us

Tool use by sea otters has little to do with genetic ties: Smithsonian study

Tool use by sea otters to break open well-armored food is not necessarily a family matter, according to a new study published this week by […]

The post Tool use by sea otters has little to do with genetic ties: Smithsonian study appeared first on Smithsonian Insider.




us

Gold nanotechnology and lasers used to successfully freeze fish embryos

For more than 60 years, researchers have tried to successfully cryopreserve (or freeze) the embryo of zebrafish, a species that is an important medical model […]

The post Gold nanotechnology and lasers used to successfully freeze fish embryos appeared first on Smithsonian Insider.





us

New study indicates mysterious fast radio bursts occur in universe every second

When fast radio bursts, or FRBs, were first detected in 2001, astronomers had never seen anything like them before. Since then, astronomers have found a […]

The post New study indicates mysterious fast radio bursts occur in universe every second appeared first on Smithsonian Insider.



  • Research News
  • Science & Nature
  • Space
  • Center for Astrophysics | Harvard & Smithsonian
  • Smithsonian Astrophysical Observatory

us

DNA on 100-year-old bat from France may help fight deadly fungus in North America

A bat specimen collected in France at the end of World War I, since housed in the collections of the Smithsonian’s National Museum of Natural […]

The post DNA on 100-year-old bat from France may help fight deadly fungus in North America appeared first on Smithsonian Insider.



  • Animals
  • Research News
  • Science & Nature
  • bats
  • National Museum of Natural History
  • Smithsonian Conservation Biology Institute

us

With voices joined in chorus, giant otter families create a distinct sound signature

With a non-stop babble of hums, grunts and shrill squeals as they argue over fish and defend their territories, the Amazon’s giant otters are one […]

The post With voices joined in chorus, giant otter families create a distinct sound signature appeared first on Smithsonian Insider.




us

Using genetics to help save world’s most trafficked mammal: the pangolin

One of Earth’s most evolutionarily unique species is also the world’s most trafficked mammal: pangolins, or “scaly anteaters.” A new study from the Smithsonian Conservation […]

The post Using genetics to help save world’s most trafficked mammal: the pangolin appeared first on Smithsonian Insider.



  • Animals
  • Science & Nature
  • Smithsonian Conservation Biology Institute
  • Smithsonian's National Zoo

us

Poachers are killing endangered Asian elephants for their skin and meat, not their tusks

Poaching wasn’t the largest conservation concern for Asian elephants, an endangered species, until satellite tracking stunned researchers. Scientists at the Smithsonian Conservation Biology Institute (SCBI) […]

The post Poachers are killing endangered Asian elephants for their skin and meat, not their tusks appeared first on Smithsonian Insider.



  • Animals
  • History & Culture
  • Science & Nature
  • Smithsonian Conservation Biology Institute

us

Newly discovered snakes use curved teeth to pry snails from their shells

Five new species of snail-eating snake, from a group of snakes affectionately known to scientists as “goo-eaters,” have been discovered by a team working in […]

The post Newly discovered snakes use curved teeth to pry snails from their shells appeared first on Smithsonian Insider.




us

Scientists track a mysterious songbird using tiny backpack locators

Little to nothing is known about how and where a small European songbird called the bluethroat spends much of the year. Now, Smithsonian scientists have […]

The post Scientists track a mysterious songbird using tiny backpack locators appeared first on Smithsonian Insider.




us

Restrict user access to MMC snap-ins GPO




us

Use GPO to Import Safe Senders & Auto Download External Email Content




us

Sbcglobal customer helpline number 18882468183 You have to contact us




us

Sbcglobal customer helpline phone number 18882468183 You have to contact us




us

Sbcglobal customer support phone number 18882468183 You have to contact us




us

Sbcglobal technical support number 18882468183 You have to contact us




us

AVAST CUSTOMER CARE NUMBER +1800-3160190 Phone Number




us

Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and l-proline

l-Hydroxyproline (l-Hyp) is a nonstandard amino acid that is present in certain proteins, in some antibiotics and in the cell-wall components of plants. l-Hyp is the product of the post-translational modification of protein prolines by prolyl hydroxylase enzymes, and the isomers trans-3-hydroxy-l-proline (T3LHyp) and trans-4-hydroxy-l-proline (T4LHyp) are major components of mammalian collagen. T4LHyp follows two distinct degradation pathways in bacteria and mammals, while T3LHyp is metabolized by a two-step metabolic pathway that is conserved in bacteria and mammals, which involves a T3LHyp dehydratase and a Δ1-pyrroline-2-carboxylate (Pyr2C) reductase. In order to shed light on the structure and catalysis of the enzyme involved in the second step of the T3LHyp degradation pathway, the crystal structure of Pyr2C reductase from the archaeon Thermococcus litoralis DSM 5473 complexed with NADH and l-proline is presented. The model allows the mapping of the residues involved in cofactor and product binding and represents a valid model for rationalizing the catalysis of Pyr2C reductases.




us

Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii

Pullulanase (EC 3.2.1.41) is a well known starch-debranching enzyme that catalyzes the cleavage of α-1,6-glycosidic linkages in α-glucans such as starch and pullulan. Crystal structures of a type I pullulanase from Paenibacillus barengoltzii (PbPulA) and of PbPulA in complex with maltopentaose (G5), maltohexaose (G6)/α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) were determined in order to better understand substrate binding to this enzyme. PbPulA belongs to glycoside hydrolase (GH) family 13 subfamily 14 and is composed of three domains (CBM48, A and C). Three carbohydrate-binding sites identified in PbPulA were located in CBM48, near the active site and in domain C, respectively. The binding site in CBM48 was specific for β-CD, while that in domain C has not been reported for other pullulanases. The domain C binding site had higher affinity for α-CD than for G6; a small motif (FGGEH) seemed to be one of the major determinants for carbohydrate binding in this domain. Structure-based mutations of several surface-exposed aromatic residues in CBM48 and domain C had a debilitating effect on the activity of the enzyme. These results suggest that both CBM48 and domain C play a role in binding substrates. The crystal forms described contribute to the understanding of pullulanase domain–carbohydrate interactions.




us

New book: “The Subsistence Economies of Indigenous North American Societies: A Handbook”

The new book Subsistence Economies of Indigenous North American Societies provides a comprehensive and in-depth documentation of how Native American societies met the challenges of […]

The post New book: “The Subsistence Economies of Indigenous North American Societies: A Handbook” appeared first on Smithsonian Insider.





us

Configure "Award Medallion BIOS v6.0" To Boot From USB




us

USB drivers




us

My mouse wont work in windows 95




us

The dimeric organization that enhances the microtubule end-binding affinity of EB1 is susceptible to phosphorylation [RESEARCH ARTICLE]

Yinlong Song, Yikan Zhang, Ying Pan, Jianfeng He, Yan Wang, Wei Chen, Jing Guo, Haiteng Deng, Yi Xue, Xianyang Fang, and Xin Liang

Microtubules dynamics is regulated by the plus end-tracking proteins (+TIPs) in cells. End binding protein 1 (EB1) acts as a master regulator in +TIPs networks by targeting microtubule growing ends and recruiting other factors. However, the molecular mechanism of how EB1 binds to microtubule ends with a high affinity remains to be an open question. Using single-molecule imaging, we show that the end-binding kinetics of EB1 changes along with the polymerizing and hydrolysis rate of tubulin dimers, confirming the binding of EB1 to GTP/GDP-Pi tubulin at microtubule growing ends. The affinity of wild-type EB1 to these sites is higher than monomeric EB1 mutants, suggesting that two CH domains in the dimer contribute to the end-binding. Introducing phosphomimicking mutations into the linker domain of EB1 weakens the end-binding affinity and confers a more curved conformation to EB1 dimer without compromising dimerization, suggesting that the overall architecture of EB1 is important for the end-binding affinity. Taken together, our results provide insights into understanding how the high-affinity end-binding of EB1 can be achieved and how this activity may be regulated in cells.




us

EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7 [RESEARCH ARTICLE]

Laura O'Regan, Giancarlo Barone, Rozita Adib, Chang Gok Woo, Hui Jeong Jeong, Emily L. Richardson, Mark W. Richards, Patricia A.J. Muller, Spencer J. Collis, Dean A. Fennell, Jene Choi, Richard Bayliss, and Andrew M. Fry

EML4-ALK is an oncogenic fusion present in ~5% non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants with different patient outcomes. Here, we show in cell models that EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. It also recruits the NEK9 and NEK7 kinase to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4 as well as constitutive activation of NEK9 also perturb cell morphology and accelerate migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but not ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7 leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.




us

Micro-stepping Extended Focus reduces photobleaching and preserves structured illumination super-resolution features [TOOLS AND RESOURCES]

Xian Hu, Salma Jalal, Michael Sheetz, Oddmund Bakke, and Felix Margadant

Despite progress made in confocal microscopy, even fast systems still have insufficient temporal resolution for detailed live cell volume imaging, such as tracking rapid movement of membrane vesicles in three-dimensional space. Depending on the shortfall, this may result in undersampling and/or motion artifacts that ultimately limit the quality of the imaging data. By sacrificing detailed information in the Z-direction, we propose a new imaging modality that involves capturing fast "projections" from the field of depth which shortens imaging time by approximately an order of magnitude as compared to standard volumetric confocal imaging. With faster imaging, radiation exposure to the sample is reduced, resulting in less fluorophore photobleaching and potential photodamage. The implementation minimally requires two synchronized control signals that drive a piezo stage and trigger the camera exposure. The device generating the signals has been tested on spinning disk confocals and instant structured-illumination-microscopy (iSIM) microscopes. Our calibration images show that the approach provides highly repeatable and stable imaging conditions that enable photometric measurements of the acquired data, in both standard live imaging and super-resolution modes.




us

LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells [RESEARCH ARTICLE]

Victor J. F. Kitano, Yoko Ohyama, Chiyomi Hayashida, Junta Ito, Mari Okayasu, Takuya Sato, Toru Ogasawara, Maki Tsujita, Akemi Kakino, Jun Shimada, Tatsuya Sawamura, and Yoshiyuki Hakeda

Osteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO pre-OCLs, while the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR~ABCG1~PE translocation to cell surface~cell-cell fusion) in multinucleation of OCLs.




us

En bloc TGN recruitment of Aspergillus TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition [RESEARCH ARTICLE]

M. Pinar and M. A. Penalva

TRAnsport Protein Particle (TRAPP) complexes regulate membrane traffic. TRAPPII and TRAPPIII share a core hetero-heptamer, also denoted TRAPPI. In fungi TRAPPIII and TRAPPII mediate GDP exchange on RAB1 and RAB11, respectively, regulating traffic across the Golgi, with TRAPPIII also activating RAB1 in autophagosomes. Our finding that Aspergillus nidulans TRAPPII can be assembled by addition of a TRAPPII-specific subcomplex onto core TRAPP prompted us to investigate the possibility that TRAPPI/TRAPPIII already residing in the Golgi matures into TRAPPII to determine a RAB1-to-RAB11 conversion as Golgi cisternae progress from early Golgi to TGN identity. By time-resolved microscopy we determine that the TRAPPII reporter Trs120/TRAPPC9 is recruited to existing TGN cisternae slightly before RAB11 arrives, and resides for~45 sec on them before cisternae tear off into RAB11 secretory carriers. Notably, the core TRAPP reporter Bet3/TRAPPC3 was not detectable in early Golgi cisternae, being instead recruited to TGN cisternae simultaneously with Trs120/TRAPPC9, indicating en bloc recruitment of TRAPPII to the Golgi and arguing strongly against the TRAPP maturation model.




us

Andes Mountains Are Older Than Previously Believed

The geologic faults responsible for the rise of the eastern Andes mountains in Colombia became active 25 million years ago—18 million years before the previously accepted start date for the Andes’ rise.

The post Andes Mountains Are Older Than Previously Believed appeared first on Smithsonian Insider.




us

National Museum of Natural History acquires gemstones in honor of its 100th anniversary

The Smithsonian’s National Museum of Natural History recently acquired four remarkable gemstones and jewelry pieces for the Smithsonian’s National Gem Collection in celebration of the 100th anniversary of the museum.

The post National Museum of Natural History acquires gemstones in honor of its 100th anniversary appeared first on Smithsonian Insider.




us

Pink tourmaline “Nautilus” pendant enters National Gem Collection

The pendant took Grand Prize in the National Saul Bell Design Competition in 2008 and features a beautiful 3.76-ct pink tourmaline from Nigeria.

The post Pink tourmaline “Nautilus” pendant enters National Gem Collection appeared first on Smithsonian Insider.




us

500 carats of rough diamonds donated to Natural History Museum

More than 500 carats of rough diamonds were recently donated to the Department of Mineral Sciences of the Smithsonian’s Natural History Museum by Jewlers Mutual Insurance Co. of Neenah, Wis.

The post 500 carats of rough diamonds donated to Natural History Museum appeared first on Smithsonian Insider.




us

A hot new island has just surfaced in the Red Sea. What’s going on? Smithsonian scientists explain.

The new island visible in the satellite photograph is the top of a giant shield volcano located on the rift axis in the Red Sea where the continental plates of Africa and Arabia are pulling apart.

The post A hot new island has just surfaced in the Red Sea. What’s going on? Smithsonian scientists explain. appeared first on Smithsonian Insider.




us

Boom and bust cycle of marine biodiversity every 60 million years linked to uplifting of continents

A mysterious cycle of booms and busts in marine biodiversity over the past 500 million years could be tied to a periodic uplifting of the world's continents, scientists report

The post Boom and bust cycle of marine biodiversity every 60 million years linked to uplifting of continents appeared first on Smithsonian Insider.




us

Photos reveal recent activity in moon’s crust

New images from NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft show the moon's crust is being stretched, forming minute valleys in a few small areas on the lunar surface.

The post Photos reveal recent activity in moon’s crust appeared first on Smithsonian Insider.




us

Magnificent Dom Pedro aquamarine to go on view in the Smithsonian’s Natural History Museum

The National Museum of Natural History will permanently display the Dom Pedro Aquamarine, which is the largest single piece of cut-gem aquamarine in the world, beginning Dec. 6.

The post Magnificent Dom Pedro aquamarine to go on view in the Smithsonian’s Natural History Museum appeared first on Smithsonian Insider.




us

Cutting through the dust: Radar shows moon’s true face for first time

We’ve seen a serious series of super moons this summer and the show’s not over yet. Mark your calendars: the next one will light up […]

The post Cutting through the dust: Radar shows moon’s true face for first time appeared first on Smithsonian Insider.




us

Rolled-Up Mystery Mineral may cause Craving for Piroulines

Forget what you thought you knew about geology. Some minerals can roll up like flaky Belgian piroulines. For the last several decades, mining operations in […]

The post Rolled-Up Mystery Mineral may cause Craving for Piroulines appeared first on Smithsonian Insider.




us

Orbiting Camera Unveils New Moon in Air and Space Museum Exhibition

Admired from afar by the ancient Romans, the moon was once deified as a goddess, Luna. Today, two-thousand years later, geologists who scrutinize the moon’s […]

The post Orbiting Camera Unveils New Moon in Air and Space Museum Exhibition appeared first on Smithsonian Insider.




us

Ancient Native-American methods may be key to sustainable oyster harvests

Oysters are keystone organisms in estuaries around the world, influencing water quality, constructing habitat and providing food for humans and wildlife. Yet their populations in […]

The post Ancient Native-American methods may be key to sustainable oyster harvests appeared first on Smithsonian Insider.




us

Glittering, mesmerizing, lifesaving: Hospital exhibit showcases minerals used in medicine

Have an upset stomach? Pop a chalky, chewable antacid. Maybe you’ve got a painful cut or burn. No problem; reach for a healing ointment or […]

The post Glittering, mesmerizing, lifesaving: Hospital exhibit showcases minerals used in medicine appeared first on Smithsonian Insider.



  • Earth Science
  • Science & Nature
  • National Museum of Natural History

us

Scientists are using the universe as a “cosmological collider”

Cambridge, MA -Physicists are capitalizing on a direct connection between the largest cosmic structures and the smallest known objects to use the universe as a […]

The post Scientists are using the universe as a “cosmological collider” appeared first on Smithsonian Insider.






us

A new method for in situ structural investigations of nano-sized amorphous and crystalline materials using mixed-flow reactors

Structural investigations of amorphous and nanocrystalline phases forming in solution are historically challenging. Few methods are capable of in situ atomic structural analysis and rigorous control of the system. A mixed-flow reactor (MFR) is used for total X-ray scattering experiments to examine the short- and long-range structure of phases in situ with pair distribution function (PDF) analysis. The adaptable experimental setup enables data collection for a range of different system chemistries, initial supersaturations and residence times. The age of the sample during analysis is controlled by adjusting the flow rate. Faster rates allow for younger samples to be examined, but if flow is too fast not enough data are acquired to average out excess signal noise. Slower flow rates form older samples, but at very slow speeds particles settle and block flow, clogging the system. Proper background collection and subtraction is critical for data optimization. Overall, this MFR method is an ideal scheme for analyzing the in situ structures of phases that form during crystal growth in solution. As a proof of concept, high-resolution total X-ray scattering data of amorphous and crystalline calcium phosphates and amorphous calcium carbonate were collected for PDF analysis.




us

The transformation matrices (distortion, orientation, correspondence), their continuous forms and their variants. Corrigenda

Appendices B4 and B5 of Cayron [Acta Cryst. (2019), A75, 411–437] contain equations involving the point group and the metric tensor in which the equality symbol should be substituted by the inclusion symbol.




us

Bayesian machine learning improves single-wavelength anomalous diffraction phasing

Single-wavelength X-ray anomalous diffraction (SAD) is a frequently employed technique to solve the phase problem in X-ray crystallography. The precision and accuracy of recovered anomalous differences are crucial for determining the correct phases. Continuous rotation (CR) and inverse-beam geometry (IBG) anomalous data collection methods have been performed on tetragonal lysozyme and monoclinic survivin crystals and analysis carried out of how correlated the pairs of Friedel's reflections are after scaling. A multivariate Bayesian model for estimating anomalous differences was tested, which takes into account the correlation between pairs of intensity observations and incorporates the a priori knowledge about the positivity of intensity. The CR and IBG data collection methods resulted in positive correlation between I(+) and I(−) observations, indicating that the anomalous difference dominates between these observations, rather than different levels of radiation damage. An alternative pairing method based on near simultaneously observed Bijvoet's pairs displayed lower correlation and it was unsuccessful for recovering useful anomalous differences when using the multivariate Bayesian model. In contrast, multivariate Bayesian treatment of Friedel's pairs improved the initial phasing of the two tested crystal systems and the two data collection methods.




us

Elastic propagation of fast electron vortices through amorphous materials

This work studies the elastic scattering behavior of electron vortices when propagating through amorphous samples. A formulation of the multislice approach in cylindrical coordinates is used to theoretically investigate the redistribution of intensity between different angular momentum components due to scattering. To corroborate and elaborate on our theoretical results, extensive numerical simulations are performed on three model systems (Si3N4, Fe0.8B0.2, Pt) for a wide variety of experimental parameters to quantify the purity of the vortices, the net angular momentum transfer, and the variability of the results with respect to the random relative position between the electron beam and the scattering atoms. These results will help scientists to further improve the creation of electron vortices and enhance applications involving them.




us

Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles.