gene

12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction]

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.




gene

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




gene

Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification [RNA]

pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression.




gene

Correction: Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. [Additions and Corrections]

VOLUME 295 (2020) PAGES 1898–1914Yichen Zhong's name was misspelled. The correct spelling is shown above.




gene

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




gene

Genetic evidence for reconfiguration of DNA polymerase {theta} active site for error-free translesion synthesis in human cells [DNA and Chromosomes]

The action mechanisms revealed by the biochemical and structural analyses of replicative and translesion synthesis (TLS) DNA polymerases (Pols) are retained in their cellular roles. In this regard, DNA polymerase θ differs from other Pols in that whereas purified Polθ misincorporates an A opposite 1,N6-ethenodeoxyadenosine (ϵdA) using an abasic-like mode, Polθ performs predominantly error-free TLS in human cells. To test the hypothesis that Polθ adopts a different mechanism for replicating through ϵdA in human cells than in the purified Pol, here we analyze the effects of mutations in the two highly conserved tyrosine residues, Tyr-2387 and Tyr-2391, in the Polθ active site. Our findings that these residues are indispensable for TLS by the purified Pol but are not required in human cells, as well as other findings, provide strong evidence that the Polθ active site is reconfigured in human cells to stabilize ϵdA in the syn conformation for Hoogsteen base pairing with the correct nucleotide. The evidence that a DNA polymerase can configure its active site entirely differently in human cells than in the purified Pol establishes a new paradigm for DNA polymerase function.




gene

Genetic tests being done on dog

(To watch the whole press briefing with sign language interpretation, click here.)

 

The Agriculture, Fisheries & Conservation Department today said genetic sequencing tests are being carried out on the pet dog of a confirmed COVID-19 patient which could reveal if the virus has mutated or not.

 

The department's Assistant Director (Inspection & Quarantine) Dr Thomas Sit told a press briefing this afternoon that the coronavirus is what is known as an RNA virus which eventually mutates.

 

“That is why the University of Hong Kong School of Public Health needs to do a genetic analysis to compare this dog’s genetic sequencing to the virus isolated from the patient so that they can compare. So if it is totally identical, then there is no mutation. The testing is still ongoing.”

 

Dr Sit reiterated that international experts agreed that the dog has a low level of infection, despite its blood tests not being ready yet.

 

“From the first sample to our last sample tested, it has already (been) six days. The dog’s nasal or oral mechanism, their secretion they should have - if contaminated - they should have a way to clean the virus, it would not stay for that long if it was just a contamination.

 

“I think it will take at least five or seven days for the blood results because it is not an easy test, it is not a quick test. We need to grow a virus and then neutralise the serum, so it takes some time.”

 

He added that it was too early to say whether animal-to-animal transmission was a possibility.

 

“At this stage, we do not have enough data to have a 100% answer as to whether it is infectious to other dogs or not. But if the dog’s owner is positive, it is better to take precautionary measures to prevent onward transmission.”

 

Dr Sit also advised dog owners to wash their hands, wear gloves and try to stop their dogs from licking their surroundings to prevent the virus from spreading further.




gene

Comparing opioid-related deaths among cancer survivors, general population

(JAMA Network) Death certificate data were used to compare the rate of opioid-related deaths in the US among cancer survivors with that of the general population from 2006 through 2016. Whether opioid-associated deaths in cancer survivors, who are often prescribed opioids for cancer-related pain, are rising at the same rate as in the general population is unknown.




gene

Researchers have found accumulation of gene mutations in chronic Graft-versus-host disease

(University of Helsinki) Mutations in white blood cells can contribute to abnormal immune profile after hematopoietic stem cell transplantation.




gene

Study reveals rich genetic diversity of Vietnam

(Molecular Biology and Evolution (Oxford University Press)) In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.




gene

African skeletons from early colonial Mexico tell the story of first-generation slaves

(Max Planck Institute for the Science of Human History) Three 16th-century skeletons from a mass burial in Mexico City highlight the role of the transatlantic slave trade in introducing and disseminating new pathogens to the Americas. Researchers from the Max Planck Institute for the Science of Human History and Escuela Nacional de Antropología e Historia in Mexico analyzed skeletal features, genetic data and isotopes to explore the life history of three enslaved Africans and explore the wide-ranging impacts of massive forced migration.




gene

Algae in the oceans often steal genes from bacteria

(Rutgers University) Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.




gene

Diabetes Self-Management Education for Older Adults: General Principles and Practical Application

Emmy Suhl
Oct 1, 2006; 19:234-240
Articles




gene

Geneva Launch: Protecting Civilians — When is ‘Incidental Harm’ Excessive?

Research Event

14 December 2018 - 10:00am to 11:30am

Graduate Institute | Chemin Eugène-Rigot 2 | 1202 Geneva | Switzerland

Event participants

Emanuela-Chiara Gillard, Associate Fellow, International Law Programme, Chatham House
Ezequiel Heffes, Thematic Legal Adviser, Geneva Call
Sigrid Redse Johansen, Judge Advocate General, The Norwegian Armed Forces
Chair: Elizabeth Wilmshurst, Distinguished Fellow, Chatham House
Further speakers to be announced. 

PLEASE NOTE THIS EVENT IS BEING HELD IN GENEVA.

There have been large numbers of civilian deaths in the armed conflicts in Yemen and Syria. Is international humanitarian law being ignored? 

This meeting coincides with the launch of a Chatham House research paper on the incidental harm side of the proportionality assessment which belligerents are legally required to make. The panel at the meeting will consider the types of harm that fall within the scope of proportionality assessments, what constitutes ‘excessive’ harm and measures that belligerents can take to give effect to the rule on  proportionality.

This event will be followed by a reception.

Department/project

Chanu Peiris

Programme Manager, International Law
+44 (0)20 7314 3686




gene

Seventy Years of the Geneva Conventions: What of the Future?

24 March 2020

Seventy years after the adoption of the Geneva Conventions, there are challenges that remain to be addressed. This briefing takes three pertinent examples, and discusses possibilities for addressing them.

Emanuela-Chiara Gillard

Associate Fellow, International Law Programme

GettyImages-913468402.jpg

Rescue of the wounded in Duma city by Syrian Red Crescent paramedics, 2 February 2018. Photo: Samer Bouidani/NurPhoto/Getty

Summary

  • The 70th anniversary of the adoption of the 1949 Geneva Conventions was commemorated in 2019. But violations of the Conventions and of the 1977 Additional Protocols are widespread.
  • Contemporary conflicts have been marked by violations of some of the foundational rules of international humanitarian law (IHL) relating to the protection of the wounded and sick and of providers of medical assistance.
  • A further area of IHL that has come under strain and scrutiny are the rules regulating humanitarian relief operations and their application to sieges and blockades.
  • War has a huge impact on children, and the treatment of children in armed conflict is another area of the law that requires further attention.
  • In the current political climate, it is unlikely that new treaties will be negotiated to address emerging issues or uncertainties in the law.
  • Other measures must be explored, including the adoption of domestic measures to implement existing law; support for processes that interpret the law; and initiatives to promote compliance with the law by organized armed groups.
  • One overarching challenge is the interplay between IHL and counterterrorism measures. It can undermine the protections set out in IHL, and hinder principled humanitarian action and activities to promote compliance with the law by organized armed groups.




gene

12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction]

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.




gene

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




gene

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




gene

The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice [Gene Regulation]

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre-mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.




gene

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




gene

Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification

Lucía Trilla-Fuertes
Apr 1, 2020; 19:690-700
Research




gene

Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9

Michael Plank
Apr 1, 2020; 19:655-671
Research




gene

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS

Samvel K Gularyan
Apr 6, 2020; 0:RA120.001986v1-mcp.RA120.001986
Research




gene

Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors

Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake.




gene

Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Post-treatment SPECT/CT: A Novel Methodology to Generate Time- and Tissue-specific Dose Factors

Calculation of radiation dosimetry in targeted nuclear medicine therapies is traditionally resource-intensive requiring multiple post-therapy SPECT acquisitions. An alternative approach is to take advantage of existing pharmacokinetic data from these smaller cohorts to enable dose computation from a single post-treatment scan in a manner that may be applied to a much broader patient population. Methods: In this work, a technical description for simplified dose estimation is presented and applied to assessment of 177Lu-PSMA-617 therapy (Prostate-Specific Membrane Antigen) for metastatic prostate cancer. By normalizing existing time-activity curves to a single measurement time, it is possible to calculate a mean and range of time-integrated activity values which relate to radiation absorbed dose. To assist with accurate pharmacokinetic modelling of the training cohort, a method for contour-guided image registration was developed. Results: Tissue-specific dose conversion factors for common post-treatment imaging times are reported along with a characterization of added uncertainty in comparison to a traditional serial imaging protocol. Single time point dose factors for tumor were determined to be 11.0, 12.1, 13.6, and 15.2 Gy per MBq/mL at image times of 24, 48, 72, and 96 hours, respectively. For normal tissues, parotid gland factors were 6.7, 9.4, 13.3, and 19.3 Gy per MBq/mL and kidneys were 7.1, 10.3, 15.0, and 22.0 Gy per MBq/mL at those times. Tumor dose estimates were most accurate using delayed scanning at times beyond 72 hours. Dose to healthy tissues is best characterized by scanning patients in the first two days of treatment owing to the larger degree of tracer clearance in this early phase. Conclusion: The work demonstrates a means for efficient dose estimation in 177Lu-PSMA-617 therapy. By providing methods to simplify and potentially automate radiation dosimetry we hope to accelerate the understanding of radiobiology and development of dose-response models in this unique therapeutic context.




gene

177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer

Triple negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer leading to the worst prognosis. Because current therapeutic approaches lack efficacy, there is a clinically unmet need for effective treatment alternatives. Herein, we demonstrate a promising strategy utilizing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 177Lu for targeted radionuclide therapy (TRT) of TNBC. In two murine syngeneic models of TNBC, we confirmed excellent tumor targeting and rapid normal tissue clearance of the PET imaging analog 86Y-NM600. Based on longitudinal PET/CT data acquired with 86Y-NM600, we estimated the dosimetry of therapeutic 177Lu-NM600, which showed larger absorbed doses in the tumor compared to normal tissues. Administration of 177Lu-NM600 resulted in significant tumor growth inhibition and prolonged overall survival in mice bearing syngeneic 4T07 and 4T1 tumors. Complete response was attained in 60% of 4T07 bearing mice, but animals carrying aggressive 4T1 tumor grafts succumbed to metastatic progression. The injected activities used for treatment (9.25 and 18.5 MBq) were well tolerated, and only mild transient cytopenia was noted. Overall, our results suggest that 177Lu-NM600 TRT has potential for treatment of TNBC and merits further exploration in a clinical setting.




gene

PET imaging of phosphodiesterase-4 identifies affected dysplastic bone in McCune-Albright syndrome, a genetic mosaic disorder

McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the GNAS gene, which encodes the 3', 5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gsα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the GNAS mutation during embryogenesis, the tissues involved, and the role of Gsα in the affected tissues. The Gsα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP. Increased cAMP levels have been found in vitro in both animal models of fibrous dysplasia and in cultured cells from individuals with MAS, but not in humans with fibrous dysplasia. Positron emission tomography (PET) imaging of PDE4 with 11C-(R)-rolipram has been used successfully to study the in vivo activity of the cAMP cascade. To date, it remains unknown whether fibrous dysplasia and other symptoms of MAS, including neuropsychiatric impairments, are associated with increased PDE4 activity in humans. Methods: 11C-(R)-rolipram whole-body and brain PET scans were performed in six individuals with MAS (three for brain scans and six for whole-body scans) and nine healthy controls (seven for brain scans and six for whole-body scans). Results: 11C-(R)-rolipram binding correlated with known locations of fibrous dysplasia in the periphery of individuals with MAS; no uptake was observed in the bones of healthy controls. In peripheral organs and the brain, no difference in 11C-(R)-rolipram uptake was noted between participants with MAS and healthy controls. Conclusion: This study is the first to find evidence for increased cAMP activity in areas of fibrous dysplasia in vivo. No differences in brain uptake between MAS participants and controls were detected, which could be due to several reasons, including the limited anatomic resolution of PET. Nevertheless, the results confirm the usefulness of PET scans with 11C-(R)-rolipram to indirectly measure increased cAMP pathway activation in human disease.




gene

Confirmation of 123I-FP-CIT-SPECT (ioflupane) quantification methods in dementia with Lewy body and other neurodegenerative disorders

Rationale: To conduct a retrospective study comparing three 123I-FP-CIT-SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathological findings. Methods: 123I-FP-CIT-SPECT and neuropathological findings among patients with neurodegenerative syndromes from the Mayo Alzheimer's Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT-SPECT quantitative assessment Methods: MIMneuro (MIM Software Inc.), DaTQUANT (GE Healthcare), and manual region of interest (ROI) creation on an Advantage Workstation (GE Healthcare) were compared to neuropathological findings describing the presence or absence of Lewy body disease (LBD). Striatum to background ratios (SBRs) generated by DaTQUANT were compared to the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro the left, right, total and average SBRs and z-scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients [20 (83%) male, aged 75.4 +/- 10.0 at death]. The antemortem clinical diagnoses were Alzheimer’s disease dementia (ADem, N = 6), probable dementia with Lewy bodies (pDLB, N = 12), mixed ADem/pDLB (N = 1), Parkinson’s disease with mild cognitive impairment (N = 2), corticobasal syndrome (N = 1), idiopathic rapid eye movement sleep behavior disorder (iRBD) (N = 1) and behavioral variant frontotemporal dementia (N = 1). Seventeen (71%) had LBD pathology. All three 123I-FP-CIT-SPECT quantitative methods had area under the receiver operating characteristics (AUROC) values above 0.93 and up to 1.000 (p<0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed, p<.001. There was no significant difference between the accuracy of the regions in discriminating the two groups, with good discrimination for both caudate and putamen. Conclusion: All three 123I-FP-CIT-SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z-scores.




gene

Time for a Next-Generation Nuclear Medicine Gamma Camera? [NEWSLINE]




gene

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




gene

Correction: Graph Algorithms for Condensing and Consolidating Gene Set Analysis Results. [Additions and Corrections]




gene

Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification [Research]

Anal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo. Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST. Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy.




gene

Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9 [Research]

Protein phosphorylation cascades play a central role in the regulation of cell growth and protein kinases PKA, Sch9 and Ypk1 take center stage in regulating this process in S. cerevisiae. To understand how these kinases co-ordinately regulate cellular functions we compared the phospho-proteome of exponentially growing cells without and with acute chemical inhibition of PKA, Sch9 and Ypk1. Sites hypo-phosphorylated upon PKA and Sch9 inhibition were preferentially located in RRxS/T-motifs suggesting that many are directly phosphorylated by these enzymes. Interestingly, when inhibiting Ypk1 we not only detected several hypo-phosphorylated sites in the previously reported RxRxxS/T-, but also in an RRxS/T-motif. Validation experiments revealed that neutral trehalase Nth1, a known PKA target, is additionally phosphorylated and activated downstream of Ypk1. Signaling through Ypk1 is therefore more closely related to PKA- and Sch9-signaling than previously appreciated and may perform functions previously only attributed to the latter kinases.




gene

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




gene

Auditor-general exposes weaknesses in ACT government's IT systems

Electronic sexual health records and the births, deaths and marriages registry have been left exposed.




gene

UK General Election 2019: What the Political Party Manifestos Imply for Future UK Trade

Research Event

4 December 2019 - 12:30pm to 1:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Michael Gasiorek, Professor of Economics, University of Sussex; Director, Interanalysis; Fellow, UK Trade Policy Observatory, University of Sussex
Julia Magntorn Garrett, Research Officer, UK Trade Policy Observatory, University of Sussex
Prof Jim Rollo, Deputy Director, UK Trade Policy Observatory, University of Sussex; Associate Fellow, Global Economy and Finance Department, Chatham House
Nicolo Tamberi, Research Officer in the Economics of Brexit, University of Sussex
L. Alan Winters, Professor of Economics, Director, UK Trade Policy Observatory, University of Sussex

The upcoming UK general election is arguably a 'Brexit election', and as such, whoever wins the election will have little time to get their strategy for Brexit up and running to meet the new Brexit deadline of 31 January 2020. But what are the political parties’ policies for the UK's future trade? This event will present and discuss what the five main parties’ manifestos imply for future UK trade. Each manifesto will be presented and analysed by a fellow of the UK Trade Policy Observatory (UKTPO) and will be followed by a Q&A session. 

Michela Gariboldi

Research Assistant, Global Economy and Finance Programme
02073143692




gene

Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study

Gemma Cadby
Apr 1, 2020; 61:537-545
Patient-Oriented and Epidemiological Research




gene

Episode 43 - The Internet of Procedural Generation (IoPG)

Join host David Price for a dive into all things tech: Round 43. Things go mobile as Senior Staff Writer at PC Advisor and Macworld UK Henry Burrell tells us why Sky getting into the market is a big deal. Quad-play ahoy. Then fellow Senior Staff Writer Lewis Painter (14 mins) tells us why No Man's Sky is still making the headlines, this time for making stuff up. How far have companies taken false advertising in recent years? Third up is Techworld editor Charlotte Jee (25 mins) to talk about how the government has perhaps avoided taking responsibility when it comes to sex-ed and instead suggested it ban sexting - is that even possible? Listen on to find out.  


See acast.com/privacy for privacy and opt-out information.




gene

Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis [13. Other]

Colorectal cancer (CRC) arises as the consequence of progressive changes from normal epithelial cells through polyp to tumor, and thus is an useful model for studying metabolic shift. In the present study, we studied the metabolomic profiles using high analyte specific gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) to attain a systems-level view of the shift in metabolism in cells progressing along the path to CRC. Colonic tissues including tumor, polyps and adjacent matched normal mucosa from 26 patients with sporadic CRC from freshly isolated resections were used for this study. The metabolic profiles were obtained using GC/MS and LC/MS/MS. Our data suggest there was a distinct profile change of a wide range of metabolites from mucosa to tumor tissues. Various amino acids and lipids in the polyps and tumors were elevated, suggesting higher energy needs for increased cellular proliferation. In contrast, significant depletion of glucose and inositol in polyps revealed that glycolysis may be critical in early tumorigenesis. In addition, the accumulation of hypoxanthine and xanthine, and the decrease of uric acid concentration, suggest that the purine biosynthesis pathway could have been substituted by the salvage pathway in CRC. Further, there was a step-wise reduction of deoxycholic acid concentration from mucosa to tumors. It appears that to gain a growth advantage, cancer cells may adopt alternate metabolic pathways in tumorigenesis and this flexibility allows them to adapt and thrive in harsh environment.




gene

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS [Research]

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity due to the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.




gene

Renewable Energy: Generating Money

1 November 2007 , Number 7

City types are waking up to wind, waves and the sun and their potential to make energy – and money. This is just as new energy policies for Europe emerge with twenty percent targets for renewable energy and greenhouse gas cuts. Add to the mix climate change negotiations which will be back in Bali in December.

Kirsty Hamilton

Associate Fellow, Energy, Environment and Resources Programme

GettyImages-977104176.jpg

Solar panels lined up




gene

Serum amyloid A is not incorporated into HDL during HDL biogenesis [Research Articles]

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA’s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.




gene

Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study [Patient-Oriented and Epidemiological Research]

CVD is the leading cause of death worldwide, and genetic investigations into the human lipidome may provide insight into CVD risk. The aim of this study was to estimate the heritability of circulating lipid species and their genetic correlation with CVD traits. Targeted lipidomic profiling was performed on 4,492 participants from the Busselton Family Heart Study to quantify the major fatty acids of 596 lipid species from 33 classes. We estimated narrow-sense heritabilities of lipid species/classes and their genetic correlations with eight CVD traits: BMI, HDL-C, LDL-C, triglycerides, total cholesterol, waist-hip ratio, systolic blood pressure, and diastolic blood pressure. We report heritabilities and genetic correlations of new lipid species/subclasses, including acylcarnitine (AC), ubiquinone, sulfatide, and oxidized cholesteryl esters. Over 99% of lipid species were significantly heritable (h2: 0.06–0.50) and all lipid classes were significantly heritable (h2: 0.14–0.50). The monohexosylceramide and AC classes had the highest median heritabilities (h2 = 0.43). The largest genetic correlation was between clinical triglycerides and total diacylglycerol (rg = 0.88). We observed novel positive genetic correlations between clinical triglycerides and phosphatidylglycerol species (rg: 0.64–0.82), and HDL-C and alkenylphosphatidylcholine species (rg: 0.45–0.74). Overall, 51% of the 4,768 lipid species-CVD trait genetic correlations were statistically significant after correction for multiple comparisons. This is the largest lipidomic study to address the heritability of lipids and their genetic correlation with CVD traits. Future work includes identifying putative causal genetic variants for lipid species and CVD using genome-wide SNP and whole-genome sequencing data.




gene

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




gene

Problem Notes for SAS®9 - 65900: Registering an Oracle table to the metadata might fail and generate an error

When you register an Oracle table to the metadata, it might fail and generate an error similar to the following: "ERROR: An exception has been encountered...ERROR: Read Access Violation METALIB..."




gene

Problem Notes for SAS®9 - 64285: The SCD Type 2 Loader transformation in SAS Data Integration Studio generates "ERROR 22-322: Syntax error, expecting one of the following:..."

If your business key column is a name literal, like " business key "n, a syntax error occurs when that variable name does not follow standard SAS naming conventions.




gene

Problem Notes for SAS®9 - 65835: A series of PROC SQL queries might not generate a distinct set of rows

A set of PROC SQL queries that create a view, contain a constant column, contain a computed column, and a create a table do not generate a unique set of rows in the table that is created.




gene

Does general anesthesia affect neurodevelopment in infants and children?




gene

Advances in regenerative medicine for otolaryngology/head and neck surgery




gene

Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.