

An improved grid for a nuclear reactor fuel assembly that has an egg-crate base grid as the primary support structure with each support cell of the base grid that supports a fuel rod having a lock-support sleeve that is rotatable within the support cell between a first and second orientation. In the first orientation the lock-support sleeve fits loosely within the support cell of the base grid and respectively, loosely receives the fuel rods that are loaded therein. The lock-support sleeves are then rotated to a second orientation that locks the fuel rods axially within the support cells.




nuclear

Nonconjugated conductive polymers for protection against nuclear radiation including radioactive iodine

Nonconjugated conductive polymers absorb radioactive iodine, therefore are useful for protection against nuclear radiation. These polymers have at least one double bond per repeat unit. The ratio of the number of double bonds to the total number of bonds along the polymer chain is less than half. Examples of nonconjugated conductive polymers include: cis-1,4-polyisoprene (natural rubber), trans-1,4-polyisoprene (gutta percha), polybutadiene, polydimethyl butadiene, poly(b-pinene), styrene butadiene rubber (SBR), polyalloocimene, polynorbornene and many others. Through interaction with iodine atoms the double bonds in the nonconjugated polymers transform into radical cations leading to a dark color. The iodine atoms remain (immobile) bound to the polymer chain through the charge-transfer interaction, these polymers are very inexpensive and can be easily processed into any shape, structure and size. Therefore, these are useful for protection against nuclear radiation including radioactive iodine. These polymers when used as a thick cover can provide safe storage of nuclear waste materials including spent fuel rods.




nuclear

Transverse in-core probe monitoring and calibration device for nuclear power plants, and method thereof

A method and apparatus for the calibration of neutron flux monitoring devices used in a nuclear reactor core. The apparatus includes a transverse in-core probe (TIP) cable with a neutron absorber located a fixed distance apart from a TIP detector. The neutron absorber may be passed within close proximity of the neutron flux monitoring device such that a perceived drop in measured neutron flux occurs, whereupon the cable may be repositioned relative to the monitoring device to ensure that the TIP detector is within close proximity of the monitoring device for purposes of calibrating the monitoring device.




nuclear

Nuclear fuel cladding with high heat conductivity and method for making same

The invention relates to a nuclear fuel cladding totally or partially made of a composite material with a ceramic matrix containing silicon carbide (SiC) fibers as a matrix reinforcement and an interphase layer provided between the matrix and the fibers, the matrix including silicon carbide as well as at least one of the following additional carbides: titanium carbide (TiC), zirconium carbide (Zrc), and ternary titanium silicon carbide (Ti3SiC2). When irradiated and at temperatures of between 800° C. and 1200° C., said cladding can mechanically maintain the nuclear fuel within the cladding while enabling optimal thermal-energy transfer towards the coolant. The invention also relates to a method for making the nuclear fuel cladding.




nuclear

Nuclear reactor green and sintered fuel pellets, corresponding fuel rod and fuel assembly

A sintered fuel pellet for a water nuclear reactor fuel rod including a peripheral wall extending along a central axis and two end faces. At least one of the end faces includes at least a first chamfer extending from the peripheral wall towards the central axis with a first non-zero slope with respect to a plane perpendicular to the central axis and a second chamfer extending from the first chamfer towards the central axis with a second non-zero slope with respect to a plane perpendicular to the central axis, wherein the first slope is different from the second slope.




nuclear

Compact nuclear reactor

A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.




nuclear

Compact nuclear reactor with integral steam generator

In an illustrative embodiment, a pressurized water nuclear reactor (PWR) includes a pressure vessel (12, 14, 16), a nuclear reactor core (10) disposed in the pressure vessel, and a vertically oriented hollow central riser (36) disposed above the nuclear reactor core inside the pressure vessel. A once-through steam generator (OTSG) (30) disposed in the pressure vessel includes vertical tubes (32) arranged in an annular volume defined by the central riser and the pressure vessel. The OTSG further includes a fluid flow volume surrounding the vertical tubes and having a feedwater inlet (50) and a steam outlet (52). The PWR has an operating state in which feedwater injected into the fluid flow volume at the feedwater inlet is converted to steam by heat emanating from primary coolant flowing inside the tubes of the OTSG, and the steam is discharged from the fluid flow volume at the steam outlet.




nuclear

Connection device for a system for filling jars for the production of nuclear fuel

A system for filling a jar with powdery material, for example for the manufacture of nuclear fuel, including a device for connection between the jar and a material feed system, where the device includes: a stationary connection portion connected to the feed system,a connection portion which moves relative to the stationary connection portion intended to be connected to the container's filling orifice, where the moving connection portion includes in the area of a downstream end a lip seal to achieve a tight connection by contact with the contours of the jar's filling orifice and where the said downstream end is connected to the stationary connection portion by a bellows so as to provide mechanical disengagement between the downstream end of the moving connection portion and the stationary connection portion.




nuclear

Method for filtration of harmful gas effluents from a nuclear power plant

A method for filtration of harmful gas effluents from a nuclear power plant including the steps of providing a gas effluent from a nuclear power plant, the effluent including a mixture of gases; filtering the harmful, notably radioactive elements from the gas effluent by membrane separation through at least one membrane, the membrane separation being achieved by sifting, sorption and/or diffusion; storing the filtered harmful elements in storage reservoirs, and discharging the processed gas effluent to the atmosphere.




nuclear

Dressing device for a grinding wheel and its use in a centreless nuclear fuel pellet grinder

The invention relates to a device for dressing a grinding wheel, comprising a sleeve to hold a corundum rod laterally and to guide it along its longitudinal axis, a ram to apply constant thrust force onto the corundum rod held in place and guided in the sleeve, to bring it into contact with the grinding wheel, means of rigidly connecting the ram shaft to the end of the corundum rod, and linear guide means for the sleeve for translating the corundum rod parallel to the axis of the grinding wheel while keeping the rod pressed against the grinding wheel with a constant force. Application to a centerless grinder in which the grinding wheel is used to grind nuclear fuel pellets.




nuclear

Apparatus for removing heavy polynuclear aromatic compounds from a hydroprocessed stream

An improved apparatus strips HPNA's from hydroprocessed streams in a fractionation column having a split shell configuration. Only one vapor stripping feed is required to the split shell of the fractionation column. The resulting reduction in steam requirement provides a superior fractionation in the column.




nuclear

Deja Nuke: Return of the Nuclear Threat

With the threat of nuclear war once again a part of the national conversation, Reveal looks at nuclear threats both foreign and domestic. This episode takes listeners to Iran and finds out what life is actually like inside North Korea.

As the Trump administration pushes for the biggest increase in spending on nuclear weapons since the Cold War, Reveal explores how they’ve changed. Instead of annihilation, think “flexible” nuclear weapons that can threaten “limited” nuclear war. That’s the idea anyway.


Head over to revealnews.org for more of our reporting.

Follow us on Facebook at fb.com/ThisIsReveal and on Twitter @reveal.

And to see some of what you’re hearing, we’re also on Instagram @revealnews.




nuclear

Official: US must move ahead with nuclear weapons work


ALBUQUERQUE, N.M. (AP) — A top nuclear security official says the U.S. must move ahead with plans to ramp up production of key components for the nation’s nuclear arsenal despite the challenges presented by the coronavirus. Federal officials have set a deadline of 2030 for increased production of the plutonium cores used in nuclear weapons. […]




nuclear

Official: US must move ahead with nuclear weapons work


ALBUQUERQUE, N.M. (AP) — A top nuclear security official says the U.S. must move ahead with plans to ramp up production of key components for the nation’s nuclear arsenal despite the challenges presented by the coronavirus. Federal officials have set a deadline of 2030 for increased production of the plutonium cores used in nuclear weapons. […]




nuclear

How far are we from a nuclear fusion future?

The hope of nuclear fusion is the dream of a fossil-fuel free future - of limitless baseload power. Enthusiasts say fusion offers all the benefits of nuclear energy without the dangers. In theory and in practice fusion energy is already a reality, but getting the economics right is proving much more difficult than imagined.




nuclear

Nuclear reactor and steelworks plan once considered for pristine beaches of Jervis Bay

Jervis Bay one of Australia's world-renowned coastal tourist hotspots, celebrated for its idyllic white beaches, nearly became home to Australia's first nuclear power plant.




nuclear

Nuclear waste site selection process triggers mental health concerns, business boycotts and division, FOI documents reveal

FOI documents also reveal the Federal Government knows the process is creating division in small towns and causing some businesses to be boycotted.




nuclear

Outback WA council keeps hand raised for nuclear waste facility, as legal action halts progress on SA sites

Leonora, a small town in the West Australian Goldfields, is being touted as a suitable location for an underground, low and intermediate-level nuclear waste storage facility.