character

Did You Know? Mohanlal Named His Character From This Yesteryear Blockbuster!

Mohanlal, the complete actor is best known for the unique touch he gives to every character he plays, with his exceptional acting skills. Interestingly, Mohanlal always makes sure to give a personal touch to his characters with some special inputs. Recently




character

Paatal Lok: Everything You Need To Know About The Crime Thriller Characters

Amazon Prime Video recently released the trailer of the upcoming series Paatal Lok, and has now shared details and posters of each character. Starring Jaideep Ahlawat, Neeraj Kabi, Abhishek Banerjee, Jagjeet Sandhu, Aasif Khan and others, the show will release on




character

With Every Movie, Shraddha Kapoor Brings A Relatable Story And A Relatable Character

Shraddha Kapoor is an actress who just doesn't deliver box office hit films but also heart-winning characters which are relatable and we've all been through a moment where we have recalled Shraddha's some character while we are a certain situation. Her




character

Did You Know? Mohanlal Named His Character From This Yesteryear Blockbuster!

Mohanlal, the complete actor is best known for the unique touch he gives to every character he plays, with his exceptional acting skills. Interestingly, Mohanlal always makes sure to give a personal touch to his characters with some special inputs. Recently




character

Newly invented portable field telegraph: with an illustration of the principle of its construction and directions for use: also containing the vocabulary of the several characters formed / invented and arranged by A.W. Sleigh

Archives, Room Use Only - UG590.S54 1838




character

'Completely surprised to see him do a character like that so beautiful...

'Completely surprised to see him do a character like that so beautiful...




character

CSS character escape sequences

When writing CSS for markup with weird class or id attribute values, you need to consider some rules. For example, you can’t just use ## { color: #f00; } to target the element with id="#". Instead, you’ll have to escape the weird characters (in this case, the second #). Doing so will cancel the meaning of special CSS characters and allows you to refer to characters you cannot easily type out, like crazy Unicode symbols.




character

JavaScript character escape sequences

Having recently written about character references in HTML, I figured it would be interesting to look into JavaScript character escapes as well.




character

JavaScript’s internal character encoding: UCS-2 or UTF-16?

Does JavaScript use UCS-2 or UTF-16 encoding? Since I couldn’t find a definitive answer to this question anywhere, I decided to look into it. The answer depends on what you’re referring to: the JavaScript engine, or JavaScript at the language level.




character

Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.




character

Characterization of the soft X-ray spectrometer PEAXIS at BESSY II

The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.




character

A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence

Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating.




character

Nanocrystalline materials: recent advances in crystallographic characterization techniques

This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis.




character

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.




character

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




character

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di­aqua­[2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole]di­thio­cyanato­nickel(II)

The reaction of 2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole (4-pox) and thio­cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa­hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol­ecules. In the crystal, the mol­ecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




character

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




character

Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis­[4-(di­methyl­amino)­pyridinium] di-μ-chlorido-bis[di­chlorido­mercurate(II)]

The title mol­ecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(di­methyl­amino)­pyridinium cations (A and B) and two half hexa­chlorido­dimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(di­methyl­amino)­pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl inter­actions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.




character

The first structural characterization of the proton­ated aza­cyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­deca­ne] bis­(per&

The asymmetric unit of the title com­pound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated per­chlorate anion and two per­chlorate ions as counter-anions. The metal ion is coordinated in a tetra­gonally distorted octa­hedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the per­chlorate anion and the carbonyl O atom of the protonated carb­oxy­lic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxyl­ate and average 2.62 (7) Å for disordered per­chlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carb­oxy­lic acid group of the cation to a neighbouring com­plex unit results in the formation of infinite chains running along the b-axis direction, which are cross­linked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the per­chlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.




character

Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis­(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexacosa­ne)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10,

The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octa­hedral coordination environment. The complex mol­ecule crystallizes with two tetra­hydro­furan solvent mol­ecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.




character

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua­dichlorido­{N-[(pyridin-2-yl)methyl­idene]aniline}copper(II) monohydrate

The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol­ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter­acts through a strong hydrogen bond with a water mol­ecule of crystallization. In the crystal, mol­ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter­act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol­ecules. The mol­ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




character

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile

The title compound, C7H3F5INS, a penta­fluoro­sulfanyl (SF5) containing arene, was synthesized from 4-(penta­fluoro­sulfan­yl)benzo­nitrile and lithium tetra­methyl­piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter­mediates that have not been demonstrated using previous methods. The mol­ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta­fluoro­sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the penta­fluoro­sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol­ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I inter­actions as well as out-of-plane F⋯C inter­actions are observed. According to the Hirshfeld analysis, the principal inter­molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).




character

Crystal structure, characterization and Hirshfeld analysis of bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.




character

Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach

The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors.




character

Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bis­muth thin films

The preferred orientation growth characteristics and surface roughness of polycrystalline bis­muth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices.




character

Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays

Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.




character

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy

This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/sil­oxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres.




character

Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.




character

Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography

A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.




character

Synthesis and crystallographic, spectroscopic and computational characterization of the effects of O—R substituents on the torsional[torsion] angle of 3,3',4,4'-substituted bi­phenyls

The synthesis, characterization and study of structures from a series of bi­phenyls substituted at positions 3, 3', 4 and 4' with groups connected to the bi­phenyl core through oxygen atoms are presented here. The molecular conformation is extensively studied both in the solid as well as in the liquid state, and the effect of different actors (such as packing and chain length) on the torsion angle between aromatic rings is analyzed.




character

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The structure of the Pseudomonas aeruginosa T6SS PldB immunity protein PA5086 is reported at 1.9 Å resolution. Comparison of PA5086 with its homologs PA5087 and PA5088 showed great similarities in sequence and structure, but vast divergences in electrostatic potential surfaces.




character

Crystal structure and characterization of a new copper(II) chloride dimer with meth­yl(pyridin-2-yl­methyl­idene)amine

The new copper(II) complex [CuLCl2]2, where L is a product of Schiff base condensation between methyl­amine and 2-pyridine­carbaldehyde, is built of discrete centrosymmetric dimers.




character

Crystal structure and characterization of a new copper(II) chloride dimer with methyl(pyridin-2-ylmethylidene)amine

The new copper(II) complex, namely, di-μ-chlorido-bis{chlorido[methyl(pyridin-2-ylmethylidene)amine-κ2N,N']copper(II)}, [Cu2Cl4(C7H8N2)2], (I), with the ligand 2-pyridylmethyl-N-methylimine (L, a product of Schiff base condensation between methylamine and 2-pyridinecarbaldehyde) is built of discrete centrosymmetric dimers. The coordination about the CuII ion can be described as distorted square pyramidal. The base of the pyramid consists of two nitrogen atoms from the bidentate chelate L [Cu—N = 2.0241 (9), 2.0374 (8) Å] and two chlorine atoms [Cu—Cl = 2.2500 (3), 2.2835 (3) Å]. The apical position is occupied by another Cl atom with the apical bond being significantly elongated at 2.6112 (3) Å. The trans angles of the base are 155.16 (3) and 173.79 (2)°. The Cu...Cu separation in the dimer is 3.4346 (3) Å. In the crystal structure, the loosely packed dimers are arranged in stacks propagating along the a axis. The X-band polycrystalline 77 K EPR spectrum of (I) demonstrates a typical axial pattern characteristic of mononuclear CuII complexes. Compound (I) is redox active and shows a cyclic voltammetric response with E1/2 = −0.037 V versus silver–silver chloride electrode (SSCE) assignable to the reduction peak of CuII/CuI in methanol as solvent.




character

Conversion of 3-amino-4-aryl­amino-1H-iso­chromen-1-ones to 1-aryl­iso­chromeno[3,4-d][1,2,3]triazol-5(1H)-ones: synthesis, spectroscopic characterization and the structures of four products and one ring-opened derivative

An efficient synthesis of 1-aryl­isochromeno[3,4-d][1,2,3]triazol-5(1H)-ones, involving the diazo­tization of 3-amino-4-aryl­amino-1H-isochromen-1-ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The mol­ecules of 1-phenyl­isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H9N3O2, (I), are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds, while the structures of 1-(2-methyl­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C16H11N3O2, (II), and 1-(3-chloro­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the mol­ecules into simple chains, which are further linked into sheets by π-stacking inter­actions in (II) but not in (III). In the structure of 1-(4-chloro­phen­yl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (IV), isomeric with (III), a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. When com­pound (II) was exposed to a strong acid in methanol, qu­anti­tative conversion occurred to give the ring-opened transesterification product methyl 2-[4-hy­droxy-1-(2-methyl­phen­yl)-1H-1,2,3-triazol-5-yl]benzoate, C17H15N3O3, (V), where the mol­ecules are linked by paired O—H⋯O hydrogen bonds to form centrosymmetric dimers.




character

Synthesis of N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones and their conversion to N-substituted (E)-3-(2-aryl-2-oxo­ethyl­idene)indolin-2-ones: synthetic sequence, spectroscopic characterization and structures of

An operationally simple and time-efficient approach has been developed for the synthesis of racemic N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones by a piperidine-catalysed aldol reaction between aryl methyl ketones and N-alkyl­isatins. These aldol products were used successfully as strategic inter­mediates for the preparation of N-substituted (E)-3-(2-hetaryl-2-oxo­ethyl­idene)indolin-2-ones by a stereoselective dehydration reaction under acidic conditions. The products have all been fully characterized by 1H and 13C NMR spectroscopy, by mass spectrometry and, for a representative selection, by crystal structure analysis. In each of (RS)-1-benzyl-3-hy­droxy-3-[2-(4-meth­oxy­phen­yl)-2-oxoeth­yl]indolin-2-one, C24H21NO4, (Ic), and (RS)-1-benzyl-3-{2-[4-(di­methyl­amino)­phen­yl]-2-oxoeth­yl}-3-hy­droxy­indolin-2-one, C25H24N2O3, (Id), inversion-related pairs of mol­ecules are linked by O—H⋯O hydrogen bonds to form R22(10) rings, which are further linked into chains of rings by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in (Ic) and by C—H⋯π(arene) hydrogen bonds in (Id). The mol­ecules of (RS)-1-benzyl-3-hy­droxy-3-[2-oxo-2-(pyridin-4-yl)eth­yl]indolin-2-one, C22H18N2O3, (Ie), are linked into a three-dimensional framework structure by a combination of O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. (RS)-3-[2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoeth­yl]-1-benzyl-3-hy­droxy­indolin-2-one, C24H19NO5, (If), crystallizes with Z' = 2 in the space group Poverline{1} and the mol­ecules are linked into com­plex sheets by a combination of O—H⋯O, C—H⋯O and C—H⋯π(arene) hydro­gen bonds. In each of (E)-1-benzyl-3-[2-(4-fluoro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H16FNO2, (IIa), and (E)-1-benzyl-3-[2-oxo-2-(thiophen-2-yl)ethylidene]indolin-2-one, C21H15NO2S, (IIg), the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond, while those of (E)-1-benzyl-3-[2-oxo-2-(pyridin-4-yl)ethyl­idene]indolin-2-one, C22H16N2O2, (IIe), are linked by three C—H⋯O hydrogen bonds to form sheets which are further linked into a three-dimensional structure by C—H⋯π(arene) hydrogen bonds. There are no hydrogen bonds in the structures of either (E)-1-benzyl-3-[2-(4-meth­oxy­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C24H19NO3, (IIc), or (E)-1-benzyl-5-chloro-3-[2-(4-chloro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H15Cl2NO2, (IIh), but the mol­ecules of (IIh) are linked into chains of π-stacked dimers by a combination of C—Cl⋯π(arene) and aromatic π–π stacking inter­actions.




character

Odd characters added after carriage return




character

Plant characteristics can predict ecosystem services provided by green roofs

Simple characteristics of plant species - such as height or leaf size - can be used to predict the ecosystem services provided by the green roofs they grow on, a new study suggests. The researchers suggest that their method could be used to screen the thousands of potential plant species in order to optimize green roof design.




character

Flash floods in Europe characterised

Improved understanding of flash flooding could be achieved through post-flood observations, re-examination of weather radar data and the use of combined weather and hydrological modelling, according to the recent HYDRATE research project. This information can be used to improve flash flood forecasting.




character

Characterising particulate matter from sites across Europe

A recent study has analysed the physical and chemical characteristics of particulate matter (PM) from 60 sites across Europe. The results suggest there is no single ratio between PM2.5 and PM10 mass concentrations for all the sites, and that PM mass cannot be directly related to the concentration of particle numbers.




character

Characterisation of ultrafine particles from a waste-incinerator plant

Ultrafine particles emitted from a waste incinerator plant in Italy have been characterised in a recent study. The results suggest that a fabric filter was efficient at cleaning particulate matter from the exhaust gases. Data produced by the study could go on to be used by scientists studying the potential health impacts of ultrafine particles.




character

Popular CBeebies characters come to the Radlett Centre in new show for children

The enchanting world of CBeebies’ hit animated series Sarah & Duck comes to life on stage in Radlett this week. Featuring a host of characters from the BAFTA Award-winning TV show, Sarah & Duck’s Big Top Birthday plays three performances at the Radlett Centre on Friday, March 6, and Saturday, March 7.




character

Eccentric characters emerge at Fringe Fest

Performers take to the streets of Edinburgh in one of the largest art festivals in the world, Festival Fringe.



  • Arts & Culture

character

Optical Character Recognition Sensor

Even if printing is distorted or unclear due to conveyor line conditions, a unique reading method with a built-in dictionary enables stable reading of characters.(FQ2-CH Series)




character

Growing Kids of Character

Character Development is all about wanting the best for children, helping them develop strong ethics and high moral standards. But it's not easy to grow caring, trustworthy, honest kids in today's world.




character

Interesting characters have made interesting bets over the years

Interesting characters have made interesting bets over the years. Were they risking it all, or was there method in their maneuvers?




character

Alfred Imageworks to Embark on Global Expansion with 'CGI Character Animation' Will Participate in Overseas Exhibitions such as 'MIPCOM' and 'AFM'

'Johnny Express' full-length animation with global animation production company 'Illumination' - Activities such as 'The First Step' planning for theater animations stand out




character

Delta-L+ PCB Characterization Solution

Advanced Interconnect Test Tool (AITT) Makes SI Analysis Easy




character

NuWave Solutions Announces Winners of Its Third InNuVation Hackathon Solution -"Anchorage Characterization"

NuWave's "Anchorage Characterization" Hackathon challenges employees to analyze Automated Identification System (AIS) data to provide intelligence about ships delivering goods to ports around the world




character

LearnKey Releases 2017 Career Readiness &amp; Character Building Courseware

Company cites more demand for video based training in areas of: Customer Service, Workplace Etiquette, Job Readiness Skills and Digital Smarts.




character

Build Your Character (at Least for a Day)

Tiffany Shlain, filmmaker, on why we need more time to develop our inner selves.