the Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations By www.jneurosci.org Published On :: 2024-10-23 Mahsa AltafiOct 23, 2024; 44:e0518242024-e0518242024Systems/Circuits Full Article
the Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem By www.jneurosci.org Published On :: 2012-12-12 Christelle AnacletDec 12, 2012; 32:17970-17976BehavioralSystemsCognitive Full Article
the Multiscale Computer Model of the Spinal Dorsal Horn Reveals Changes in Network Processing Associated with Chronic Pain By www.jneurosci.org Published On :: 2022-04-13 Laura MedlockApr 13, 2022; 42:3133-3149Systems/Circuits Full Article
the Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23 Prithviraj RajebhosaleOct 23, 2024; 44:e0063242024-e0063242024Cellular Full Article
the Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects By www.jneurosci.org Published On :: 2019-10-16 Yasmin L. HurdOct 16, 2019; 39:8250-8258Symposium and Mini-Symposium Full Article
the Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action By www.jneurosci.org Published On :: 2023-11-08 Lindsay P. CameronNov 8, 2023; 43:7472-7482Symposium and Mini-Symposium Full Article
the The Motor Basis for Misophonia By www.jneurosci.org Published On :: 2021-06-30 Sukhbinder KumarJun 30, 2021; 41:5762-5770Neurobiology of Disease Full Article
the Revisiting the Stress Concept: Implications for Affective Disorders By www.jneurosci.org Published On :: 2020-01-02 Bruce S. McEwenJan 2, 2020; 40:12-21Viewpoints Full Article
the Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions By www.jneurosci.org Published On :: 2019-09-11 Tessa E.S. CharlesworthSep 11, 2019; 39:7228-7243Viewpoints Full Article
the Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep By www.jneurosci.org Published On :: 2019-07-03 Jesse J. LangilleJul 3, 2019; 39:5244-5246Journal Club Full Article
the On the Role of Theory and Modeling in Neuroscience By www.jneurosci.org Published On :: 2023-02-15 Daniel LevensteinFeb 15, 2023; 43:1074-1088Viewpoints Full Article
the Cognitive-Affective Functions of the Cerebellum By www.jneurosci.org Published On :: 2023-11-08 Stephanie RudolphNov 8, 2023; 43:7554-7564Symposium and Mini-Symposium Full Article
the The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands By www.jneurosci.org Published On :: 2019-12-11 William W. SeeleyDec 11, 2019; 39:9878-9882Progressions Full Article
the Drawing in the Galleries By www.sl.nsw.gov.au Published On :: Tue, 19 Mar 2024 03:00:19 +0000 Join us in the Paintings Galleries for drawing adventures! Full Article
the Lucas Jordan: The Chipilly Six By www.sl.nsw.gov.au Published On :: Mon, 25 Mar 2024 06:01:14 +0000 Join author Lucas Jordan on the eve of Anzac Day to uncover the story of the Chipilly Six and their extraordinary feats. Full Article
the Wadgayawa Nhay Dhadjan Wari (they made them a long time ago) tour By www.sl.nsw.gov.au Published On :: Tue, 26 Mar 2024 04:01:13 +0000 Explore our new exhibition, featuring Aboriginal belongings removed from Country over the last 230 years that have trave Full Article
the On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex By www.jneurosci.org Published On :: 1982-11-01 AP GeorgopoulosNov 1, 1982; 2:1527-1537Articles Full Article
the Rich-Club Organization of the Human Connectome By www.jneurosci.org Published On :: 2011-11-02 Martijn P. van den HeuvelNov 2, 2011; 31:15775-15786BehavioralSystemsCognitive Full Article
the Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream By www.jneurosci.org Published On :: 2015-07-08 Umut GüçlüJul 8, 2015; 35:10005-10014BehavioralSystemsCognitive Full Article
the Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans. Full Article
the A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses. Full Article
the Role of the STING->IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Targeting altered expression and/or activity of GABA (-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING->GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits. Full Article
the Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota–gut–brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD. Full Article
the The Role of the Hippocampus in Consolidating Motor Learning during Wakefulness By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Full Article
the Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain. Full Article
the Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior. Full Article
the This Week in The Journal By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Full Article
the GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 The GluN3A subunit of N-methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered. Here, using male and female mice, we demonstrate that GluN3A subunits are enriched in the adult ventral hippocampus (VH), where they localize to synaptic and extrasynaptic sites and can assemble as functional eGlyRs on CA1 pyramidal cells. GluN3A expression was barely detectable in the adult dorsal hippocampus (DH). We also observed a high GluN2B content in the adult VH, characterized by slow NMDAR current decay kinetics and a high sensitivity to the GluN2B-containing NMDAR antagonist ifenprodil. Interestingly, the GluN2B enrichment in the adult VH was dependent on GluN3A as GluN3A deletion accelerated NMDAR decay and reduced ifenprodil sensitivity in the VH, suggesting that GluN3A expression can regulate the balance of conventional NMDAR subunit composition at synaptic sites. Lastly, we found that GluN3A knock-out also enhanced both NMDAR-dependent calcium influx and NMDAR-dependent long-term potentiation in the VH. Together, these data reveal a novel role for GluN3A and eGlyRs in the control of ventral hippocampal circuits in the mature brain. Full Article
the Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain. Full Article
the This Week in The Journal By www.jneurosci.org Published On :: 2024-10-16T09:30:19-07:00 Full Article
the Erratum: Spencer et al., "Regulation of the Mouse Ventral Tegmental Area by Melanin-Concentrating Hormone" By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
the Spinal Cord Microglia in the Development of Touch By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
the Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the VP complex in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically second somatosensory area (S2), but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VPM subnucleus selectively targets the insular cortex and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to the cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2. Full Article
the Atp13a5 Marker Reveals Pericyte Specification in the Mouse Central Nervous System By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Perivascular mural cells including vascular smooth cells (VSMCs) and pericytes are integral components of the vascular system. In the central nervous system (CNS), pericytes are also indispensable for the blood–brain barrier (BBB), blood–spinal cord barrier, and blood–retinal barrier and play key roles in maintaining cerebrovascular and neuronal functions. However, the functional specifications of pericytes between CNS and peripheral organs have not been resolved at the genetic and molecular levels. Hence, the generation of reliable CNS pericyte-specific models and genetic tools remains very challenging. Here, we report a new CNS pericyte marker in mice. This putative cation-transporting ATPase 13A5 (Atp13a5) marker was identified through single-cell transcriptomics, based on its specificity to brain pericytes. We further generated a knock-in model with both tdTomato reporter and Cre recombinase. Using this model to trace the distribution of Atp13a5-positive pericytes in mice, we found that the tdTomato reporter reliably labels the CNS pericytes, including the ones in spinal cord and retina but not peripheral organs. Interestingly, brain pericytes are likely shaped by the developing neural environment, as Atp13a5-positive pericytes start to appear around murine embryonic day 15 (E15) and expand along the cerebrovasculature. Thus, Atp13a5 is a specific marker of CNS pericyte lineage, and this Atp13a5-based model is a reliable tool to explore the heterogeneity of pericytes and BBB functions in health and diseases. Full Article
the {mu}-Opioid Receptor Modulation of the Glutamatergic/GABAergic Midbrain Inputs to the Mouse Dorsal Hippocampus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and μ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated μ-opioid modulation of these synapses and found that activation of μ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts. Full Article
the Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep. Full Article
the Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors—social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30–60 and 60–90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders. Full Article
the Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by -secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ. Full Article
the This Week in The Journal By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
the A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration. Full Article
the The Critical Thing about the Ear's Sensory Hair Cells By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 The capabilities of the human ear are remarkable. We can normally detect acoustic stimuli down to a threshold sound-pressure level of 0 dB (decibels) at the entrance to the external ear, which elicits eardrum vibrations in the picometer range. From this threshold up to the onset of pain, 120 dB, our ears can encompass sounds that differ in power by a trillionfold. The comprehension of speech and enjoyment of music result from our ability to distinguish between tones that differ in frequency by only 0.2%. All these capabilities vanish upon damage to the ear's receptors, the mechanoreceptive sensory hair cells. Each cochlea, the auditory organ of the inner ear, contains some 16,000 such cells that are frequency-tuned between ~20 Hz (cycles per second) and 20,000 Hz. Remarkably enough, hair cells do not simply capture sound energy: they can also exhibit an active process whereby sound signals are amplified, tuned, and scaled. This article describes the active process in detail and offers evidence that its striking features emerge from the operation of hair cells on the brink of an oscillatory instability—one example of the critical phenomena that are widespread in physics. Full Article
the Dopamine and Norepinephrine Differentially Mediate the Exploration-Exploitation Tradeoff By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision-making processes. Although two neuromodulators share a synthesis pathway and are coactivated under states of arousal, they engage in distinct circuits and modulatory roles. However, the specific role of each neuromodulator in decision-making, in particular the exploration–exploitation tradeoff, remains unclear. Revealing how each neuromodulator contributes to exploration–exploitation tradeoff is important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration, a direct comparison using the same dynamic decision-making task is needed. Here, we ran male and female mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA antagonist (flupenthixol), a nonselective DA agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol) and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine on exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. The modulatory effect of beta-noradrenergic receptor activity on exploration was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via sensitivity to outcome. Together, these findings suggested that the mechanisms that govern the exploration–exploitation transition are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration. Full Article
the Retinal Input to Macaque Superior Colliculus Derives from Branching Axons Projecting to the Lateral Geniculate Nucleus By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 The superior colliculus receives a direct projection from retinal ganglion cells. In primates, it remains unknown if the same ganglion cells also supply the lateral geniculate nucleus. To address this issue, a double-label experiment was performed in two male macaques. The animals fixated a target while injection sites were scouted in the superior colliculus by recording and stimulating with a tetrode. Once suitable sites were identified, cholera toxin subunit B-Alexa Fluor 488 was injected via an adjacent micropipette. In a subsequent acute experiment, cholera toxin subunit B-Alexa Fluor 555 was injected into the lateral geniculate nucleus at matching retinotopic locations. After a brief survival period, ganglion cells were examined in retinal flatmounts. The percentage of double-labeled cells varied locally, depending on the relative efficiency of retrograde transport by each tracer and the precision of retinotopic overlap of injection sites in each target nucleus. In counting boxes with extensive overlap, 76–98% of ganglion cells projecting to the superior colliculus were double labeled. Cells projecting to the superior colliculus constituted 4.0–6.7% of the labeled ganglion cell population. In one particularly large zone, there were 5,746 cells labeled only by CTB-AF555, 561cells double labeled by CTB-AF555 and CTB-AF488, but no cell labeled only by CTB-AF488. These data indicate that retinal input to the macaque superior colliculus arises from a collateral axonal branch supplied by ~5% of the ganglion cells that project to the lateral geniculate nucleus. Surprisingly, there exist no ganglion cells that project exclusively to the SC. Full Article
the Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Harmonics are an integral part of music, speech, and vocalizations of animals. Since the rest of the auditory environment is primarily made up of nonharmonic sounds, the auditory system needs to perceptually separate the above two kinds of sounds. In mice, harmonics, generally with two-tone components (two-tone harmonic complexes, TTHCs), form an important component of vocal communication. Communication by pups during isolation from the mother and by adult males during courtship elicits typical behaviors in female mice—dams and adult courting females, respectively. Our study shows that the processing of TTHC is specialized in mice providing neural basis for perceptual differences between tones and TTHCs and also nonharmonic sounds. Investigation of responses in the primary auditory cortex (Au1) from in vivo extracellular recordings and two-photon Ca2+ imaging of excitatory and inhibitory neurons to TTHCs exhibit enhancement, suppression, or no-effect with respect to tones. Irrespective of neuron type, harmonic enhancement is maximized, and suppression is minimized when the fundamental frequencies (F0) match the neuron's best fundamental frequency (BF0). Sex-specific processing of TTHC is evident from differences in the distributions of neurons’ best frequency (BF) and best fundamental frequency (BF0) in single units, differences in harmonic suppressed cases re-BF0, independent of neuron types, and from pairwise noise correlations among excitatory and parvalbumin inhibitory interneurons. Furthermore, TTHCs elicit a higher response compared with two-tone nonharmonics in females, but not in males. Thus, our study shows specialized neural processing of TTHCs over tones and nonharmonics, highlighting local network specialization among different neuronal types. Full Article
the This Week in The Journal By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Full Article
the The Effect of Congruent versus Incongruent Distractor Positioning on Electrophysiological Signals during Perceptual Decision-Making By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Key event-related potentials (ERPs) of perceptual decision-making such as centroparietal positivity (CPP) elucidate how evidence is accumulated toward a given choice. Furthermore, this accumulation can be impacted by visual target selection signals such as the N2 contralateral (N2c). How these underlying neural mechanisms of perceptual decision-making are influenced by the spatial congruence of distractors relative to target stimuli remains unclear. Here, we used electroencephalography (EEG) in humans of both sexes to investigate the effect of distractor spatial congruency (same vs different hemifield relative to targets) on perceptual decision-making. We confirmed that responses for perceptual decisions were slower for spatially incongruent versus congruent distractors of high salience. Similarly, markers of target selection (N2c peak amplitude) and evidence accumulation (CPP slope) were found to be lower when distractors were spatially incongruent versus congruent. To evaluate the effects of congruency further, we applied drift diffusion modeling to participant responses, which showed that larger amplitudes of both ERPs were correlated with shorter nondecision times when considering the effect of congruency. The modeling also suggested that congruency's effect on behavior occurred prior to and during evidence accumulation when considering the effects of the N2c peak and CPP slope. These findings point to spatially incongruent distractors, relative to congruent distractors, influencing decisions as early as the initial sensory processing phase and then continuing to exert an effect as evidence is accumulated throughout the decision-making process. Overall, our findings highlight how key electrophysiological signals of perceptual decision-making are influenced by the spatial congruence of target and distractor. Full Article
the Erratum: McCosh et al., "Norepinephrine Neurons in the Nucleus of the Solitary Tract Suppress Luteinizing Hormone Secretion in Female Mice" By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Full Article
the The Hippocampus Preorders Movements for Skilled Action Sequences By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Plasticity in the subcortical motor basal ganglia–thalamo–cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory—the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders. Full Article
the Selective Vulnerability of GABAergic Inhibitory Interneurons to Bilirubin Neurotoxicity in the Neonatal Brain By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Hyperbilirubinemia (HB) is a key risk factor for hearing loss in neonates, particularly premature infants. Here, we report that bilirubin (BIL)-dependent cell death in the auditory brainstem of neonatal mice of both sexes is significantly attenuated by ZD7288, a blocker for hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated current (Ih), or by genetic deletion of HCN1. GABAergic inhibitory interneurons predominantly express HCN1, on which BIL selectively acts to increase their intrinsic excitability and mortality by enhancing HCN1 activity and Ca2+-dependent membrane targeting. Chronic BIL elevation in neonatal mice in vivo increases the fraction of spontaneously active interneurons and their firing frequency, Ih, and death, compromising audition at the young adult stage in HCN1+/+, but not in HCN1–/– genotype. We conclude that HB preferentially targets HCN1 to injure inhibitory interneurons, fueling a feedforward loop in which lessening inhibition cascades hyperexcitability, Ca2+ overload, neuronal death, and auditory impairments. These findings rationalize HCN1 as a potential target for managing HB encephalopathy. Full Article
the Neural Representations of Concreteness and Concrete Concepts Are Specific to the Individual By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Different people listening to the same story may converge upon a largely shared interpretation while still developing idiosyncratic experiences atop that shared foundation. What linguistic properties support this individualized experience of natural language? Here, we investigate how the "concrete–abstract" axis—the extent to which a word is grounded in sensory experience—relates to within- and across-subject variability in the neural representations of language. Leveraging a dataset of human participants of both sexes who each listened to four auditory stories while undergoing functional magnetic resonance imaging, we demonstrate that neural representations of "concreteness" are both reliable across stories and relatively unique to individuals, while neural representations of "abstractness" are variable both within individuals and across the population. Using natural language processing tools, we show that concrete words exhibit similar neural representations despite spanning larger distances within a high-dimensional semantic space, which potentially reflects an underlying representational signature of sensory experience—namely, imageability—shared by concrete words but absent from abstract words. Our findings situate the concrete–abstract axis as a core dimension that supports both shared and individualized representations of natural language. Full Article