ia

Crystal structure of poly[[(μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris­[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate]

The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxyl­ate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water mol­ecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure.




ia

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.




ia

Crystal structure of 4,4'-bis­(4-bromo­phen­yl)-1,1',3,3'-tetra­thia­fulvalene

The mol­ecule of the title compound, C18H10Br2S4, has a C-shape, with Cs mol­ecular symmetry. The dihedral angle between the planes of the di­thiol and phenyl rings is 8.35 (9)°. In the crystal, mol­ecules form helical chains along [001], the shortest inter­actions being π⋯S contacts within the helices. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO–LUMO energy levels of the title compound and its trans isomer.




ia

Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene and (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-ni

In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) inter­actions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) inter­actions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12).




ia

Crystal structure of tetra-μ-acetato-bis­[(5-amino-2-methyl­sulfanyl-1,3,4-thia­diazole-κN1)copper(II)]

The reaction of 2-methyl­thio-5-amino-1,3,4-thia­diazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P overline{1}) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxyl­ate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD mol­ecule and exhibits a Jahn–Teller-distorted octa­hedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxyl­ate groups of neighbouring mol­ecules, generating an R22(12) ring motif. The mol­ecules are further linked by C—H⋯π inter­actions between the thia­diazole rings and the methyl groups of the acetate units.




ia

Crystal structures of two isomeric 2-aryl-3-phenyl-1,3-thia­zepan-4-ones

The crystal of 6-(3-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1), C19H18N2O3S, has monoclinic (P21/n) symmetry while that of its isomer 6-(4-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2), has ortho­rhom­bic (Pca21) symmetry: compound 1 has two mol­ecules, A and B, in the asymmetric unit while 2 has one. In all three mol­ecules, the seven-membered thia­zepan ring exhibits a chair conformation with Q2 and Q3 values (Å) of 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3) in 1 and 0.517 (5), 0.699 (5) in 2. In each structure, the phenyl rings attached to adjacent atoms of the thia­zepan ring have inter­planar angles ranging between 41 and 47°. Except for the nitro groups, the three mol­ecules have similar conformations when overlayed in pairs. Both crystal structures are consolidated by C—H⋯O hydrogen bonds.




ia

The crystal structures and Hirshfeld surface analyses of four 3,5-diacetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl derivatives

The title compounds, 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl benzoate, C20H19N3O4S (I), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl isobutyrate 0.25-hydrate, C17H21N3O4S·0.25H2O (II), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl propionate, C16H19N3O4S (III) and 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl cinnamate chloro­form hemisolvate, C22H21N3O4S·0.5CHCl3 (IV), all crystallize with two independent mol­ecules (A and B) in the asymmetric unit in the triclinic Poverline{1} space group. Compound II crystallizes as a quaterhydrate, while compound IV crystallizes as a chloro­form hemisolvate. In compounds I, II, III (mol­ecules A and B) and IV (mol­ecule A) the five-membered thia­diazole ring adopts an envelope conformation, with the tetra­substituted C atom as the flap. In mol­ecule B of IV this ring is flat (r.m.s. deviation 0.044 Å). The central benzene ring is in general almost normal to the mean plane of the thia­diazole ring in each mol­ecule, with dihedral angles ranging from 75.8 (1) to 85.5 (2)°. In the crystals of all four compounds, the A and B mol­ecules are linked via strong N—H⋯O hydrogen bonds and generate centrosymmetric four-membered R44(28) ring motifs. There are C—H⋯O hydrogen bonds present in the crystals of all four compounds, and in I and II there are also C—H⋯π inter­actions present. The inter­molecular contacts in the crystals of all four compounds were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




ia

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




ia

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

In the cation of the title salt, C9H12N3S+·Br−, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.




ia

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R44(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ia

The first structural characterization of the proton­ated aza­cyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­deca­ne] bis­(per&

The asymmetric unit of the title com­pound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated per­chlorate anion and two per­chlorate ions as counter-anions. The metal ion is coordinated in a tetra­gonally distorted octa­hedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the per­chlorate anion and the carbonyl O atom of the protonated carb­oxy­lic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxyl­ate and average 2.62 (7) Å for disordered per­chlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carb­oxy­lic acid group of the cation to a neighbouring com­plex unit results in the formation of infinite chains running along the b-axis direction, which are cross­linked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the per­chlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.




ia

Crystal structures of two solvated 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

The synthesis and crystal structures of 2-(4-fluoro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one toluene hemisolvate (1), C19H13FN2OS·0.5C7H8, and 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one iso­propanol 0.25-solvate 0.0625-hydrate (2), C19H13N3O3S·0.25C3H7O·0.0625H2O, are reported. Both are racemic mixtures (centrosymmetric crystal structures) of the individual com­pounds and incorporate solvent mol­ecules in their structures. Compound 2 has four thia­zine mol­ecules in the asymmetric unit. All the thia­zine rings in this study show an envelope pucker, with the C atom bearing the substituted phenyl ring displaced from the other atoms. The phenyl and aryl rings in each of the mol­ecules are roughly orthogonal to each other, with dihedral angles of about 75°. The extended structures of 1 and 2 are consolidated by C—H⋯O and C—H⋯N(π), as well as T-type (C—H⋯π) inter­actions. Parallel aromatic ring inter­actions (π–π stacking) are observed only in 2.




ia

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­idene)benzosuberone derivatives

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.




ia

Synthesis and crystal structure of (E)-1,2-bis­[2-(methyl­sulfan­yl)phen­yl]diazene

The title compound, C14H14N2S2, was obtained by transmetallation of 2,2'-bis­(tri­methyl­stann­yl)azo­benzene with methyl lithium, and subsequent quenching with dimethyl di­sulfide. The asymmetric unit comprises two half-mol­ecules, the other halves being completed by inversion symmetry at the midpoint of the azo group. The two mol­ecules show only slight differences with respect to N=N, S—N and aromatic C=C bonds or angles. Hirshfeld surface analysis reveals that except for one weak H⋯S inter­action, inter­molecular inter­actions are dominated by van der Waals forces only.




ia

Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hy­droxy-3-phenyl­propano­ate

In the title mol­ecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intra­molecular C—H⋯O and C—H⋯π(ring) inter­actions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental mol­ecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important inter­action involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively.




ia

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

In the title mol­ecule, C11H10N2O, the di­hydro­benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) inter­actions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di­hydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter­actions between di­hydro­benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ia

Crystal structure, Hirshfeld analysis and a mol­ecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxa­diazol-3-yl]meth­yl}-2H-1,2,6-thia­diazine-4-carboxyl­a

The title compound, C15H22N4O5S, was prepared via alkyl­ation of 3-(chloro­meth­yl)-5-(pentan-3-yl)-1,2,4-oxa­diazole in anhydrous dioxane in the presence of tri­ethyl­amine. The thia­diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxa­diazole ring is inclined to the mean plane of the thia­diazine ring by 77.45 (11)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular contacts present in the crystal. Mol­ecular docking studies were use to evaluate the title compound as a potential system that inter­acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.




ia

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.




ia

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




ia

Crystal and mol­ecular structures of a binuclear mixed ligand complex of silver(I) with thio­cyanate and 1H-1,2,4-triazole-5(4H)-thione

The complete mol­ecule of the binuclear title complex, bis­[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis­{(thio­cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio­cyanate ligand, resulting in a distorted AgS4 tetra­hedral coordination geometry. An intra­molecular N—H⋯S(thio­cyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazol­yl) and N—H⋯N(thio­cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thio­cyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter­actions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.




ia

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)meth­yl]-2,3-di­hydro-1H-1,3-benzo­diazol-2-one monohydrate

In the title mol­ecule, C24H21N5O·H2O, the di­hydro­benzo­diazole moiety is not quite planar, while the whole mol­ecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating mol­ecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = di­hydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the di­hydro­benzo­diazole units in adjacent layers inter­calating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] inter­actions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ia

Crystal structure and Hirshfeld surface analysis of 1,2,4-triazolium hydrogen oxalate

The asymmetric unit of the title 1:1 salt 1,2,4-triazolium hydrogen oxalate, C2H4N3+·C2HO4− (I), comprises one 1,2,4-triazolium cation and one hydrogen oxalate anion. In the crystal, the hydrogen oxalate anions are linked by O—H⋯O hydrogen bonds into chains running parallel to [100]. In turn, the anionic chains are linked through the 1,2,4-triazolium cations by charge-assisted +N—H⋯O− hydrogen bonds into sheets aligned parallel to (01overline{1}). The sheets are further stacked through π–π inter­actions between the 1,2,4-triazolium rings [centroid-to-centroid distance = 3.642 (3) Å, normal distance = 3.225 (3) Å, slippage 1.691 Å], resulting in the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis of the title salt suggests that the most significant contributions to the crystal packing are by H⋯O/O⋯H and H⋯N/N⋯H contacts involving the hydrogen bonds.




ia

Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromo­fluoro­phenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯π(phen­yl) inter­actions, forming supra­molecular chains extending along the c-axis direction. The crystal packing is further consolidated by inter­molecular N—H⋯S hydrogen bonds and by weak C—H⋯S inter­actions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.




ia

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




ia

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.




ia

Crystal structure of {4-[10,15,20-tris­(4-meth­oxy­phen­yl)porphyrin-5-yl]benzyl 2-diazo­acetato}­zinc(II)

In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazo­ester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazo­ester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal.




ia

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­(perchlorate) dichloride from synchrotron X-ray data

The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding inter­actions with the cations. The crystal structure is consolidated by inter­molecular hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network.




ia

Crystal structure of poly[(μ3-4-amino-1,2,5-oxa­diazole-3-hydroxamato)thallium(I)]

The title compound represents the thallium(I) salt of a substituted 1,2,5-oxa­diazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxa­diazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an inter­mediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and inter­molecular N—H⋯N hydrogen bonds.




ia

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­droxy­eth­yl)imidazolidin-2-one

In the title mol­ecule, C12H13N3O2S, the benzo­thia­zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter­actions between thia­zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.




ia

Crystal structure, characterization and Hirshfeld analysis of bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.




ia

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

The central thia­zolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.




ia

A binuclear CuII/CaII thio­cyanate complex with a Schiff base ligand derived from o-vanillin and ammonia

The new heterometallic complex, aqua-1κO-bis­(μ2-2-imino­methyl-6-meth­oxy­phenolato-1κ2O1,O6:2κ2O1,N)bis­(thio­cyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thio­cyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear mol­ecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and penta­gonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water mol­ecules and thio­cyanate groups form a supra­molecular chain with a zigzag-shaped calcium skeleton.




ia

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (S)-10-propargyl­pyrrolo­[2,1-c][1,4]benzodiazepine-5,11-dione

The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = proparg­yl) hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




ia

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­[chlorido­chromate(VI)] dichloride from synchrotron X-ray data

The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chloro­chromate anion and one chloride anion. Both the Cl− anion and chloro­chromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chloro­chromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network.




ia

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(1,3,5-tri­aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl­di­carbon­yl(η5-cyclo­penta­dien­yl)(3,7-diacetyl-1,3,7-tr

The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The mol­ecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substanti­ally. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the mol­ecules into centrosymmetrical dimers through C—H⋯O inter­actions with a cyclo­penta­dienyl ligand of a neighboring mol­ecule, and these dimers are linked into layers parallel to (100) by C—H⋯O inter­actions between the molybdenum acetyl and the cyclo­penta­dienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O inter­actions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the mol­ecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O inter­actions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).




ia

Crystal structure and Hirshfeld surface analysis of 2-amino-3-hy­droxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts.




ia

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of ethyl 2-[(2Z)-2-(2-chloro­benzyl­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate

The title compound, C19H16ClNO3S, consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds form layers of mol­ecules parallel to the bc plane. The layers stack along the a-axis direction with inter­calation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.




ia

The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation

The crystal structure of MgCO3-II has long been discussed in the literature where DFT-based model calculations predict a pressure-induced transition of the carbon atom from the sp2 to the sp3 type of bonding. We have now determined the crystal structure of iron-bearing MgCO3-II based on single-crystal X-ray diffraction measurements using synchrotron radiation. We laser-heated a synthetic (Mg0.85Fe0.15)CO3 single crystal at 2500 K and 98 GPa and observed the formation of a monoclinic phase with composition (Mg2.53Fe0.47)C3O9 in the space group C2/m that contains tetra­hedrally coordinated carbon, where CO44− tetra­hedra are linked by corner-sharing oxygen atoms to form three-membered C3O96− ring anions. The crystal structure of (Mg0.85Fe0.15)CO3 (magnesium iron carbonate) at 98 GPa and 300 K is reported here as well. In comparison with previous structure-prediction calculations and powder X-ray diffraction data, our structural data provide reliable information from experiments regarding atomic positions, bond lengths, and bond angles.




ia

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide

The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azido­anisole with methyl 3-cyclo­propyl-3-oxo­propano­ate leading to the 5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid and subsequent acid amidation with 4-chloro­aniline by 1,1'-carbonyl­diimidazole (CDI). It crystallizes in space group P21/n, with one mol­ecule in the asymmetric unit. In the extended structure, two mol­ecules arranged in a near coplanar fashion relative to the triazole ring planes are inter­connected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above inter­action and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O inter­actions into ribbons. DFT calculations demonstrate that the frontier mol­ecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chloro­phenyl amide motif while the LUMO is associated with aryl­triazole grouping. A Hirshfeld surface analysis was performed to further analyse the inter­molecular inter­actions.




ia

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.




ia

3D-printed holders for in meso in situ fixed-target serial X-ray crystallography

The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information.




ia

Optimization of crystallization of biological macromolecules using dialysis combined with temperature control

A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.




ia

Equatorial aberration of powder diffraction data collected with an Si strip X-ray detector by a continuous-scan integration method

Exact and approximate mathematical formulas of equatorial aberration for powder diffraction data collected with an Si strip X-ray detector in continuous-scan integration mode are presented. An approximate formula is applied to treat the experimental data measured with a commercial powder diffractometer.




ia

A thermal-gradient approach to variable-temperature measurements resolved in space

Temperature is a ubiquitous environmental variable used to explore materials structure, properties and reactivity. This article reports a new paradigm for variable-temperature measurements that varies the temperature continuously across a sample such that temperature is measured as a function of sample position and not time. The gradient approach offers advantages over conventional variable-temperature studies, in which temperature is scanned during a series measurement, in that it improves the efficiency with which a series of temperatures can be probed and it allows the sample evolution at multiple temperatures to be measured in parallel to resolve kinetic and thermodynamic effects. Applied to treat samples at a continuum of temperatures prior to measurements at ambient temperature, the gradient approach enables parametric studies of recovered systems, eliminating temperature-dependent structural and chemical variations to simplify interpretation of the data. The implementation of spatially resolved variable-temperature measurements presented here is based on a gradient-heater design that uses a 3D-printed ceramic template to guide the variable pitch of the wire in a resistively heated wire-wound heater element. The configuration of the gradient heater was refined on the basis of thermal modelling. Applications of the gradient heater to quantify thermal-expansion behaviour, to map metastable polymorphs recovered to ambient temperature, and to monitor the time- and temperature-dependent phase evolution in a complex solid-state reaction are demonstrated.




ia

Structural changes during water-mediated amorphization of semiconducting two-dimensional thio­stannates

Owing to their combined open-framework structures and semiconducting properties, two-dimensional thio­stannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S72−]n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thio­stannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thio­stannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thio­stannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-amino­ethyl)­piperazine] and trenH-SnS-1 [tren = tris­(2-amino­ethyl)­amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200–400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thio­stannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials.




ia

Radiation damage in small-molecule crystallography: fact not fiction

Traditionally small-molecule crystallographers have not usually observed or recognized significant radiation damage to their samples during diffraction experiments. However, the increased flux densities provided by third-generation synchrotrons have resulted in increasing numbers of observations of this phenomenon. The diversity of types of small-molecule systems means it is not yet possible to propose a general mechanism for their radiation-induced sample decay, however characterization of the effects will permit attempts to understand and mitigate it. Here, systematic experiments are reported on the effects that sample temperature and beam attenuation have on radiation damage progression, allowing qualitative and quantitative assessment of their impact on crystals of a small-molecule test sample. To allow inter-comparison of different measurements, radiation-damage metrics (diffraction-intensity decline, resolution fall-off, scaling B-factor increase) are plotted against the absorbed dose. For ease-of-dose calculations, the software developed for protein crystallography, RADDOSE-3D, has been modified for use in small-molecule crystallography. It is intended that these initial experiments will assist in establishing protocols for small-molecule crystallographers to optimize the diffraction signal from their samples prior to the onset of the deleterious effects of radiation damage.




ia

On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies

Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, `naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.




ia

Screening topological materials with a CsCl-type structure in crystallographic databases

CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure.




ia

Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination

Serial rotation electron diffraction (SerialRED) has been developed as a fully automated technique for three-dimensional electron diffraction data collection that can run autonomously without human intervention. It builds on the previously established serial electron diffraction technique, in which submicrometre-sized crystals are detected using image processing algorithms. Continuous rotation electron diffraction (cRED) data are collected on each crystal while dynamically tracking the movement of the crystal during rotation using defocused diffraction patterns and applying a set of deflector changes. A typical data collection screens up to 500 crystals per hour, and cRED data are collected from suitable crystals. A data processing pipeline is developed to process the SerialRED data sets. Hierarchical cluster analysis is implemented to group and identify the different phases present in the sample and to find the best matching data sets to be merged for subsequent structure analysis. This method has been successfully applied to a series of zeolites and a beam-sensitive metal–organic framework sample to study its capability for structure determination and refinement. Two multi-phase samples were tested to show that the individual crystal phases can be identified and their structures determined. The results show that refined structures obtained using automatically collected SerialRED data are indistinguishable from those collected manually using the cRED technique. At the same time, SerialRED has lower requirements of expertise in transmission electron microscopy and is less labor intensive, making it a promising high-throughput crystal screening and structure analysis tool.




ia

Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments

A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV–visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15–40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions.