ba

Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics

ABSTRACT

The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant—N-acetyl cysteine (NAC)—or with inhibitors of host factors—galectins and Hsp90—attenuated HIV-1 reactivation by M. tuberculosis-specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies.

IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities.




ba

Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions

ABSTRACT

Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.

IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets.




ba

A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates

ABSTRACT

Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.

IMPORTANCE Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation.




ba

Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements

ABSTRACT

Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.

IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.




ba

Tracking a Global Threat: a New Genotyping Method for Candida auris

ABSTRACT

Over the past decade, Candida auris has emerged as an urgent threat to public health. Initially reported from cases of ear infections in Japan and Korea, C. auris has since been detected around the world. While whole-genome sequencing has been extensively used to trace the genetic relationships of the global emergence and local outbreaks, a recent report in mBio describes a targeted genotyping method as a rapid and inexpensive method for classifying C. auris isolates (T. de Groot, Y. Puts, I. Berrio, A. Chowdhary, and J. F. Meis, mBio 11:e02971-19, https://doi.org/10.1128/mBio.02971-19, 2020).




ba

Barrier-to-Autointegration Factor 1 Protects against a Basal cGAS-STING Response

ABSTRACT

Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, including Oas2, Rsad2 (viperin), Ifit1, and ISG15. The phenotype in Banf1-deficient cells occurred through a cGAS-, STING-, and IRF3-dependent signaling axis, was associated with reduced infection of RNA and DNA viruses, and was reversed in Banf1 complemented cells. Confocal microscopy and biochemical studies revealed that a loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline. Our study identifies an undescribed role for Banf1 in regulating the levels of cytoplasmic DNA and cGAS-dependent ISG homeostasis and suggests possible therapeutic directions for promoting or inhibiting cell-intrinsic innate immune responses.

IMPORTANCE Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol.




ba

More than Simple Parasites: the Sociobiology of Bacteriophages and Their Bacterial Hosts

ABSTRACT

Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections.




ba

Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport

ABSTRACT

Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria.

IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.




ba

Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

ABSTRACT

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.




ba

Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pili and S-Layer Glycosylation Patterns

ABSTRACT

The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius. Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination.

IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.




ba

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




ba

Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor {alpha} and {beta} Repertoires

ABSTRACT

Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.

IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.




ba

Structural Basis of Ca2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins

ABSTRACT

The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free -amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis. The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.

IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.




ba

A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim

ABSTRACT

Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.

IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.




ba

Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution

ABSTRACT

A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy.

IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.




ba

Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain

ABSTRACT

Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.

IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.




ba

The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

ABSTRACT

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis. Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.

IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.




ba

Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance

ABSTRACT

Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE.

IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE.




ba

A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region

ABSTRACT

Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication.

IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV.




ba

Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts

ABSTRACT

Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.

IMPORTANCE Mycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli. Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.




ba

Protein-Mediated and RNA-Based Origins of Replication of Extrachromosomal Mycobacterial Prophages

ABSTRACT

Temperate bacteriophages are common and establish lysogens of their bacterial hosts in which the prophage is stably inherited. It is typical for such prophages to be integrated into the bacterial chromosome, but extrachromosomally replicating prophages have been described also, with the best characterized being the Escherichia coli phage P1 system. Among the large collection of sequenced mycobacteriophages, more than half are temperate or predicted to be temperate, most of which code for a tyrosine or serine integrase that promotes site-specific prophage integration. However, within the large group of 621 cluster A temperate phages, ~20% lack an integration cassette, which is replaced with a parABS partitioning system. A subset of these phages carry genes coding for a RepA-like protein (RepA phages), which we show here is necessary and sufficient for autonomous extrachromosomal replication. The non-RepA phages appear to replicate using an RNA-based system, as a parABS-proximal region expressing a noncoding RNA is required for replication. Both RepA and non-RepA phage-based plasmids replicate at one or two copies per cell, transform both Mycobacterium smegmatis and Mycobacterium tuberculosis, and are compatible with pAL5000-derived oriM and integration-proficient plasmid vectors. Characterization of these phage-based plasmids offers insights into the variability of lysogenic maintenance systems and provides a large suite of plasmids for actinobacterial genetics that vary in stability, copy number, compatibility, and host range.

IMPORTANCE Bacteriophages are the most abundant biological entities in the biosphere and are a source of uncharacterized biological mechanisms and genetic tools. Here, we identify segments of phage genomes that are used for stable extrachromosomal replication in the prophage state. Autonomous replication of some of these phages requires a RepA-like protein, although most lack repA and use RNA-based systems for replication initiation. We describe a suite of plasmids based on these prophage replication functions that vary in copy number, stability, host range, and compatibility. These plasmids expand the toolbox available for genetic manipulation of Mycobacterium and other Actinobacteria, including Gordonia terrae.




ba

Tailoring a Global Iron Regulon to a Uropathogen

ABSTRACT

Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin.

IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.




ba

Bacillus anthracis Responds to Targocil-Induced Envelope Damage through EdsRS Activation of Cardiolipin Synthesis

ABSTRACT

Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.

IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.




ba

Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum

ABSTRACT

Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass.

IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex.




ba

Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa

ABSTRACT

Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction.

IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria.




ba

Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases

ABSTRACT

The multifunctional nature of viral proteins is essentially driven by posttranslational modifications (PTMs) and is key for the successful outcome of infection. For influenza A viruses (IAVs), a composite pattern of PTMs regulates the activity of viral proteins. However, almost none are known that target the PB2 replication protein, except for inducing its degradation. We show here that PB2 undergoes a nonproteolytic ubiquitination during infection. We identified E3 ubiquitin ligases catalyzing this ubiquitination as two multicomponent RING-E3 ligases based on cullin 4 (CRL4s), which are both contributing to the levels of ubiquitinated forms of PB2 in infected cells. The CRL4 E3 ligase activity is required for the normal progression of the viral cycle and for maximal virion production, indicating that the CRL4s mediate a ubiquitin signaling that promotes infection. The CRL4s are recruiting PB2 through an unconventional bimodal interaction with both the DDB1 adaptor and DCAF substrate receptors. While able to bind to PB2 when engaged in the viral polymerase complex, the CRL4 factors do not alter transcription and replication of the viral segments during infection. CRL4 ligases catalyze different patterns of lysine ubiquitination on PB2. Recombinant viruses mutated in the targeted lysines showed attenuated viral production, suggesting that CRL4-mediated ubiquitination of PB2 contributes to IAV infection. We identified K29-linked ubiquitin chains as main components of the nonproteolytic PB2 ubiquitination mediated by the CRL4s, providing the first example of the role of this atypical ubiquitin linkage in the regulation of a viral infection.

IMPORTANCE Successful infection by influenza A virus, a pathogen of major public health importance, involves fine regulation of the multiple functions of the viral proteins, which often relies on post-translational modifications (PTMs). The PB2 protein of influenza A viruses is essential for viral replication and a key determinant of host range. While PTMs of PB2 inducing its degradation have been identified, here we show that PB2 undergoes a regulating PTM signaling detected during infection, based on an atypical K29-linked ubiquitination and mediated by two multicomponent E3 ubiquitin ligases. Recombinant viruses impaired for CRL4-mediated ubiquitination are attenuated, indicating that ubiquitination of PB2 is necessary for an optimal influenza A virus infection. The CRL4 E3 ligases are required for normal viral cycle progression and for maximal virion production. Consequently, they represent potential candidate host factors for antiviral targets.




ba

Multiplex Genetic Engineering Exploiting Pyrimidine Salvage Pathway-Based Endogenous Counterselectable Markers

ABSTRACT

Selectable markers are indispensable for genetic engineering, yet their number and variety are limited. Most selection procedures for prototrophic cells rely on the introduction of antibiotic resistance genes. New minimally invasive tools are needed to facilitate sophisticated genetic manipulations. Here, we characterized three endogenous genes in the human fungal pathogen Aspergillus fumigatus for their potential as markers for targeted genomic insertions of DNAs of interest (DOIs). Since these genes are involved in uptake and metabolization of pyrimidines, resistance to the toxic effects of prodrugs 5-fluorocytosine and 5-fluorouracil can be used to select successfully integrated DOIs. We show that DOI integration, resulting in the inactivation of these genes, caused no adverse effects with respect to nutrient requirements, stress resistance, or virulence. Beside the individual use of markers for site-directed integration of reporter cassettes, including the 17-kb penicillin biosynthetic cluster, we demonstrate their sequential use by inserting three genes encoding fluorescent proteins into a single strain for simultaneous multicolor localization microscopy. In addition to A. fumigatus, we validated the applicability of this novel toolbox in Penicillium chrysogenum and Fusarium oxysporum. Enabling multiple targeted insertions of DOIs without the necessity for exogenous markers, this technology has the potential to significantly advance genetic engineering.

IMPORTANCE This work reports the discovery of a novel genetic toolbox comprising multiple, endogenous selectable markers for targeted genomic insertions of DNAs of interest (DOIs). Marker genes encode proteins involved in 5-fluorocytosine uptake and pyrimidine salvage activities mediating 5-fluorocytosine deamination as well as 5-fluorouracil phosphoribosylation. The requirement for their genomic replacement by DOIs to confer 5-fluorocytosine or 5-fluorouracil resistance for transformation selection enforces site-specific integrations. Due to the fact that the described markers are endogenously encoded, there is no necessity for the exogenous introduction of commonly employed markers such as auxotrophy-complementing genes or antibiotic resistance cassettes. Importantly, inactivation of the described marker genes had no adverse effects on nutrient requirements, growth, or virulence of the human pathogen Aspergillus fumigatus. Given the limited number and distinct types of selectable markers available for the genetic manipulation of prototrophic strains such as wild-type strains, we anticipate that the proposed methodology will significantly advance genetic as well as metabolic engineering of fungal species.




ba

Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides

ABSTRACT

The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL.

IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.




ba

Romo1-Derived Antimicrobial Peptide Is a New Antimicrobial Agent against Multidrug-Resistant Bacteria in a Murine Model of Sepsis

ABSTRACT

To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance.

IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection.




ba

Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells

ABSTRACT

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.

IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.




ba

Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae

ABSTRACT

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae.

IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.




ba

Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria

ABSTRACT

Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.

IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures.




ba

Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses

ABSTRACT

Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris.

IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.




ba

Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus

ABSTRACT

Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.

IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity.




ba

Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone

ABSTRACT

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.

IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.




ba

Long-acting, Injectable Buprenorphine: Great Promise, but Significant Barriers to Use

To the Editor—A 30-day injectable form of buprenorphine branded as SublocadeTM (Buprenorphine XR SQ) was approved by the FDA in 2017. This medication is administered by a health care professional subcutaneously in the abdomen to treat opioid use disorder. This long-acting delivery system holds great promise for many patients who have barriers to taking daily transmucosal buprenorphine-containing medications such as those with poor adherence to a daily medication. It is beneficial for those who have difficulty safely storing their medications, including patients who have children in the home, unstable housing, or live with others who have a use disorder. This product is also an option for patients who prefer mono-product buprenorphine. As Buprenorphine XR SQ is administered directly by a health care professional, it does not contain the abuse-deterrent naloxone that some patients feel causes side effects.

There are two ways to acquire Buprenorphine XR SQ: 1) order product from the distributor (buy and bill); or 2) dispensed from a specialty pharmacy for a specific patient (specialty pharmacy) [1]. For the buy and bill option, the health care setting must be certified through the Risk Evaluation and Mitigation Strategy (REMS) program and adhere to dispensing regulations [2]. We found this challenging to implement in the outpatient setting, thus we pursued the specialty pharmacy option. It ultimately took us nearly one year to complete the process.

The following are the barriers we faced with our first attempt. As a controlled substance, the medication must be stored in a refrigerated lockbox. Before...




ba

A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance

A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems.




ba

The South Kintyre Basin: its role in the stratigraphical and structural evolution of the Firth of Clyde region during the Devonian-Carboniferous transition

Late Devonian–Early Carboniferous rocks at the southern end of the Kintyre Peninsula closely resemble those of the Kinnesswood and Clyde Sandstone formations in more easterly portions of the Firth of Clyde. For example, a previously unrecognized thick marlstone with pedogenic calcretes is present in the Kinnesswood Formation at the south tip of the peninsula and, on the west coast, south of Machrihanish, a striking cliffed exposure includes massive phreatic calcretes developed from cross-bedded sandstones and red mudstones closely resembling those of the Clyde Sandstone on Great Cumbrae. A similar phreatic calcrete unit is present in the lower part of the Ballagan Formation in south Bute. The presence of vadose and phreatic calcrete provides valuable information concerning palaeoclimatic conditions in southwestern Scotland during the Devonian–Carboniferous transition. Overlying thick volcanic rocks are correlative with the Clyde Plateau Volcanic Formation. The sediments accumulated in the South Kintyre Basin on the west side of the Highland Boundary Fault (HBF). Formation of this basin, and the North East Arran and Cumbraes basins in the northeastern part of the Firth of Clyde, is interpreted as a response to development of a ‘locked zone’ in the HBF during an episode of sinistral faulting.




ba

MtSSPdb: The Medicago truncatula Small Secreted Peptide Database

A growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs. Also, SSP-coding small open reading frames are often expressed at low levels or only under specific conditions, and thus are underrepresented in non-tissue-targeted or non-condition-optimized RNA-sequencing projects. We previously identified 4,439 SSP-encoding genes in the model legume Medicago truncatula. To support systematic characterization and annotation of these putative SSP-encoding genes, we developed the M. truncatula Small Secreted Peptide Database (MtSSPdb; https://mtsspdb.noble.org/). MtSSPdb currently hosts (1) a compendium of M. truncatula SSP candidates with putative function and family annotations; (2) a large-scale M. truncatula RNA-sequencing-based gene expression atlas integrated with various analytical tools, including differential expression, coexpression, and pathway enrichment analyses; (3) an online plant SSP prediction tool capable of analyzing protein sequences at the genome scale using the same protocol as for the identification of SSP genes; and (4) information about a library of synthetic peptides and root and nodule phenotyping data from synthetic peptide screens in planta. These datasets and analytical tools make MtSSPdb a unique and valuable resource for the plant research community. MtSSPdb also has the potential to become the most complete database of SSPs in plants.




ba

RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death Regulation

A wide variety of intrinsic and extrinsic cues lead to cell death with unclear mechanisms. The infertility of some death mutants often hurdles the classical suppressor screens for death regulators. We have developed a transient RNA interference (RNAi)-based screen using a virus-induced gene silencing approach to understand diverse cell death pathways in Arabidopsis (Arabidopsis thaliana). One death pathway is due to the depletion of a MAP kinase (MAPK) cascade, consisting of MAPK kinase kinase 1 (MEKK1), MKK1/2, and MPK4, which depends on a nucleotide-binding site Leu-rich repeat (NLR) protein SUMM2. Silencing of MEKK1 by virus-induced gene silencing resembles the mekk1 mutant with autoimmunity and defense activation. The RNAi-based screen toward Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2, and Calmodulin-binding receptor-like cytoplasmic kinase 3 (CRCK3) to be vital regulators of RNAi MEKK1-induced cell death, consistent with the reports of their requirement in the mekk1-mkk1/2-mpk4 death pathway. Similar with MEKK2, overexpression of CRCK3 caused dosage- and SUMM2-dependent cell death, and the transcripts of CRCK3 were up-regulated in mekk1, mkk1/2, and mpk4. MEKK2-induced cell death depends on CRCK3. Interestingly, CRCK3-induced cell death also depends on MEKK2, consistent with the biochemical data that MEKK2 complexes with CRCK3. Furthermore, the kinase activity of CRCK3 is essential, whereas the kinase activity of MEKK2 is dispensable, for triggering cell death. Our studies suggest that MEKK2 and CRCK3 exert concerted functions in the control of NLR SUMM2 activation and MEKK2 may play a structural role, rather than function as a kinase, in regulating CRCK3 protein stability.




ba

Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light-Induced Ascorbate Accumulation

Plants require a high concentration of ascorbate as a redox buffer for survival under stress conditions, such as high light. Dehydroascorbate reductases (DHARs) are enzymes that catalyze the reduction of DHA to ascorbate using reduced glutathione (GSH) as an electron donor, allowing rapid ascorbate recycling. However, a recent study using an Arabidopsis (Arabidopsis thaliana) triple mutant lacking all three DHAR genes (herein called dhar) did not find evidence for their role in ascorbate recycling under oxidative stress. To further study the function of DHARs, we generated dhar Arabidopsis plants as well as a quadruple mutant line combining dhar with an additional vtc2 mutation that causes ascorbate deficiency. Measurements of ascorbate in these mutants under low- or high-light conditions indicated that DHARs have a nonnegligible impact on full ascorbate accumulation under high light, but that they are dispensable when ascorbate concentrations are low to moderate. Because GSH itself can reduce DHA nonenzymatically, we used the pad2 mutant that contains ~30% of the wild-type GSH level. The pad2 mutant accumulated ascorbate at a wild-type level under high light; however, when the pad2 mutation was combined with dhar, there was near-complete inhibition of high-light–dependent ascorbate accumulation. The lack of ascorbate accumulation was consistent with a marked increase in the ascorbate degradation product threonate. These findings indicate that ascorbate recycling capacity is limited in dhar pad2 plants, and that both DHAR activity and GSH content set a threshold for high-light–induced ascorbate accumulation.




ba

MtSSPdb: A New Database for the Small Secreted Peptide Research Community




ba

What Are the Roles for Dehydroascorbate Reductases and Glutathione in Sustaining Ascorbate Accumulation?




ba

Looking back to go forward: adherence to inhaled therapy before biologic therapy in severe asthma

For decades inhaled corticosteroids have been central to the management of asthma and are proven to be effective in maintaining symptom control, reducing exacerbations and preserving quality of life through mediation of airway inflammation. However, a small minority of patients have disease which is refractory to high dose inhaled corticosteroid (ICS) therapy and require additional oral corticosteroids to achieve acceptable control of symptoms and exacerbations. Severe asthma represents less than 10% of the total asthma population [1] but is the most serious, life-affecting and costly form of the condition [2].




ba

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

We wish to thank J. Britton and co-workers for responding to our editorial and giving us an opportunity to clarify our position as well as correct a few misunderstandings. We definitely share the same goal, which is to relieve Europe and the rest of the world from the terrible results of the tobacco epidemic. We also do not "blankly oppose e-cigarettes"; however, we strongly advocate against a harm reduction strategy including e-cigarettes as well as heated tobacco products [1]. As clinicians we all see reluctant smokers where e-cigarettes can be tried as a last resort for getting off cigarette smoking, but that is of little relevance for a general harm reduction strategy. We also agree that the UK has achieved a lot in the area of smoking cessation but would argue that this has been achieved by impressive tobacco control, not by the use of e-cigarettes, and that a country such as Australia, which has banned nicotine-containing e-cigarettes, has achieved similar results.




ba

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

The respiratory community is united in its desire to reduce and eliminate the harm caused by tobacco smoking, which is at present on course to kill one billion people in the 21st century. The stated policy of the European Respiratory Society is to strive "constantly to promote strong and evidence-based policies to reduce the burden of tobacco related diseases". In our view, the recent ERS Tobacco Control Committee statement on tobacco harm reduction [1], though well-intentioned, appears to be based on a number of false premises and draws its conclusions from a partial account of available data. It also presents a false dichotomy between the provision of "conventional" tobacco control and harm reduction approaches. We therefore respond, in turn, to the seven arguments presented against the adoption of harm reduction in the Committee's statement.




ba

Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue

Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs.

Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I–IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24).

Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages.

In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment.




ba

Neurology and baseball: Who wants to win?

Teams fail when they cannot achieve a common goal. They also fail when they do not have one. In baseball, different goals between players and staff are unusual. Everyone wants to win. In neurology, where teams may be loosely defined and comprise people from many disciplines, goals differ. A win for you may not be a win for me.




ba

Shellhaas RA, Burns JW, Barks JDE, Fauziya Hassan F, Chervin RD. Maternal Voice and Infant Sleep in the Neonatal Intensive Care Unit. Pediatrics. 2019;144(3):e30190288




ba

Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930