tor

A thermal deformation optimization method for cryogenically cooled silicon crystal monochromators under high heat load

A method to optimize the thermal deformation of an indirectly cryo-cooled silicon crystal monochromator exposed to intense X-rays at a low-emittance diffraction-limited synchrotron radiation source is presented. The thermal-induced slope error of the monochromator crystal has been studied as a function of heat transfer efficiency, crystal temperature distribution and beam footprint size. A partial cooling method is proposed, which flattens the crystal surface profile within the beam footprint by modifying the cooling contact area to optimize the crystal peak temperature. The optimal temperature varies with different photon energies, which is investigated, and a proper cooling strategy is obtained to fulfil the thermal distortion requirements over the entire photon energy range. At an absorbed power up to 300 W with a maximum power density of 44.8 W mm−2 normal incidence beam from an in-vacuum undulator, the crystal thermal distortion does not exceed 0.3 µrad at 8.33 keV. This method will provide references for the monochromator design on diffraction-limited synchrotron radiation or free-electron laser light sources.




tor

xrdPlanner: exploring area detector geometries for powder diffraction and total scattering experiments

xrdPlanner is a software package designed to aid in the planning and preparation of powder X-ray diffraction and total scattering beam times at synchrotron facilities. Many modern beamlines provide a flexible experimental setup and may have several different detectors available. In combination with a range of available X-ray energies, it often makes it difficult for the user to explore the available parameter space relevant for a given experiment prior to the scheduled beam time. xrdPlanner was developed to provide a fast and straightforward tool that allows users to visualize the accessible part of reciprocal space of their experiment at a given combination of photon energy and detector geometry. To plan and communicate the necessary geometry not only saves time but also helps the beamline staff to prepare and accommodate for an experiment. The program is tailored toward powder X-ray diffraction and total scattering experiments but may also be useful for other experiments that rely on an area detector and for which detector placement and achievable momentum-transfer range are important experimental parameters.




tor

Novel correction procedure for compensating thermal contraction errors in the measurement of the magnetic field of superconducting undulator coils in a liquid helium cryostat

Superconducting undulators (SCUs) can offer a much higher on-axis undulator field than state-of-the-art cryogenic permanent-magnet undulators with the same period and vacuum gap. The development of shorter-period and high-field SCUs would allow the free-electron laser and synchrotron radiation source community to reduce both the length of undulators and the dimensions of the accelerator. Magnetic measurements are essential for characterizing the magnetic field quality of undulators for operation in a modern light source. Hall probe scanning is so far the most mature technique for local field characterization of undulators. This article focuses on the systematic error caused by thermal contraction that influences Hall probe measurements carried out in a liquid helium cryostat. A novel procedure, based on the redundant measurement of the magnetic field using multiple Hall probes at known relative distance, is introduced for the correction of such systematic error.




tor

Determination of optimal experimental conditions for accurate 3D reconstruction of the magnetization vector via XMCD-PEEM

This work presents a detailed analysis of the performance of X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) as a tool for vector reconstruction of magnetization. For this, 360° domain wall ring structures which form in a synthetic antiferromagnet are chosen as the model to conduct the quantitative analysis. An assessment is made of how the quality of the results is affected depending on the number of projections that are involved in the reconstruction process, as well as their angular distribution. For this a self-consistent error metric is developed which allows an estimation of the optimum azimuthal rotation angular range and number of projections. This work thus proposes XMCD-PEEM as a powerful tool for vector imaging of complex 3D magnetic structures.




tor

Quantifying bunch-mode influence on photon-counting detectors at SPring-8

Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.012 to 0.916 Mcps (megacounts per second) for a 120 ns dead time, 0.009 to 0.807 Mcps for a 0.5 µs dead time and 0.020 to 0.273 Mcps for a 3 µs intrinsic detector dead time. Even with equal-interval bunch-modes at SPring-8, the effective maximum count rate does not exceed 1 Mcps pixel−1. In other words, to obtain data with a linearity better than 1%, the maximum intensity of X-rays entering the detector should be reduced to 1 Mcps pixel−1 or less, and, in some cases, even lower, depending on the bunch-mode. When applying count-loss correction using optimized dead times tailored to each bunch-mode, the effective maximum count rate exceeds the values above. However, differences in the effective maximum count rate due to bunch-modes persist. Users of photon-counting 2D detectors are encouraged to familiarize themselves with the count-loss characteristics dependent on bunch-mode, and to conduct experiments accordingly. In addition, when designing the time structure of bunch-modes at synchrotron radiation facilities, it is essential to take into account the impact on experiments using photon-counting 2D detectors.




tor

Modelling the power threshold and optimum thermal deformation of indirectly liquid-nitro­gen cryo-cooled Si monochromators

Maximizing the performance of crystal monochromators is a key aspect in the design of beamline optics for diffraction-limited synchrotron sources. Temperature and deformation of cryo-cooled crystals, illuminated by high-power beams of X-rays, can be estimated with a purely analytical model. The analysis is based on the thermal properties of cryo-cooled silicon crystals and the cooling geometry. Deformation amplitudes can be obtained, quickly and reliably. In this article the concept of threshold power conditions is introduced and defined analytically. The contribution of parameters such as liquid-nitro­gen cooling efficiency, thermal contact conductance and interface contact area of the crystal with the cooling base is evaluated. The optimal crystal illumination and the base temperature are inferred, which help minimize the optics deformation. The model has been examined using finite-element analysis studies performed for several beamlines of the Diamond-II upgrade.




tor

At-wavelength metrology of an X-ray mirror using a downstream wavefront modulator

At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication.




tor

Synchrotron infrared nanospectroscopy in fourth-generation storage rings

Fourth-generation synchrotron storage rings represent a significant milestone in synchrotron technology, offering outstandingly bright and tightly focused X-ray beams for a wide range of scientific applications. However, due to their inherently tight magnetic lattices, these storage rings have posed critical challenges for accessing lower-energy radiation, such as infrared (IR) and THz. Here the first-ever IR beamline to be installed and to operate at a fourth-generation synchrotron storage ring is introduced. This work encompasses several notable advancements, including a thorough examination of the new IR source at Sirius, a detailed description of the radiation extraction scheme, and the successful validation of our optical concept through both measurements and simulations. This optimal optical setup has enabled us to achieve an exceptionally wide frequency range for our nanospectroscopy experiments. Through the utilization of synchrotron IR nanospectroscopy on biological and hard matter samples, the practicality and effectiveness of this beamline has been successfully demonstrated. The advantages of fourth-generation synchrotron IR sources, which can now operate with unparalleled stability as a result of the stringent requirements for producing low-emittance X-rays, are emphasized.




tor

Wavefront analysis and phase correctors design using SHADOW

Knife-edge imaging is a successful method for determining the wavefront distortion of focusing optics such as Kirkpatrick–Baez mirrors or compound refractive lenses. In this study, the wavefront error of an imperfect elliptical mirror is predicted by developing a knife-edge program using the SHADOW/OASYS platform. It is shown that the focusing optics can be aligned perfectly by minimizing the parabolic and cubic coefficients of the wavefront error. The residual wavefront error provides precise information about the figure/height errors of the focusing optics suggesting it as an accurate method for in situ optical metrology. A Python program is developed to design a customized wavefront refractive corrector to minimize the residual wavefront error. Uniform beam at and out of focus and higher peak intensity are achieved by the wavefront correction in comparison with ideal focusing. The developed code provides a quick way for wavefront error analysis and corrector design for non-ideal optics especially for the new-generation diffraction-limited sources, and saves considerable experimental time and effort.




tor

Ion beam figuring for X-ray mirrors: history, state-of-the-art and future prospects

Synchrotron light sources require X-ray optics with extremely demanding accuracy for the surface profile, with less than 100 nrad slope errors and sub-nanometre height errors. Such errors are challenging to achieve for aspheres using traditional polishing methods. However, post-polishing error correction can be performed using techniques such as ion beam figuring (IBF) to improve optics to the desired quality. This work presents a brief overview of the history of IBF, introduces some of the challenges for obtaining such demanding figure errors, and highlights the work done at several in-house IBF facilities at synchrotron light sources worldwide to obtain state-of-the-art optical quality.




tor

Enhanced X-ray free-electron laser performance with optical klystron and helical undulators

This article presents a demonstration of the improved performance of an X-ray free-electron laser (FEL) using the optical klystron mechanism and helical undulator configuration, in comparison with the common planar undulator configuration without optical klystron. The demonstration was carried out at Athos, the soft X-ray beamline of SwissFEL. Athos has variable-polarization undulators, and small magnetic chicanes placed between every two undulators to fully exploit the optical klystron. It was found that, for wavelengths of 1.24 nm and 3.10 nm, the required length to achieve FEL saturation is reduced by about 35% when using both the optical klystron and helical undulators, with each effect accounting for about half of the improvement. Moreover, it is shown that a helical undulator configuration provides a 20% to 50% higher pulse energy than planar undulators. This work represents an important step towards more compact and high-power FELs, rendering this key technology more efficient, affordable and accessible to the scientific community.




tor

Hard X-ray operation of X-ray gas monitors at the European XFEL

X-ray gas monitors (XGMs) are operated at the European XFEL for non-invasive single-shot pulse energy measurements and average beam-position monitoring. The underlying measurement principle is the photo-ionization of rare gas atoms at low gas pressures and the detection of the photo-ions and photo-electrons created. These are essential for tuning and sustaining self-amplified spontaneous emission (SASE) operation, machine radiation safety, and sorting single-shot experimental data according to pulse energy. In this paper, the first results from XGM operation at photon energies up to 30 keV are presented, which are far beyond the original specification of this device. Here, the Huge Aperture MultiPlier (HAMP) is used for single-shot pulse energy measurements since the standard X-ray gas monitor detectors (XGMDs) do not provide a sufficient signal-to-noise ratio, even at the highest operating gas pressures. A single-shot correlation coefficient of 0.98 is measured between consecutive XGMs operated with HAMP, which is as good as measuring with the standard XGMD detectors. An intra-train non-linearity of the HAMP signal is discovered, and operation parameters to mitigate this effect are studied. The upper repetition rate limit of HAMP operation at 2.25 MHz is also determined. Finally, the possibilities and limits for future XGM operation at photon energies up to 50 keV are discussed.




tor

Self-calibration strategies for reducing systematic slope measurement errors of autocollimators in deflectometric profilometry

Deflectometric profilometers are used to precisely measure the form of beam shaping optics of synchrotrons and X-ray free-electron lasers. They often utilize autocollimators which measure slope by evaluating the displacement of a reticle image on a detector. Based on our privileged access to the raw image data of an autocollimator, novel strategies to reduce the systematic measurement errors by using a set of overlapping images of the reticle obtained at different positions on the detector are discussed. It is demonstrated that imaging properties such as, for example, geometrical distortions and vignetting, can be extracted from this redundant set of images without recourse to external calibration facilities. This approach is based on the fact that the properties of the reticle itself do not change – all changes in the reticle image are due to the imaging process. Firstly, by combining interpolation and correlation, it is possible to determine the shift of a reticle image relative to a reference image with minimal error propagation. Secondly, the intensity of the reticle image is analysed as a function of its position on the CCD and a vignetting correction is calculated. Thirdly, the size of the reticle image is analysed as a function of its position and an imaging distortion correction is derived. It is demonstrated that, for different measurement ranges and aperture diameters of the autocollimator, reductions in the systematic errors of up to a factor of four to five can be achieved without recourse to external measurements.




tor

High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.




tor

The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties

In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors.




tor

Characterization of silicon pore optics for the NewAthena X-ray observatory in the PTB laboratory at BESSY II

The New Advanced Telescope for High ENergy Astrophysics (NewAthena) will be the largest space-based X-ray observatory ever built. It will have an effective area above 1.1 m2 at 1 keV, which corresponds to a polished mirror surface of about 300 m2 due to the grazing incidence. As such a mirror area is not achievable with an acceptable mass even with nested shells, silicon pore optics (SPO) technology will be utilized. In the PTB laboratory at BESSY II, two dedicated beamlines are in use for their characterization with monochromatic radiation at 1 keV and a low divergence well below 2 arcsec: the X-ray Pencil Beam Facility (XPBF 1) and the X-ray Parallel Beam Facility (XPBF 2.0), where beam sizes up to 8 mm × 8 mm are available while maintaining low beam divergence. This beamline is used for characterizing mirror stacks and controlling the focusing properties of mirror modules (MMs) – consisting of four mirror stacks – during their assembly at the beamline. A movable CCD based camera system 12 m from the MM registers the direct and the reflected beams. The positioning of the detector is verified by a laser tracker. The energy-dependent reflectance in double reflection through the pores of an MM with an Ir coating was measured at the PTB four-crystal monochromator beamline in the photon energy range 1.75 keV to 10 keV, revealing the effects of the Ir M edges. The measured reflectance properties are in agreement with the design values to achieve the envisaged effective area.




tor

PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts – zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron–photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.




tor

Nonlinear optimization for a low-emittance storage ring

A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter ηc. Finding an appropriate ηc demands too much computing time because MOGA needs be run several times in order to find a good ηc. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new ηc for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings.




tor

New opportunities for time-resolved imaging using diffraction-limited storage rings

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.




tor

A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory

Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles.




tor

Development of a high-performance and cost-effective in-vacuum undulator

In-vacuum undulators (IVUs), which have become an essential tool in synchrotron radiation facilities, have two technical challenges toward further advancement: one is a strong attractive force between top and bottom magnetic arrays, and the other is a stringent requirement on magnetic materials to avoid demagnetization. The former imposes a complicated design on mechanical and vacuum structures, while the latter limits the possibility of using high-performance permanent magnets. To solve these issues, a number of technical developments have been made, such as force cancellation and modularization of magnetic arrays, and enhancement of resistance against demagnetization by means of a special magnetic circuit. The performance of a new IVU built upon these technologies has revealed their effectiveness for constructing high-performance IVUs in a cost-effective manner.




tor

Development of an X-ray ionization beam position monitor for PAL-XFEL soft X-rays

The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) operates hard X-ray and soft X-ray beamlines for conducting scientific experiments providing intense ultrashort X-ray pulses based on the self-amplified spontaneous emission (SASE) process. The X-ray free-electron laser is characterized by strong pulse-to-pulse fluctuations resulting from the SASE process. Therefore, online photon diagnostics are very important for rigorous measurements. The concept of photo-absorption and emission using solid materials is seldom considered in soft X-ray beamline diagnostics. Instead, gas monitoring detectors, which utilize the photo-ionization of noble gas, are employed for monitoring the beam intensity. To track the beam position at the soft X-ray beamline in addition to those intensity monitors, an X-ray ionization beam position monitor (XIBPM) has been developed and characterized at the soft X-ray beamline of PAL-XFEL. The XIBPM utilizes ionization of either the residual gas in an ultra-high-vacuum environment or injected krypton gas, along with a microchannel plate with phosphor. The XIBPM was tested separately for monitoring horizontal and vertical beam positions, confirming the feasibility of tracking relative changes in beam position both on average and down to single-shot measurements. This paper presents the basic structure and test results of the newly developed non-invasive XIBPM.




tor

Demonstration of full polarization control of soft X-ray pulses with Apple X undulators at SwissFEL using recoil ion momentum spectroscopy

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.




tor

Correcting angular distortions in Bragg coherent X-ray diffraction imaging

Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.




tor

Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions

Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.




tor

Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310–430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2−xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.




tor

On the importance of crystal structures for organic thin film transistors

Historically, knowledge of the mol­ecular packing within the crystal structures of organic semi­con­duc­tors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding poly­mor­phism in bulk and in thin films, exploring dynamics and elucidating phase-transition mech­a­nisms. This review article introduces the most salient and recent results of the field.




tor

Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors

 




tor

The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure–temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its inter­actions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule–gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.




tor

Using cryo-EM to understand the assembly pathway of respiratory complex I

Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.




tor

Factors affecting macromolecule orientations in thin films formed in cryo-EM

The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air–water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.




tor

A snapshot love story: what serial crystallography has done and will do for us

Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.




tor

Managing macromolecular crystallographic data with a laboratory information management system

Protein crystallography is an established method to study the atomic structures of macromolecules and their complexes. A prerequisite for successful structure determination is diffraction-quality crystals, which may require extensive optimization of both the protein and the conditions, and hence projects can stretch over an extended period, with multiple users being involved. The workflow from crystallization and crystal treatment to deposition and publication is well defined, and therefore an electronic laboratory information management system (LIMS) is well suited to management of the data. Completion of the project requires key information on all the steps being available and this information should also be made available according to the FAIR principles. As crystallized samples are typically shipped between facilities, a key feature to be captured in the LIMS is the exchange of metadata between the crystallization facility of the home laboratory and, for example, synchrotron facilities. On completion, structures are deposited in the Protein Data Bank (PDB) and the LIMS can include the PDB code in its database, completing the chain of custody from crystallization to structure deposition and publication. A LIMS designed for macromolecular crystallography, IceBear, is available as a standalone installation and as a hosted service, and the implementation of key features for the capture of metadata in IceBear is discussed as an example.




tor

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies uni­directionally.




tor

Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus

β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharo­lyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.




tor

Transferable Hirshfeld atom model for rapid evaluation of aspherical atomic form factors

Form factors based on aspherical models of atomic electron density have brought great improvement in the accuracies of hydrogen atom parameters derived from X-ray crystal structure refinement. Today, two main groups of such models are available, the banks of transferable atomic densities parametrized using the Hansen–Coppens multipole model which allows for rapid evaluation of atomic form factors and Hirshfeld atom refinement (HAR)-related methods which are usually more accurate but also slower. In this work, a model that combines the ideas utilized in the two approaches is tested. It uses atomic electron densities based on Hirshfeld partitions of electron densities, which are precalculated and stored in a databank. This model was also applied during the refinement of the structures of five small molecules. A comparison of the resulting hydrogen atom parameters with those derived from neutron diffraction data indicates that they are more accurate than those obtained with the Hansen–Coppens based databank, and only slightly less accurate than those obtained with a version of HAR that neglects the crystal environment. The advantage of using HAR becomes more noticeable when the effects of the environment are included. To speed up calculations, atomic densities were represented by multipole expansion with spherical harmonics up to l = 7, which used numerical radial functions (a different approach to that applied in the Hansen–Coppens model). Calculations of atomic form factors for the small protein crambin (at 0.73 Å resolution) took only 68 s using 12 CPU cores.




tor

Dynamical refinement with multipolar electron scattering factors

Dynamical refinement is a well established method for refining crystal structures against 3D electron diffraction (ED) data and its benefits have been discussed in the literature [Palatinus, Petříček & Corrêa, (2015). Acta Cryst. A71, 235–244; Palatinus, Corrêa et al. (2015). Acta Cryst. B71, 740–751]. However, until now, dynamical refinements have only been conducted using the independent atom model (IAM). Recent research has shown that a more accurate description can be achieved by applying the transferable aspherical atom model (TAAM), but this has been limited only to kinematical refinements [Gruza et al. (2020). Acta Cryst. A76, 92–109; Jha et al. (2021). J. Appl. Cryst. 54, 1234–1243]. In this study, we combine dynamical refinement with TAAM for the crystal structure of 1-methyl­uracil, using data from precession ED. Our results show that this approach improves the residual Fourier electrostatic potential and refinement figures of merit. Furthermore, it leads to systematic changes in the atomic displacement parameters of all atoms and the positions of hydrogen atoms. We found that the refinement results are sensitive to the parameters used in the TAAM modelling process. Though our results show that TAAM offers superior performance compared with IAM in all cases, they also show that TAAM parameters obtained by periodic DFT calculations on the refined structure are superior to the TAAM parameters from the UBDB/MATTS database. It appears that multipolar parameters transferred from the database may not be sufficiently accurate to provide a satisfactory description of all details of the electrostatic potential probed by the 3D ED experiment.




tor

On the structure refinement of metal complexes against 3D electron diffraction data using multipolar scattering factors

This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal–organic complex, iron(III) acetyl­acetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetyl­acetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe—O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65–2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00–0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal–organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED.




tor

Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1

Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails.




tor

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.




tor

Structural multiplicity in a solvated hydrate of the anti­retroviral protease inhibitor Lopinavir

Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-di­methyl­phen­oxy)acetamido]-4-hy­droxy-1,6-di­phenyl­hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 mol­ecules. The stoichiometric ratio of this crystal is eight Lopinavir mol­ecules [8(C37H48N4O5)], three ethane-1,2-diol mol­ecules [3(C2H6O2)] and seven water mol­ecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms.




tor

Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited

The major principles and requirements of asymmetric and inclined double-crystal monochromators are re-examined and presented to guide their design and development for significantly reducing heat load density and gradient on the monochromators of fourth-generation synchrotron light sources and X-ray free-electron lasers.




tor

Form factor of helical structures and twisted fibres

A general formalism is presented for the isotropically averaged single-chain scattering function (form factor) of single, double, triple and higher-order helices, as well as twisted fibres consisting of concentric layers of strands. Form factors for double and triple helices with differently sized grooves have also been derived. The formulas include the longitudinal and transverse interference over the pitch and radius of the helices, respectively. The results may be useful for the analysis of small-angle scattering data of (bio)macromolecules or molecular assemblies exhibiting a helical arrangement.




tor

An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.




tor

Van Vleck analysis of angularly distorted octahedra using VanVleckCalculator

Van Vleck modes describe all possible displacements of octahedrally coordinated ligands about a core atom. They are a useful analytical tool for analysing the distortion of octahedra, particularly for first-order Jahn–Teller distortions, but determination of the Van Vleck modes of an octahedron is complicated by the presence of angular distortion of the octahedron. This problem is most commonly resolved by calculating the bond distortion modes (Q2, Q3) along the bond axes of the octahedron, disregarding the angular distortion and losing information on the octahedral shear modes (Q4, Q5 and Q6) in the process. In this paper, the validity of assuming bond lengths to be orthogonal in order to calculate the Van Vleck modes is discussed, and a method is described for calculating Van Vleck modes without disregarding the angular distortion. A Python package for doing this, VanVleckCalculator, is introduced and some examples of its use are given. Finally, it is shown that octahedral shear and angular distortion are often, but not always, correlated, and a parameter η is proposed as the shear fraction. It is demonstrated that η can be used to predict whether the values will be correlated when varying a tuning parameter such as temperature or pressure.




tor

Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.




tor

The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches

Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code.




tor

Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction

The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples.




tor

Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector

The maximum range of perpendicular momentum transfer (qz) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the qz direction on liquid surfaces up to qz = 7 Å−1 is presented, with liquid copper serving as a reference system for benchmarking purposes.




tor

Robust image descriptor for machine learning based data reduction in serial crystallography

Serial crystallography experiments at synchrotron and X-ray free-electron laser (XFEL) sources are producing crystallographic data sets of ever-increasing volume. While these experiments have large data sets and high-frame-rate detectors (around 3520 frames per second), only a small percentage of the data are useful for downstream analysis. Thus, an efficient and real-time data classification pipeline is essential to differentiate reliably between useful and non-useful images, typically known as `hit' and `miss', respectively, and keep only hit images on disk for further analysis such as peak finding and indexing. While feature-point extraction is a key component of modern approaches to image classification, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. This paper proposes a pipeline to categorize the data, consisting of a real-time feature extraction algorithm called modified and parallelized FAST (MP-FAST), an image descriptor and a machine learning classifier. For parallelizing the primary operations of the proposed pipeline, central processing units, graphics processing units and field-programmable gate arrays are implemented and their performances compared. Finally, MP-FAST-based image classification is evaluated using a multi-layer perceptron on various data sets, including both synthetic and experimental data. This approach demonstrates superior performance compared with other feature extractors and classifiers.