set

Mindful cricket : how to create the mindset you need to be the best cricketer you can be.




set

International Aspects of Property Settlement - Slides - Roy Hasda.




set

Set texts / John Watson.




set

Delivery of the Humanitarian Settlement Program : Department of Home Affairs, Department of Social Services / Australian National Audit Office.




set

In the closet of The Vatican : power, homosexuality, hypocrisy / Frédéric Martel ; translated by Shaun Whiteside.

Catholic Church -- Clergy -- Sexual behavior.




set

The distribution of settlement : appropriation and refusal in Australian literature and culture / Michael R. Griffiths.

Aboriginal Australians -- Land tenure.




set

Deutschlands Gesundheitswesen : Organisation und Gesetzgebung des Deutschen Reichs und seiner Einzelstaaten, mit Anmerkungen und einem ausführlichen Sachregister / von Albert Guttstadt.

Leipzig : G. Thieme, 1890-1891.




set

Die Apologie der Heilkunst : eine griechische Sophistenrede des fünften vorchristlichen Jahrhunderts / bearbeitet, übersetzt, erläutert und eingeleitet von Theodor Gomperz.

Wien : F. Tempsky, 1890.




set

Die Bestattung der Toden in Bezug auf Hygieine, geschichtliche Entwicklung und Gesetzliche Bestimmungen betrachtet / betrachtet von A. Wernher.

Giessen : J. Ricker, 1880.




set

Die Cellular-Pathologie in ihren Grundlagen und Anwendungen betrachtet / von Moses Raffael Levi ; aus dem Italienischen übersetzt von Moriz Berger.

Braunschweig : F. Vieweg, 1865.




set

Die chemische und kalorimetrische Zusammensetzung der Säuglingsnahrung zusammengestellt und berechnet / von Paul Sommerfeld.

Stuttgart : F. Enke, 1902.




set

Die physiologische Optik : eine Darstellung der Gesetze des Auges / von Hermann Scheffler.

Braunschweig : Schulbuchhandlung, 1864-1865.




set

Die Reservekrafte des Organismus und ihre Bedeutung im Kampfe mit der Krankheit / von W. Podwyssozki ; aus dem Russischen ubersetzt von N. Svenson.

Jena : G. Fischer, 1894.




set

A discourse on self-limited diseases : Delivered before the Massachusetts Medical Society, ... May 27, 1835 / by Jacob Bigelow.

Boston : Nathan Hale, 1835.




set

The educational and subsidiary provisions of the Birmingham Royal School of Medicine and Surgery set forth in a letter to the Rev. Dr. Samuel Wilson Warneford ... : the whole being intended to shew the importance and practicability of applying the means a

Oxford : printed by W. Baxter, 1843.




set

Ein Apparat, welcher gestattet, die Gesetze von Filtration und Osmose stromender Flussigkeiten bei homogenen Membranen zu studiren / von H.J. Hamburger.

Amsterdam : J. Muller, 1895.




set

Eloge upon Baron G. Dupuytren ... / by E. Pariset ; translated, with notes, by J.I. Ikin.

London : J. Churchill, 1837.




set

Epidemic cerebro-spinal meningitis and its relation to other forms of meningitis : a report to the State Board of Health of Massachusetts / Report made by W.T. Councilman, F.B. Mallory, and J.H. Wright.

Boston : Wright & Potter Printing Co, 1898.




set

A young woman with a greyhound on a terrace, setting off for a rendez-vous. Photograph after H. Knöchl, ca. 1875.

[Munich?], [between 1870 and 1879?]




set

A Moroccan horseman setting off with a rifle to perform at an equestrian display (fantasia, Tbourida). Etching and drypoint by L.A. Lecouteux after H. Regnault, 1870.




set

Flint Children to Be Screened for Disabilities After $4 Million Settlement

The agreement stems from a class-action civil rights lawsuit filed against the Flint schools, Michigan education department and the Genessee County Intermediate School District.




set

Open Carry Issue in Michigan Schools May Not Be Settled

Questions remain after the Michigan Supreme Court ruled that two school districts have the right to ban guns from their schools.




set

Strike Date Set for Chicago Teachers

Unless they come to an agreement with the district, Chicago Teachers Union members plan to stop work Oct. 17. And the fight is about more than just pay.




set

Professional and paraprofessional drug abuse counselors : three reports / Leonard A. LoSciuto, Leona S. Aiken, Mary Ann Ausetts ; [compiled, written, and prepared for publication by the Institute for Survey Research, Temple University].

Rockville, Maryland : National Institute on Drug Abuse, 1979.




set

Jeu instructif des peuples, 1815 / Paul-André Basset




set

Wedding photographs of William Thomas Cadell and Anne Macansh set in Harriet Scott graphic




set

Correspondence relating to Lewis Harold Bell Lasseter, 1931




set

Aari McDonald on returning for her senior year at Arizona: 'We're ready to set the bar higher'

Arizona's Aari McDonald and Pac-12 Networks' Ashley Adamson discuss the guard's decision to return for her senior season in Tucson and how she now has the opportunity to be the face of the league. McDonald, the Pac-12 Defensive Player of the Year, was one of the nation's top scorers in 2019-20, averaging 20.6 points per game.




set

WNBA Draft Profile: Do-it-all OSU talent Mikayla Pivec has her sights set on a pro breakout

Oregon State guard Mikayla Pivec is the epitome of a versatile player. Her 1,030 career rebounds were the most in school history, and she finished just one assist shy of becoming the first in OSU history to tally 1,500 points, 1,000 rebounds and 500 assists. She'll head to the WNBA looking to showcase her talents at the next level following the 2020 WNBA Draft.




set

Sparse equisigned PCA: Algorithms and performance bounds in the noisy rank-1 setting

Arvind Prasadan, Raj Rao Nadakuditi, Debashis Paul.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 345--385.

Abstract:
Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a sum-type decision statistic outperforms schemes that utilize the $ell _{1}$ and $ell _{2}$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and a illustrate the performance with a video data where the interest is in identifying objects.




set

Asymptotics and optimal bandwidth for nonparametric estimation of density level sets

Wanli Qiao.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 302--344.

Abstract:
Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($dgeq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.




set

Posterior contraction and credible sets for filaments of regression functions

Wei Li, Subhashis Ghosal.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1707--1743.

Abstract:
A filament consists of local maximizers of a smooth function $f$ when moving in a certain direction. A filamentary structure is an important feature of the shape of an object and is also considered as an important lower dimensional characterization of multivariate data. There have been some recent theoretical studies of filaments in the nonparametric kernel density estimation context. This paper supplements the current literature in two ways. First, we provide a Bayesian approach to the filament estimation in regression context and study the posterior contraction rates using a finite random series of B-splines basis. Compared with the kernel-estimation method, this has a theoretical advantage as the bias can be better controlled when the function is smoother, which allows obtaining better rates. Assuming that $f:mathbb{R}^{2}mapsto mathbb{R}$ belongs to an isotropic Hölder class of order $alpha geq 4$, with the optimal choice of smoothing parameters, the posterior contraction rates for the filament points on some appropriately defined integral curves and for the Hausdorff distance of the filament are both $(n/log n)^{(2-alpha )/(2(1+alpha ))}$. Secondly, we provide a way to construct a credible set with sufficient frequentist coverage for the filaments. We demonstrate the success of our proposed method in simulations and one application to earthquake data.




set

On Mahalanobis Distance in Functional Settings

Mahalanobis distance is a classical tool in multivariate analysis. We suggest here an extension of this concept to the case of functional data. More precisely, the proposed definition concerns those statistical problems where the sample data are real functions defined on a compact interval of the real line. The obvious difficulty for such a functional extension is the non-invertibility of the covariance operator in infinite-dimensional cases. Unlike other recent proposals, our definition is suggested and motivated in terms of the Reproducing Kernel Hilbert Space (RKHS) associated with the stochastic process that generates the data. The proposed distance is a true metric; it depends on a unique real smoothing parameter which is fully motivated in RKHS terms. Moreover, it shares some properties of its finite dimensional counterpart: it is invariant under isometries, it can be consistently estimated from the data and its sampling distribution is known under Gaussian models. An empirical study for two statistical applications, outliers detection and binary classification, is included. The results are quite competitive when compared to other recent proposals in the literature.




set

Connecting Spectral Clustering to Maximum Margins and Level Sets

We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions.




set

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




set

The coreset variational Bayes (CVB) algorithm for mixture analysis

Qianying Liu, Clare A. McGrory, Peter W. J. Baxter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 267--279.

Abstract:
The pressing need for improved methods for analysing and coping with big data has opened up a new area of research for statisticians. Image analysis is an area where there is typically a very large number of data points to be processed per image, and often multiple images are captured over time. These issues make it challenging to design methodology that is reliable and yet still efficient enough to be of practical use. One promising emerging approach for this problem is to reduce the amount of data that actually has to be processed by extracting what we call coresets from the full dataset; analysis is then based on the coreset rather than the whole dataset. Coresets are representative subsamples of data that are carefully selected via an adaptive sampling approach. We propose a new approach called coreset variational Bayes (CVB) for mixture modelling; this is an algorithm which can perform a variational Bayes analysis of a dataset based on just an extracted coreset of the data. We apply our algorithm to weed image analysis.




set

The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes

Yong-Chao Zhang, Na Zhang.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.

Abstract:
We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence.




set

Estimating the size of a hidden finite set: Large-sample behavior of estimators

Si Cheng, Daniel J. Eck, Forrest W. Crawford.

Source: Statistics Surveys, Volume 14, 1--31.

Abstract:
A finite set is “hidden” if its elements are not directly enumerable or if its size cannot be ascertained via a deterministic query. In public health, epidemiology, demography, ecology and intelligence analysis, researchers have developed a wide variety of indirect statistical approaches, under different models for sampling and observation, for estimating the size of a hidden set. Some methods make use of random sampling with known or estimable sampling probabilities, and others make structural assumptions about relationships (e.g. ordering or network information) between the elements that comprise the hidden set. In this review, we describe models and methods for learning about the size of a hidden finite set, with special attention to asymptotic properties of estimators. We study the properties of these methods under two asymptotic regimes, “infill” in which the number of fixed-size samples increases, but the population size remains constant, and “outfill” in which the sample size and population size grow together. Statistical properties under these two regimes can be dramatically different.




set

A comparison of spatial predictors when datasets could be very large

Jonathan R. Bradley, Noel Cressie, Tao Shi.

Source: Statistics Surveys, Volume 10, 100--131.

Abstract:
In this article, we review and compare a number of methods of spatial prediction, where each method is viewed as an algorithm that processes spatial data. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, fixed rank kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $mathrm{CO}_{2}$ data from NASA’s AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data.




set

Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. (arXiv:2005.03658v1 [stat.ME])

Heat waves resulting from prolonged extreme temperatures pose a significant risk to human health globally. Given the limitations of observations of extreme temperature, climate models are often used to characterize extreme temperature globally, from which one can derive quantities like return values to summarize the magnitude of a low probability event for an arbitrary geographic location. However, while these derived quantities are useful on their own, it is also often important to apply a spatial statistical model to such data in order to, e.g., understand how the spatial dependence properties of the return values vary over space and emulate the climate model for generating additional spatial fields with corresponding statistical properties. For these objectives, when modeling global data it is critical to use a nonstationary covariance function. Furthermore, given that the output of modern global climate models can be on the order of $mathcal{O}(10^4)$, it is important to utilize approximate Gaussian process methods to enable inference. In this paper, we demonstrate the application of methodology introduced in Risser and Turek (2020) to conduct a nonstationary and fully Bayesian analysis of a large data set of 20-year return values derived from an ensemble of global climate model runs with over 50,000 spatial locations. This analysis uses the freely available BayesNSGP software package for R.




set

Domain Adaptation in Highly Imbalanced and Overlapping Datasets. (arXiv:2005.03585v1 [cs.LG])

In many Machine Learning domains, datasets are characterized by highly imbalanced and overlapping classes. Particularly in the medical domain, a specific list of symptoms can be labeled as one of various different conditions. Some of these conditions may be more prevalent than others by several orders of magnitude. Here we present a novel unsupervised Domain Adaptation scheme for such datasets. The scheme, based on a specific type of Quantification, is designed to work under both label and conditional shifts. It is demonstrated on datasets generated from Electronic Health Records and provides high quality results for both Quantification and Domain Adaptation in very challenging scenarios. Potential benefits of using this scheme in the current COVID-19 outbreak, for estimation of prevalence and probability of infection, are discussed.




set

An Empirical Study of Incremental Learning in Neural Network with Noisy Training Set. (arXiv:2005.03266v1 [cs.LG])

The notion of incremental learning is to train an ANN algorithm in stages, as and when newer training data arrives. Incremental learning is becoming widespread in recent times with the advent of deep learning. Noise in the training data reduces the accuracy of the algorithm. In this paper, we make an empirical study of the effect of noise in the training phase. We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error. Using Perceptron, Feed Forward Neural Network and Radial Basis Function Neural Network, we show that for the same percentage of error, the accuracy of the algorithm significantly varies with the location of error. Furthermore, our results show that the dependence of the accuracy with the location of error is independent of the algorithm. However, the slope of the degradation curve decreases with more sophisticated algorithms




set

lmSubsets: Exact Variable-Subset Selection in Linear Regression for R

An R package for computing the all-subsets regression problem is presented. The proposed algorithms are based on computational strategies recently developed. A novel algorithm for the best-subset regression problem selects subset models based on a predetermined criterion. The package user can choose from exact and from approximation algorithms. The core of the package is written in C++ and provides an efficient implementation of all the underlying numerical computations. A case study and benchmark results illustrate the usage and the computational efficiency of the package.




set

Early onset scoliosis : a clinical casebook

9783319715803 (electronic bk.)





set

Optimal asset allocation with multivariate Bayesian dynamic linear models

Jared D. Fisher, Davide Pettenuzzo, Carlos M. Carvalho.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 299--338.

Abstract:
We introduce a fast, closed-form, simulation-free method to model and forecast multiple asset returns and employ it to investigate the optimal ensemble of features to include when jointly predicting monthly stock and bond excess returns. Our approach builds on the Bayesian dynamic linear models of West and Harrison ( Bayesian Forecasting and Dynamic Models (1997) Springer), and it can objectively determine, through a fully automated procedure, both the optimal set of regressors to include in the predictive system and the degree to which the model coefficients, volatilities and covariances should vary over time. When applied to a portfolio of five stock and bond returns, we find that our method leads to large forecast gains, both in statistical and economic terms. In particular, we find that relative to a standard no-predictability benchmark, the optimal combination of predictors, stochastic volatility and time-varying covariances increases the annualized certainty equivalent returns of a leverage-constrained power utility investor by more than 500 basis points.




set

Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator

Ningshan Zhang, Kyle Schmaus, Patrick O. Perry.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.

Abstract:
We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models.




set

On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

Keisuke Yano, Kengo Kato.

Source: Bernoulli, Volume 26, Number 1, 616--641.

Abstract:
In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.




set

From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown.

Hewish Henry -- Family.




set

Calibration Procedures for Approximate Bayesian Credible Sets

Jeong Eun Lee, Geoff K. Nicholls, Robin J. Ryder.

Source: Bayesian Analysis, Volume 14, Number 4, 1245--1269.

Abstract:
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets, including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior based on some approximate prior and likelihood. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown “true” parameter if the data are a realisation of the user’s ideal observation model conditioned on the parameter, and the parameter is a draw from the user’s ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.