nes

Effect of thickness and noise on angular correlation analysis from scanning electron nanobeam diffraction of disordered carbon

The impact of sample thickness and experimental noise on angular correlation analysis from scanning electron nanobeam diffraction patterns of disordered carbon are investigated and analyzed regarding the interpretability of the analysis results.




nes

A micro-beamstop with transmission detection by fluorescence for scanning-beam synchrotron scattering beamlines

Quantitative X-ray diffraction approaches require careful correction for sample transmission. Though this is a routine task at state-of-the-art small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) or diffraction beamlines at synchrotron facilities, the transmission signal cannot be recorded concurrently with SAXS/WAXS when using the small, sub-millimetre beamstops at many X-ray nanoprobes during SAXS/WAXS experiments due to the divergence-limited size of the beamstop and the generally tight geometry. This is detrimental to the data quality and often the only solution is to re-scan the sample with a PIN photodiode as a detector to obtain transmission values. In this manuscript, we present a simple yet effective solution to this problem in the form of a small beamstop with an inlaid metal target for optimal fluorescence yield. This fluorescence can be detected with a high-sensitivity avalanche photodiode and provides a linear counter to determine the sample transmission.




nes

An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness

X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology. Deformable mirrors are adaptive optics that can produce a flexible surface figure. A method of using a deformable mirror as a phase compensator is described to enhance the focusing performance of an X-ray mirror. This paper presents an active piezoelectric plane X-ray focusing mirror with a linearly changing thickness that has the ability of phase compensation while focusing X-rays. Benefiting from its special structural design, the mirror can realize flexible focusing at different focusing geometries using a single input driving voltage. A prototype was used to measure its performance under one-dimension and two-dimension conditions. The results prove that, even at a bending magnet beamline, the mirror can easily achieve a single-micrometre focusing without a complicated bending mechanism or high-precision surface processing. It is hoped that this kind of deformable mirror will have a wide and flexible application in the synchrotron radiation field.




nes

Finback: a web-based data collection system at SSRF biological macromolecular crystallography beamlines

An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database.




nes

A sub-100 nm thickness flat jet for extreme ultraviolet to soft X-ray absorption spectroscopy

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.




nes

Improving sensitivity of XANES structural fit to the bridged metal–metal coordination

Hard X-ray absorption spectroscopy is a valuable in situ probe for non-destructive diagnostics of metal sites. The low-energy interval of a spectrum (XANES) contains information about the metal oxidation state, ligand type, symmetry and distances in the first coordination shell but shows almost no dependency on the bridged metal–metal bond length. The higher-energy interval (EXAFS), on the contrary, is more sensitive to the coordination numbers and can decouple the contribution from distances in different coordination shells. Supervised machine-learning methods can combine information from different intervals of a spectrum; however, computational approaches for the near-edge region of the spectrum and higher energies are different. This work aims to keep all benefits of XANES and extend its sensitivity towards the interatomic distances in the first and second coordination shells. Using a binuclear bridged copper complex as a case study and cross-validation analysis as a quantitative tool it is shown that the first 170 eV above the edge are already sufficient to balance the contributions of Cu–O/N scattering and Cu–Cu scattering. As a more general outcome this work highlights the trivial but often overlooked importance of using `longer' energy intervals of XANES for structural refinement and machine-learning predictions. The first 200 eV above the absorption edge still do not require parametrization of Debye–Waller damping and can be calculated within full multiple scattering or finite difference approximations with only moderately increased computational costs.




nes

Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning

Transition-metal nitro­gen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems.




nes

Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source

The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.




nes

Area normalization of HERFD-XANES spectra

The normalization of X-ray absorption near-edge structure (XANES) spectra is required for comparing spectral features and extracting quantitative information in analytical techniques such as linear combination analysis, principal component analysis and multivariate curve resolution. Most published data are normalized to the edge-jump, but normalization to the spectral area has also been applied. The latter is particularly attractive if only a small energy range around the absorption can be recorded reliably. Here, the two normalization methods are compared at the L3-edge of Pt, Pd and Rh, and at the Ni K-edge using experimental and calculated spectra. Normalization to the spectral area is found to be a viable approach if the range for the area normalization is sufficiently large.




nes

Effectiveness of ab initio molecular dynamics in simulating EXAFS spectra from layered systems

The simulation of EXAFS spectra of thin films via ab initio methods is discussed. The procedure for producing the spectra is presented as well as an application to a two-dimensional material (WSe2) where the effectiveness of this method in reproducing the spectrum and the linear dichroic response is shown. A series of further examples in which the method has been employed for the structural determination of materials are given.




nes

Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments

The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction.




nes

A new dual-thickness semi-transparent beamstop for small-angle X-ray scattering

An innovative dual-thickness semi-transparent beamstop designed to enhance the performance of small-angle X-ray scattering (SAXS) experiments is introduced. This design integrates two absorbers of differing thicknesses side by side into a single attenuator, known as a beamstop. Instead of completely stopping the direct beam, it attenuates it, allowing the SAXS detector to measure the transmitted beam through the sample. This approach achieves true synchronization in measuring both scattered and transmitted signals and effectively eliminates higher-order harmonic contributions when determining the transmission light intensity through the sample. This facilitates and optimizes signal detection and background subtraction. This contribution details the theoretical basis and practical implementation of this solution at the SAXS station on the 1W2A beamline at the Beijing Synchrotron Radiation Facility. It also anticipates its application at other SAXS stations, including that at the forthcoming High Energy Photon Source, providing an effective solution for high-precision SAXS experiments.




nes

Synthesis and structure of trans-bis­(4-amino-3-nitro­benzoato-κO)bis­(4-amino-3-nitro­benzoic acid-κO)di­aqua­manganese(II) dihydrate

The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitro­benzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4 A3NBA ligand mol­ecules are monodentately coordinated by the Mn2+ ion through the carb­oxy­lic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water mol­ecules, giving rise to a distorted octa­hedron, and two water mol­ecules are in the outer coordination sphere. There are two intra­molecular hydrogen bonds in the complex mol­ecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxyl­ate groups. In the crystal, an intricate system of inter­molecular hydrogen bonds links the complex mol­ecules into a three-dimensional-network.




nes

(2,2'-Bi­pyridine-κ2N,N')(4,4'-dimeth­oxy-2,2'-bipyridine-κ2N,N')palladium(II) bis­(tri­fluoro­meth­anesulfonate)

In the title complex salt, [Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2, the palladium(II) atom is fourfold coordinated by two chelating ligands, 2,2'-bi­pyridine and 4,4'-dimeth­oxy-2,2'-bi­pyridine, in a distorted square-planar environment. In the crystal, weak π–π stacking inter­actions between the 2,2'-bi­pyridine rings [centroid-to-centroid distances = 3.8984 (19) Å] and between the 4,4'-dimeth­oxy-2,2'-bi­pyridine rings [centroid-to-centroid distances = 3.747 (18) Å] contribute to the alignment of the complex cations in columns parallel to the b-axis direction.




nes

Aqua­bis­(2,2'-bi­pyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis­(trifluoromethanesulfonate)

In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bi­pyridine, an isonic­otinamide ligand, and a water mol­ecule in a distorted octa­hedral environment with tri­fluoro­methane­sulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water mol­ecule and weak π–π stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns parallel to the c axis.




nes

trans-Di­bromido­tetra­kis­(5-methyl-1H-pyrazole-κN2)manganese(II)

The title compound, trans-di­bromido­tetra­kis­(5-methyl-1H-pyrazole-κN2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic Poverline{1} space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the mol­ecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supra­molecular architecture is characterized by several inter­molecular C—H⋯N, N—H⋯Br, and C—H⋯π inter­actions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971). Inorg. Chem. 10, 2594–2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supra­molecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known.




nes

(2,5-Di­methyl­imidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetra­yltetra­(2,1-phenyl­ene)]tetra­kis(pyridine-3-carboxamide)}manganese(II) chloro­benzene disolvate

In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-di­methyl­imidazole ligand in the apical site. Two chloro­benzene solvent mol­ecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-di­methyl­imidazole) bond length is 2.171 (8) Å. The structure displays inter­molecular and intra­molecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin.




nes

The influence of the axial group on the crystal structures of boron sub­phthalo­cy­an­ines

The crystal structures of 16 boron sub­phthalo­cy­an­ines (BsubPcs) with structurally diverse axial groups were analyzed and com­pared to elucidate the impact of the axial group on the inter­molecular π–π inter­actions, axial-group inter­actions, axial bond length and BsubPc bowl depth. π–π inter­actions between the iso­indole units of adjacent BsubPc mol­ecules most often involve concave–concave packing, whereas axial-group inter­actions with adjacent BsubPc mol­ecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hy­dro­gen-bonding inter­actions, while axial groups containing arene site(s) can participate in π–π inter­actions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π–π inter­actions and/or axial-group inter­actions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.




nes

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N'-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.




nes

The challenges of growing great crystals – or at least good enough ones!




nes

Mol­ecular and crystal structures of six poly(arylsulfin­yl)- and poly(aryl­sulfan­yl)fer­ro­cenes

Starting from (p-tolyl­sulfin­yl)fer­ro­cene (1), a mixture of the complete series [CpFe{C5H5–n(SOTol-p)n}] (n = 2–4) (2–4) in all regioisomers was obtained. After chromatographic separation, crystals of 1,2-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2a, and 1,3-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2b, both [Fe(C5H5)(C19H17O2S2)], as well as of 1,2,3-tris­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, [Fe(C5H5)(C26H23O3S3)], 3a, and 1,2,3,4-tetra­kis­[(4-methyl­benzene)­sul­fin­yl]fer­ro­cene ethyl acetate 0.75-solvate, [Fe(C5H5)(C33H29O4S4)]·0.75C4H8O2, 4, could be isolated. Their mol­ecular and crystal structures are compared with each other and also with the so far un­reported structures of related 1,2-bis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C17H13S2)], 5, and 1,2,3,4-tetra­kis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C29H21S4)], 6. In all the sulfinyl structures, the O atoms of the S=O groups are in equatorial positions, except for that in tetrasubstituted 4. All the arene rings of these com­pounds (except for one ring in 4) are in axial positions directed away from the Fe atom, mostly in a near perpendicular orientation with respect to the plane of the cyclo­penta­di­en­yl ring. The main inter­molecular inter­actions in the crystals are C—H⋯H—C, C—H⋯π and C—H⋯O, while C—H⋯S inter­actions are much less important, except for tetra­sul­fan­yl com­pound 6. π–π inter­actions (intra­molecular) are only important in com­pound 3a. Hirshfeld analysis shows that dispersion terms are dominant for the inter­action energies of all six com­pounds. In general, the calculated total inter­action energies increase with increasing number of substituents and are higher for the sulfinyl than for the sul­fan­yl groups.




nes

The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure–temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its inter­actions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule–gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.




nes

A service-based approach to cryoEM facility processing pipelines at eBIC

Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.




nes

Surface-mutagenesis strategies to enable structural biology crystallization platforms

A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS–SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.




nes

Chromic soft crystals based on luminescent platinum(II) complexes

Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal–metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided.




nes

High-accuracy measurement, advanced theory and analysis of the evolution of satellite transitions in manganese Kα using XR-HERFD

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.




nes

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




nes

Following the guidelines for communicating commensurate magnetic structures: real case examples

A few real case examples are presented on how to report magnetic structures, with precise step-by-step explanations, following the guidelines of the IUCr Commission on Magnetic Structures [Perez-Mato et al. (2024). Acta Cryst. B80, 219–234]. Four examples have been chosen, illustrating different types of single-k magnetic orders, from the basic case to more complex ones, including odd-harmonics, and one multi-k order. In addition to acquainting researchers with the process of communicating commensurate magnetic structures, these examples also aim to clarify important concepts, which are used throughout the guidelines, such as the transformation to a standard setting of a magnetic space group.




nes

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




nes

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




nes

Synthesis and crystal structures of two racemic 2-heteroaryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol­ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti­omers occupying the neighboring asymmetric units. Structure 2 also has water mol­ecules (partial occupancies) that form continuous channels along the b-axis direction. The thia­zine rings in both structures exhibit an envelope conformation. Inter­molecular inter­actions in 1 are defined only by C—H⋯O and C—H⋯N hydrogen bonds between crystallographically independent mol­ecules. In 2, hydrogen bonds of the type N—H⋯O between independent mol­ecules and C—H⋯N(π) type, and π–π stacking inter­actions between the pyridine rings of symmetry-related mol­ecules are observed.




nes

Development of hard X-ray photoelectron spectroscopy in liquid cells using optimized microfabricated silicon nitride membranes

We present first hard X-ray photoelectron spectroscopy (HAXPES) results of aqueous salt solutions and dispersions of gold nanoparticles in liquid cells equipped with specially designed microfabricated thin silicon nitride membranes, with thickness in the 15–25 nm range, mounted in a high-vacuum-compatible environment. The experiments have been performed at the HAXPES endstation of the GALAXIES beamline at the SOLEIL synchrotron radiation facility. The low-stress membranes are fabricated from 100 mm silicon wafers using standard lithography techniques. Platinum alignment marks are added to the chips hosting the membranes to facilitate the positioning of the X-ray beam on the membrane by detecting the corresponding photoemission lines. Two types of liquid cells have been used, a static one built on an Omicron-type sample holder with the liquid confined in the cell container, and a circulating liquid cell, in which the liquid can flow in order to mitigate the effects due to beam damage. We demonstrate that the membranes are mechanically robust and able to withstand 1 bar pressure difference between the liquid inside the cell and vacuum, and the intense synchrotron radiation beam during data acquisition. This opens up new opportunities for spectroscopic studies of liquids.




nes

Mirror-centered representation of a focusing hyperbolic mirror for X-ray beamlines

Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors can focus a converging light source and are frequently paired with elliptical or parabolic mirrors in Wolter type configurations. This paper derives the closed-form expression for a mirror-centered hyperbolic shape, with zero-slope at the origin. Combined with the slope and curvature, such an expression facilitates metrology, manufacturing and mirror-bending calculations. Previous works consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approximations. Here, the exact shape function is given in terms of the mirror incidence angle and the source and image distances.




nes

A general Bayesian algorithm for the autonomous alignment of beamlines

Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.




nes

Towards Seamless Payment Interoperability – Thunes Report

 ‘The Road Ahead: Towards Seamless Payments Interoperability’, an eBook from Thunes, Visa, and The Paypers, explores how payments interoperability is reshaping the future of cross-border transactions.




nes

Thunes expands cross-border payment network to Egypt

Thunes has announced the expansion of its Direct Global Network...




nes

Thunes partners with Papara to support cross-border payments in Turkey

Thunes, a global cross-border payments platform, has announced a...




nes

Simon Pegg fights 'beige' life in 'Hector and the Search for Happiness'

TORONTO, ON - SEPTEMBER 07: Actor Simon Pegg attends the "Hector and the Search for Happiness" premiere during the 2014 Toronto International Film Festival at Winter Garden Theatre on September 7, 2014 in Toronto, Canada. (Photo by Tommaso Boddi/Getty Images); Credit: Tommaso Boddi/Getty Images

British actor Simon Pegg has had the chance to take on some pretty fun roles. He’s battled zombies in Shaun of the Dead. He’s taken on the role of Scotty in the J.J. Abrams reboot of "Star Trek." And he plays an Impossible Missions Force technician alongside Tom Cruise in the Mission Impossible film series.

In his latest film release, Pegg plays Hector, a psychiatrist who decides his life is just too “beige,” so he sets out into the world to find out what makes people truly happy.

Pegg joins Take Two to talk about what Hector’s journey brings him in “Hector and the Search for Happiness.”

“Hector and the Search for Happiness” opens in the U.S. September 19th.

Interview Highlights:
 

On prepping to play the psychiatrist, Hector:

“Rosamund Pike and I…had dinner with a psychiatrist prior to starting shooting just to see, sort of, how he felt about dealing with people who have problems which aren’t necessarily, real problems, you know; which are what people call first world problems on Twitter.”

Why Hector sets out on his journey:

"I think Hector, at the beginning of the film, has a life that is very satisfactory; and to that degree, he’s unhappy…And, you know, what he learns is, you need more than that emotionally in your life to truly be happy. You know, if everything’s kind of just beige, you’re never going to be happy. You need to know misery, you need to know fear, and you need to know abandonment."

A little perspective:

"It was a very interesting thing to be shooting in Johannesburg, and to get out into…the townships…and see societies which contend with just abject poverty, and hardship everyday; but seeing so many smiles, and so many people genuinely joyful. And then get into the interior of Johannesburg, where there’s a lot of white people living in, sort of, gated communities, terrified...And see less smiles. It’s a very odd thing. And very, in keeping with the message of the film, which is, avoiding unhappiness is not the root to happiness.”

On his favorite emotion to convey as an actor – happiness, sadness, or anger:

“It’s a weird thing, I think, acting, sometimes. I sometimes almost resent it because you go through this sort of Pavlovian trauma sometimes because you have to recreate certain things that are sometimes a bit stressful.”

“Happiness is always a nice one because it’s fun to laugh on screen or to recreate moments of joy or euphoria, cause you do get a buzz from it, you know, you get this…vicarious, sort of, happiness in yourself. But that works as well for having to replicate sadness, or fear, or anger, or love even. “

“Your body thinks, ‘Oh, are we doing this now? Are we in love with someone here? Are we scared of something [laughs]?’ And you have to constantly intellectualize and remind your hormones that you’re actually – ‘No. This is fake, okay. You’re actually not about to die.’”




nes

Why Liam Neeson was 'very reluctant' to star in 'A Walk Among the Tombstones'

Liam Neeson stars as Matthew Scudder in "A Walk Among the Tombstones." ; Credit: Universal Pictures

Screenwriter and director Scott Frank has been trying to make “A Walk Among the Tombstones” for more than a decade, but it wasn't until Liam Neeson signed on that his efforts finally came into view.

Based on the Lawrence Block novel, “Tombstones” stars Liam Neeson as Matthew Scudder, an ex-cop working as an unlicensed private investigator. He agrees to help a well-to-do drug trafficker hunt down the kidnappers who have brutally murdered his wife.

 

Frank wrote the screenplay and, after the departures of other attached directors, Frank decided to step behind the cameras himself. 

When he came by The Frame studio, Frank spoke with host John Horn about Neeson's great strengths as an action hero and how he convinced Neeson to sign on to the project.

Interview Highlights:

 

John Horn: Liam Neeson has evolved in a fascinating way as an action hero. When did you start having conversations with him about this movie, and what was it about him as an actor that made it feel like the right fit?

"Well, what's interesting is that Larry Block, the novelist, had always said, going way back to 2003 or something, that the perfect actor for this, after [he saw] 'Michael Collins'...would be Liam Neeson. Chris Andrews, who is Liam's agent, always loved the script and was always trying to find a way to put it together, and he's the one who gave it to Liam back when D.J. [Caruso] was going to direct. So the first time I met Liam to talk about the movie, I was talking to him as the writer, not as the director of the movie. And then when D.J. fell out to go do a different movie at Sony...we had a conversation about directing the movie.

JH: Was this before or after the first "Taken" had come out?

This was well after the first 'Taken,' this was right before the second 'Taken.'

JH: So Liam is...succeeding as a version of that character, and I wonder if that success cuts both ways, that maybe there's a reluctance on his part to not do something that's quite as similar? Or is that part of your conversation that you have with him? 

It absolutely cuts both ways, and that was a huge part of the conversation because there's a kidnapping in this story, and there he is on the telephone for a few minutes at the end of the movie talking to kidnappers, and there are similarities [to 'Taken']. And he knew that was the way to sell the movie, and so he was very reluctant. And I talked to him and I had him watch 'Klute,' and I said, "That's the movie we're gonna make. We're not going to make 'Taken,' we're going to make a movie that's like 'Klute,' or a little bit like 'Dirty Harry,' or one of those old-school '70s films. It's going to feel more like that than an action movie."

 

 

JH: Liam Neeson's not physically imposing, but there's something about him that really kind of makes the hair on the back of your neck stand up. What is it about him as an actor in this kind of part?

Well, there's a couple things. One: you believe him. No matter what he's talking about, it seems authentic and true...he has this thing about him that, whatever he's doing, you believe him. Two: he's one of those actors like Gene Hackman where he can convey exposition and make it feel like character. He can talk pages of exposition and make it all feel like it's character and drama — it's a great thing. The other thing about him is that he has this real gravitas, and it almost borders on sadness sometimes; it's interesting when you watch him and you feel like there's all this other life going on behind him.

JH: That he has nothing to lose, in other words.

Nothing to lose, and he says that at one point in the film, but I think it's those things that are all at work at the same time.




nes

Jazz master Clark Terry gets his due from Quincy Jones in 'Keep On Keepin' On'

The relationship between pianist Justin Kauflin and trumpeter Clark Terry is at the heart of the documentary, "Keep On Keepin' On."; Credit: COURTESY OF RADiUS-TWC

Trumpeter Clark Terry played in Count Basie's and Duke Ellington's bands. He was the first African American hired for The Tonight Show band. He mentored the teenage prodigies Miles Davis and Quincy Jones. But Terry isn't as well known as you might think he'd be. 

Thanks to the new documentary, "Keep On Keepin' On," you can see Clark Terry — or C.T., as everyone calls him — in action. The film tells the story of Terry's early love of the trumpet, his quick rise through the jazz ranks, and how he's devoted much of his life to inspiring other musicians — all with a sparkle in his eye.

The movie is directed by first time filmmaker Alan Hicks and made on a shoestring budget. Hicks is himself a drummer and had been one of Terry's students. Originally it was going to be a short film about Terry and Hicks' relationship, funded by the Australian Broadcasting Company. (Hicks is from Australia.) When that financing fell through, Hicks improvised. Determined to tell the world about Terry, he and a childhood buddy, Adam Hart, decided to do it themselves — despite having no filmmaking experience. They bought a camera and plane tickets to the U.S. and began following Terry.

For many years their schedule was to shoot until they ran out of funds, usually about three months, work for a few months to save more money, then go back to shooting. To demonstrate how Terry mentors his students, they followed one young man in particular. Justin Kauflin is a blind jazz pianist with stage fright who would spend days and nights practicing at Terry's bedside. Over the course of the film, as we learn about Terry's past, we see the aging trumpeter in the present (he's now 93) — struggling with advanced diabetes, but always composing riffs from his bed late into the night.  

In one moving scene, Kauflin is riddled with anxiety as he prepares to compete in the Thelonious Monk International Jazz competition. Terry sends him an audio letter and some lucky socks for inspiration.

Years into the project, when Quincy Jones came to visit Terry, he met Kauflin and the filmmakers. Eventually Jones signed on as an executive producer of "Keep On Keepin' On" — as is only fitting given that, at age 13, he'd been Terry's first student.

Jones, Hicks and Kauflin spoke with The Frame about Terry and his unparalleled talent as a musician and as a mentor.

 




nes

Thunes unlocks global mobile wallet payments via Swift

Thunes has announced that its proprietary Direct Global Network...




nes

Suits Me acquires the Engage business from Contis

UK-based alternative banking provider Suits Me has announced the acquisition of Engage Card customers from Solaris, with the company focusing on scaling financial inclusion in the region. 




nes

Domestic Violence Is The Number One Driver Of Homelessness For Women In LA County— Why Is It Rarely Addressed In Policy?

A homeless encampment is pictured at Venice Beach, on June 30, 2021 in Venice, California, where an initiative began this week offering people in homeless encampments a voluntary path to permanent housing.; Credit: FREDERIC J. BROWN/AFP via Getty Images

Julia Paskin | AirTalk

The majority of unhoused women across the nation — 57% according to recent data — say domestic violence is the direct cause of losing their permanent home. 

In L.A, almost 40% of women who are homeless say they’ve experienced abuse in the last 12 months.

The choice they’ve been forced to make: Stay in danger with their abusers — or escape, with nowhere to go.

“It’s like jumping from a burning building but there’s no net to catch you,” said Nikki Brown, a survivor and advocate.

There are many, complex reasons why survivors become homeless. Shame is one of them. Yet studies show that one in three women experience some form of intimate partner abuse in their lives. So why don’t we talk about it more?

“It's the greatest secret that's super common and nobody wants to admit it,” said Brown. “There are so many complicated circumstances that make it really hard to leave. And when you can't leave, that element of shame and blame is the thing that makes it so hard to talk about.”

Today on AirTalk, we’re learning more about reporter Julia Paskin’s series Pushed Out, on domestic violence and homelessness in Los Angeles. Do you have an experience you want to share? Give us a call at 866-893-5722.

Guests:

Julia Paskin, KPCC producer and reporter who created the “Pushed Out” series; she tweets @JuliaPaskinInc

Amy Turk, CEO of Downtown Women’s Center, which advocates and offers services for women experiencing homelessness and formerly homeless women; she tweets @AmyFTurk

Nikki Brown, staff attorney at Community Legal Aid SoCal, where she has clients that are domestic violence survivors

This content is from Southern California Public Radio. View the original story at SCPR.org.




nes

COVID-19 AMA: J&J Says Its Vaccine Is Effective Against Delta Variant, WHO Says All Authorized Vaccines Should Be Recognized By The West And More

Detail of boxes with the U.S. donated Johnson & Johnson vaccine against Covid-19 at Universidad de Baja California on June 17, 2021 in Tijuana, Baja California. ; Credit: Francisco Vega/Getty Images

James Chow | AirTalk

In our continuing series looking at the latest medical research and news on COVID-19, Larry Mantle speaks with Dr. Annabelle De St. Maurice from University of California Los Angeles/Mattel Children’s hospital.

Topics today include:

  • J&J says its vaccine is effective against Delta variant

  • WHO says all vaccines it authorized should be recognized by reopening countries

  • White House says it will miss July 4 vaccination goal

  • Postpartum depression on the rise during the pandemic

  • Experts believe Novavax may play a role in combating vaccine hesitancy

  • Delta variant is not driving a surge in hospitalization rates in England

Guest: 

Annabelle De St. Maurice, M.D., assistant professor of pediatrics in the division of infectious diseases and the co-chief infection prevention officer at University of California Los Angeles/Mattel Children’s hospital; she tweets @destmauricemd

This content is from Southern California Public Radio. View the original story at SCPR.org.




nes

Hot Vax Summer? How Sex And Relationships In America Are Changing With Vaccines Widely Available

In this photo taken on February 10, 2020 a 'love kit' is seen on the bed in a room at the Dragonfly hotel in Mumbai.; Credit: PUNIT PARANJPE/AFP via Getty Images

AirTalk

A new survey shows that in the era of widespread vaccine availability, American couples are more satisfied in their relationships -- and some are even getting more experimental than they have been.

Led by Indiana University Kinsey Institute researcher Justin Lehmiller in collaboration with the website Lovehoney, which describes itself as “global sexual happiness experts,” the report looked at responses from 2,000 U.S. adults age 18-45, including an oversample of 200 who identified as LGBTQ, and among the major findings of the survey were that more than half (51 percent) of respondents said their sexual interests had changed during the pandemic, and many of those said they’d started trying things they hadn’t before. It also found that 44 percent of people surveyed said they were communicating better with their partner, and among singles surveyed 52 percent say they’re less interested in casual sex and more than a third of them said they weren’t interested in having sex on the first date.

Today on AirTalk, we’ll talk with Professor Lehmiller about the survey, its findings and how the pandemic impacted Americans’ views on relationships and sex.

Guest: 

Justin Lehmiller, social psychologist and research fellow at Indiana University’s Kinsey Institute who conducted the “Summer of Love” survey; author of “Tell Me What You Want: The Science of Sexual Desire and How It Can Help You Improve Your Sex Life” (Hachette Go, July 2020); host of the “Sex and Psychology” podcast; he tweets @JustinLehmiller

This content is from Southern California Public Radio. View the original story at SCPR.org.




nes

New research estimates the effectiveness of sagebrush restoration treatments across the sagebrush biome

Restoration of the imperiled sagebrush biome will require tools that assist resource managers in determining which restoration practices are most effective, and when and where restoration efforts will lead to the most ecosystem recovery. New research from USGS and Colorado State University provides biome-wide insights and spatially explicit tools that can inform restoration practices. 




nes

Trump's Family Business, CFO Weisselberg Are Charged With Tax Crimes

Allen Weisselberg, the Trump Organization's longtime chief financial officer, watches as then-U.S. Republican presidential candidate Donald Trump addresses a 2016 news conference at Trump Tower in New York City.; Credit: Carlo Allegri/Reuters

Andrea Bernstein, Ilya Marritz, and Brian Naylor | NPR

Updated July 1, 2021 at 3:14 PM ET

Former President Donald Trump's family business and its longtime chief financial officer, Allen Weisselberg, have been charged by the Manhattan district attorney's office in a case involving alleged tax-related crimes.

Before the indictment was released Thursday, Weisselberg's personal attorneys, Mary Mulligan and Bryan Skarlatos, said in a statement that the CFO "intends to plead not guilty and he will fight these charges in court."

Trump has long denied any wrongdoing.

In a statement Thursday afternoon, the former president said:

"The political Witch Hunt by the Radical Left Democrats, with New York now taking over the assignment, continues. It is dividing our Country like never before!"

The investigation by Manhattan District Attorney Cyrus Vance Jr. began in 2018 around the time Trump's former personal lawyer, Michael Cohen, pleaded guilty to campaign finance charges related to payments of hush money. These were made in the final months of the 2016 presidential campaign, as Cohen put it in court, "in coordination with, and at the direction of, a candidate for federal office." The goal was to block two women who claimed they had extramarital affairs with Trump — former Playboy model Karen McDougal and adult film star Stephanie Clifford, whose stage name is Stormy Daniels — from telling their stories publicly.

New York state Attorney General Letitia James' office launched its own probe in 2019 after Cohen testified in a congressional hearing that Trump manipulated property values to lower his tax obligations and to obtain bank loans. James' investigation was initially focused on potential civil charges, but it recently expanded to include a criminal probe in partnership with Vance.

This year, the investigators have homed in on noncash payments made to top officials in Trump's companies, including Weisselberg.

The U.S. Supreme Court paved the way for the charges, declining in February to block a subpoena from Vance's office seeking Trump's financial records. Vance first requested tax filings and other financial records from Trump's accounting firm, Mazars USA, in 2019.

In a statement released in May, Trump said the New York-based investigations were part of a "Witch Hunt," adding, with a reference to how his presidential campaign started in 2015: "It began the day I came down the escalator in Trump Tower, and it's never stopped."

Copyright 2021 NPR. To see more, visit https://www.npr.org.

This content is from Southern California Public Radio. View the original story at SCPR.org.




nes

FilmWeek: ‘The Boss Baby: Family Business,’ ‘Long Story Short,’ ‘No Sudden Movement,’ And More

Shot from the film “The Boss Baby: Family Business”; Credit: Dreamworks

FilmWeek

Larry Mantle and KPCC film critics Lael Loewenstein, Wade Major and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.

Our FilmWeek critics have been curating personal lists of their favorite TV shows and movies to binge-watch during self-quarantine. You can see recommendations from each of the critics and where you can watch them here.

Guests:

Lael Loewenstein, film critic for KPCC; she tweets @LAELLO

Wade Major, film critic for KPCC and CineGods.com

Charles Solomon, film critic for KPCC, Animation Scoop and Animation Magazine

This content is from Southern California Public Radio. View the original story at SCPR.org.




nes

When human expertise improves the work of machines

Full Text:

Machine learning algorithms can sometimes do a great job with a little help from human expertise, at least in the field of materials science. In many specialized areas of science, engineering and medicine, researchers are turning to machine learning algorithms to analyze data sets that have grown too large for humans to understand. In materials science, success with this effort could accelerate the design of next-generation advanced functional materials, where development now usually depends on old-fashioned trial and error. By themselves, however, data analytics techniques borrowed from other research areas often fail to provide the insights needed to help materials scientists and engineers choose which of many variables to adjust -- and the techniques can't account for dramatic changes such as the introduction of a new chemical compound into the process. In a new study, researchers explain a technique known as dimensional stacking, which shows that human experience still has a role to play in the age of machine intelligence. The machines gain an edge at solving a challenge when the data to be analyzed are intelligently organized based on human knowledge of what factors are likely to be important and related. "When your machine accepts strings of data, it really does matter how you are putting those strings together," said Nazanin Bassiri-Gharb, the paper's corresponding author and a scientist at the Georgia Institute of Technology. "We must be mindful that the organization of data before it goes to the algorithm makes a difference. If you don't plug the information in correctly, you will get a result that isn't necessarily correlated with the reality of the physics and chemistry that govern the materials."

Image credit: Rob Felt/Georgia Tech




nes

15 Major Reasons Businesses' Security Gets Compromised

In a world of ever-advancing technology and development, many company heads often get lost in the bustle and get swept up in the sea of buzzwords that happen to be popular at any given moment. They ...