b [4-(2-Aminoethyl)morpholine-κ2N,N']dibromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-02-08 The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetrahydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N'-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octahedral geometry. In the crystal, O⋯Cd interactions link the dimers into a polymeric double chain and intermolecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br interactions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) interactions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts. Full Article text
b Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexa By journals.iucr.org Published On :: 2024-02-20 Two compounds, (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium trifluoromethanesulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodomethyl)-1-tosyl-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-butoxycarbonyl)-l-methionine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intramolecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group. Full Article text
b Crystal structure of diethylammonium dioxido{Z)-N-[(pyridin-2-yl)carbonylazanidyl]pyridine-2-carboximidato}vanadate(1−) monohydrate By journals.iucr.org Published On :: 2024-02-08 The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and diethylamine in methanol. It crystallizes in the triclinic crystal system in space group Poverline{1}. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water molecule to two complex anions and one diethylammonium ion. One of the CH2 groups in the diethylamine is disordered over two sets of sites in a 0.7:0.3 ratio. Full Article text
b Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, isopropyl 4-[4-(difluoro& By journals.iucr.org Published On :: 2024-02-08 The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C24H29F2NO4), (III) crystallize in the orthorhombic space group Pbca with Z = 8. In the crystal structure of (I), molecules are linked by N—H⋯O and C—H⋯O interactions, forming a tri-periodic network, while molecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π interactions, forming layers parallel to (002). The cohesion of the molecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-difluoromethoxyphenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclohexane ring, and the two carbon atoms of the cyclohexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio. Full Article text
b Crystal structure of 4-(benzo[d]thiazol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one By journals.iucr.org Published On :: 2024-02-16 In the title compound, C12H11N3OS, the interplanar angle between the pyrazole and benzothiazole rings is 3.31 (7)°. In the three-dimensional molecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to (overline{1}01) can be recognized as a subsection of the packing. Full Article text
b Crystal structure and characterization of a new one-dimensional copper(II) coordination polymer containing a 4-aminobenzoic acid ligand By journals.iucr.org Published On :: 2024-02-20 A CuII coordination polymer, catena-poly[[[aquacopper(II)]-bis(μ-4-aminobenzoato)-κ2N:O;κ2O:N] monohydrate], {[Cu(pABA)2(H2O)]·H2O}n (pABA = p-aminobenzoate, C7H4NO2−), was synthesized and characterized. It exhibits a one-dimensional chain structure extended into a three-dimensional supramolecular assembly through hydrogen bonds and π–π interactions. While the twinned crystal shows a metrically orthorhombic lattice and an apparent space group Pbcm, the true symmetry is monoclinic (space group P2/c), with disordered Cu atoms and mixed roles of water molecules (aqua ligand/crystallization water). The luminescence spectrum of the complex shows an emission at 345 nm, cf. 349 nm for pABAH. Full Article text
b Crystal structure of the sodium salt of mesotrione: a triketone herbicide By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages. Full Article text
b Synthesis and crystal structures of bis[1-oxopyridin-2-olato(1−)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1), bis[1-oxopyridin-2-olato(1−)]bis(p-tolyl)silicon(IV), and dimes By journals.iucr.org Published On :: 2024-02-20 The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hydroxypyridin-2-one in tetrahydrofuran (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tolyl2Si(OPO)2 (2) and mesityl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tolyl2SiCl2 and mesityl2SiCl2, respectively, in acetonitrile. The oxygen-bonded carbon and nitrogen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution. Full Article text
b Crystal structure and Hirshfeld surface analysis of 4-oxo-3-phenyl-2-sulfanylidene-5-(thiophen-2-yl)-3,4,7,8,9,10-hexahydro-2H-pyrido[1,6-a:2,3-d']dipyrimidine-6-carbonitrile By journals.iucr.org Published On :: 2024-02-20 In the title compound, C21H15N5OS2, molecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with R22(12) and R22(16) motifs, respectively, thus forming layers parallel to the (10overline{4}) plane. In addition, C=S⋯π and C≡N⋯π interactions between the layers ensure crystal cohesion. The Hirshfeld surface analysis indicates that the major contributions to the crystal packing are H⋯H (43.0%), C⋯H/H⋯C (16.9%), N⋯H/H⋯N (11.3%) and S⋯H/H⋯S (10.9%) interactions. Full Article text
b Crystal structure of tetrakis(μ-2-hydroxy-3,5-diisopropylbenzoato)bis[(dimethyl sulfoxide)copper(II)] By journals.iucr.org Published On :: 2024-02-27 Metal complexes of 3,5-diisopropylsalicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diisopropylsalicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hydroxy group of the diisopropylsalicylate ligands participates in intramolecular O—H⋯O hydrogen-bonding interactions. Full Article text
b Crystal structure of 1-{4-[bis(4-methylphenyl)amino]phenyl}ethene-1,2,2-tricarbonitrile By journals.iucr.org Published On :: 2024-02-29 The title compound, C25H18N4, crystallizes in the centrosymmetric orthorhombic space group Pbca, with eight molecules in the unit cell. The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intramolecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitrogen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC interactions with distances of 2.637 (17) Å. Full Article text
b Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide By journals.iucr.org Published On :: 2024-03-12 The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula R13–nR2nPEAuX3 (R1 = t-butyl; R2 = i-propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding bromido derivatives are 9b–16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deuterochloroform monosolvate 11aa), 12a (as its dichloromethane monosolvate), 14a, 15a (as its deuterochloroform monosolvate 15aa, in which the solvent molecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of 11a, 15a, 11b and 15b form an isotypic set, and those of compounds 10aa and 14a form an isotypic pair. All structures have Z' = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetrahedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable trans influence of S and Se donor atoms on a trans Au—Cl bond. Each compound with an isopropyl group shows a short intramolecular contact of the type C—Hmethine⋯Xcis; these may be regarded as intramolecular ‘weak’ hydrogen bonds, and they determine the orientation of the AuX3 groups. The molecular packing is analysed in terms of various short contacts such as weak hydrogen bonds C—H⋯X and contacts between the heavier atoms, such as X⋯X (9a, 10aa, 11aa, 15aa and 9b), S⋯S (10aa, 11a and 12a) and S⋯Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent molecules take part in C—H⋯Cl hydrogen bonds; for 15aa, a disordered solvent region at z ≃ 0 is observed. Structure 13b involves unusual inversion-symmetric dimers with Se⋯Au and Se⋯Br contacts, further connected by Br⋯Br contacts. Full Article text
b Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methylphenyl)sulfonyl]-2,7,8,9-tetrahydro-1H-3,6:10,13-diepoxy-1,8-benzodiazacyclopentadecine ethanol hemisolvate By journals.iucr.org Published On :: 2024-03-26 The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent molecule and a half molecule of ethanol solvent. The main compound stabilizes its molecular conformation by forming a ring with an R12(7) motif with the ethanol solvent molecule. In the crystal, molecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions also strengthen the molecular packing. Full Article text
b Crystal structure and Hirshfeld surface analysis of 4,4'-dimethoxybiphenyl-3,3',5,5'-tetracarboxylic acid dihydrate By journals.iucr.org Published On :: 2024-03-26 In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The crystal structure is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host molecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water molecules in turn form helical supramolecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water molecule provides a link to a methoxy O atom of the host molecule. A Hirshfeld surface analysis was performed to quantify the contributions of the different intermolecular interactions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) interactions. Full Article text
b Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile By journals.iucr.org Published On :: 2024-03-21 In the ten-membered 1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-dihydropyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, molecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) interactions are the most important contributors to the crystal packing. Full Article text
b Crystal structure of 2,4-diamino-5-(4-hydroxy-3-methoxyphenyl)-8,8-dimethyl-6-oxo-6,7,8,9-tetrahydro-5H-chromeno[2,3-b]pyridine-3-carbonitrile–dimethylformamide–water (1/1/1) By journals.iucr.org Published On :: 2024-03-26 In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the methoxyphenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main molecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water molecules connect the residues in the third dimension. Full Article text
b Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide By journals.iucr.org Published On :: 2024-03-26 A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts. Full Article text
b Synthesis and crystal structure of tetramethyl (E)-4,4'-(ethene-1,2-diyl)bis(5-nitrobenzene-1,2-dicarboxylate) By journals.iucr.org Published On :: 2024-03-28 The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a molecule that is located at a centre of inversion. As a result of symmetry restrictions, the molecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, molecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding interactions. Full Article text
b Crystal structures of trichlorido(4-methylpiperidine)gold(III) and two polymorphs of tribromido(4-methylpiperidine)gold(III) By journals.iucr.org Published On :: 2024-04-18 Trichlorido(4-methylpiperidine)gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tribromido(4-methylpiperidine)gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of molecules with offset stacking of the AuX3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N—H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are interconnected by Br⋯Br contacts. Full Article text
b Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate By journals.iucr.org Published On :: 2024-04-04 In the title compound, C20H17BrO5S, molecules are connected by intermolecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π interactions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) interactions are the most significant contributors to the crystal packing. The thiophene ring and its adjacent dicarboxylate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thiophene group is disordered by a rotation of 180° around one bond. Full Article text
b Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2024-04-09 The title compound (C14H23N3S, common name: cis-jasmone 4-ethylthiosemicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethylthiosemicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent molecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thiosemicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The molecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intramolecular interaction is observed, with graph-set motif S(5). In the crystal, the molecules are connected through pairs of H⋯S interactions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N interactions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supramolecular assembly of the title compound are compared with four known cis-jasmone thiosemicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) interfaces (only the disordered atoms with the highest s.o.f. were considered for the evaluation). Full Article text
b Bis[tris(diisobutyldithiocarbamato)-μ3-sulfido-tri-μ2-disulfido-trimolybdenum(IV)] sulfide tetrahydrofuran monosolvate By journals.iucr.org Published On :: 2024-04-18 The title compound, [Mo3(C9H18NS2)3(S2)3S]2S, crystallizes on a general position in the monoclinic space group P21/n (No. 14). The cationic [Mo3S7(S2CNiBu2)3]+ fragments are joined by a monosulfide dianion that forms close S⋯S contacts to each of the disulfide ligands on the side of the Mo3 plane opposite the μ32− ligand. The two Mo3 planes are inclined at an angle of 40.637 (15)°, which gives the assembly an open clamshell-like appearance. One μ6-S2−⋯S22− contact, at 2.4849 (14) Å, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)–2.8077 (14) Å. Full Article text
b Crystal structure and Hirshfeld surface analysis of 2,4-diamino-6-[(1Z,3E)-1-cyano-2,4-diphenylpenta-1,3-dien-1-yl]pyridine-3,5-dicarbonitrile monohydrate By journals.iucr.org Published On :: 2024-04-18 The asymmetric unit of the title compound, C25H18N6·H2O, comproses two molecules (I and II), together with a water molecule. The terminal phenyl groups attached to the methyl groups of the molecules I and II do not overlap completely, but are approximately perpendicular. In the crystal, the molecules are connected by N—H⋯N, C—H⋯N, O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water molecules, forming layers parallel to the (001) plane. C—H⋯π interactions between these layers ensure the cohesion of the crystal structure. A Hirshfeld surface analysis indicates that H⋯H (39.1% for molecule I; 40.0% for molecule II), C⋯H/H⋯C (26.6% for molecule I and 25.8% for molecule II) and N⋯H/H⋯N (24.3% for molecules I and II) interactions are the most important contributors to the crystal packing. Full Article text
b Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) By journals.iucr.org Published On :: 2024-04-11 Reaction of Co(NCS)2 with 2-methylpyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thiocyanate anions and three crystallographically independent 2-methylpyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thiocyanate anions in the trans-positions and three 2-methylpyridine N-oxide coligands into discrete complexes. These complexes are linked by intermolecular C–H⋯S interactions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound. Full Article text
b Crystal structure of (E)-N-(4-bromophenyl)-2-cyano-3-[3-(2-methylpropyl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide By journals.iucr.org Published On :: 2024-04-23 The structure of the title compound, C23H21BrN4O, contains two independent molecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The molecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphenyl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphenyl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin. Full Article text
b Synthesis, crystal structure and thermal properties of the dinuclear complex bis(μ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] By journals.iucr.org Published On :: 2024-04-18 Reaction of Co(NCS)2 with 4-methylpyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methylpyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thiocyanate anions, two 4-methylpyridine N-oxide coligands and one methanol molecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octahedrally coordinate two terminal N-bonded thiocyanate anions, three 4-methylpyridine N-oxide coligands and one methanol molecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-methylpyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol molecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methylpyridine N-oxide), which has been reported in the literature and which is of poor crystallinity. Full Article text
b Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(carbamothioylamino)imino]ethyl}phenyl propanoate By journals.iucr.org Published On :: 2024-04-18 The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an antiperiplanar (ap) conformation. There are short intramolecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, molecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S interactions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S interactions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains. Full Article text
b High-resolution crystal structure of the double nitrate hydrate [La(NO3)6]2[Ni(H2O)6]3·6H2O By journals.iucr.org Published On :: 2024-05-10 This study introduces bis[hexakis(nitrato-κ2O,O')lanthanum(III)] tris[hexaaquanickel(II)] hexahydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexagonal space group Roverline{3}. The salt comprises [La(NO3)6]3− icosahedra and [Ni(H2O)6]2+ octahedra, thus forming an intricate network of interpenetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octahedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexagonal plate-like crystals. Full Article text
b Dimeric ethyltin(IV)–dibromide–hydroxide–N,N-dimethylformamide By journals.iucr.org Published On :: 2024-04-26 Di-μ-hydroxido-bis[dibromido(dimethylformamide-κO)ethyltin(IV)], [Sn2Br4(C2H5)2(OH)2(C3H7NO)2], was prepared from ethyltin(IV) bromide and N,N-dimethylformamide (DMF) in air. The crystal structure exhibits the typical structural features of dimeric Lewis-base-stabilized monoorganotin(IV)–dihalide–hydroxides, RSnHal2(OH), i.e. two octahedrally coordinated Sn atoms are linked together via two bridging hydroxide groups, resulting in a centrosymmetric four-membered rhomboid-like Sn–OH ring with acute angles at the Sn atom, obtuse angles at the O atoms and two different tin–oxygen bond lengths. With the shorter bond trans to the ethyl group, this observation underlines once more the so-called trans-strengthening effect in monoorganotin(IV) compounds with octahedrally coordinated Sn atoms. Differences and similarities in the bond lengths and angles in the four-membered Sn–OH rings have been worked out for the rings in dimeric diorganotin(IV)–halide–hydroxides, [R2SnHal(OH)]2, and hydrates of dimeric tin(IV)–trihalide–hydroxide–aqua–hydrates, [SnHal3(OH)(H2O)]2·nH2O. Full Article text
b Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thiophen-3-yl)cyclopent-1-en-1-yl]methyl}(phenyl)amino)-4-oxobut-2-enoic acid By journals.iucr.org Published On :: 2024-04-26 In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, molecules are linked by C—H⋯π interactions, forming ribbons along the a axis. Intermolecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0overline{1}1) plane. The molecular packing is strengthened by van der Waals interactions between the layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%. Full Article text
b Structure of the five-coordinate CoII complex (1H-imidazole){tris[(1-benzyltriazol-4-yl-κN3)methyl]amine-κN}cobalt(II) bis(tetrafluoroborate) By journals.iucr.org Published On :: 2024-04-18 The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris[(1-benzyltriazol-4-yl)methyl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetrafluoroborate anions provide charge balance in the crystal. Full Article text
b Synthesis and crystal structures of 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene, 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-di By journals.iucr.org Published On :: 2024-05-03 The calixarenes, 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone molecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intramolecular O—H⋯O hydrogen bonds, while in calixarene 2 intramolecular Br⋯Br interactions consolidate the 1,3-alternate molecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of π–π, C—H⋯π and C—H⋯O interactions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent molecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent molecules per unit cell. Rigid molecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals interactions, and the resulting columns are held together by weak C—H⋯π contacts. Full Article text
b Synthesis, crystal structure and anticancer activity of the complex chlorido(η2-ethylene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods By journals.iucr.org Published On :: 2024-04-30 The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hydroxyquinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethylene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π interactions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethylene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethylene with H2O and the water with the guanine molecule. Full Article text
b Crystal structure of bis{2-[5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis(trifluoroacetate) trifluoroacetic acid disolvate By journals.iucr.org Published On :: 2024-05-03 The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group Poverline{1} with the asymmetric unit containing half the cation (PdII site symmetry Ci), one trifluoroactetate anion and one co-crystallized trifluoroacetic acid molecule. Two neutral chelating 2-[5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intramolecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the trifluoroacetic acid–trifluoroacetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding interactions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both trifluoroacetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively. Full Article text
b Crystal structure and Hirshfeld surface analysis of (Z)-4-oxo-4-{phenyl[(thiophen-2-yl)methyl]amino}but-2-enoic acid By journals.iucr.org Published On :: 2024-05-10 In the title compound, C15H13NO3S, the molecular conformation is stable with the intramolecular O—H⋯O hydrogen bond forming a S(7) ring motif. In the crystal, molecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction. Cohesion of the packing is provided by weak van der Waals interactions between the chains. A Hirshfeld surface analysis was undertaken to investigate and quantify the intermolecular interactions. The thiophene ring is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°. Full Article text
b Bis(2-chloro-N,N-dimethylethan-1-aminium) tetrachloridocobaltate(II) and tetrachloridozincate(II) By journals.iucr.org Published On :: 2024-05-10 The few examples of structures containing the 2-chloro-N,N-dimethylethan-1-aminium or 3-chloro-N,N-dimethylpropan-1-aminium cations show a competition between gauche and anti conformations for the chloroalkyl chain. To explore further the conformational landscape of these cations, and their possible use as molecular switches, the title salts, (C4H11ClN)2[CoCl4] and (C4H11ClN)2[ZnCl4], were prepared and structurally characterized. Details of both structures are in close agreement. The inorganic complex exhibits a slightly flattened tetrahedral geometry that likely arises from bifurcated N—H hydrogen bonds from the organic cations. The alkyl chain of the cation is disordered between gauche and anti conformations with the gauche conformation occupancy refined to 0.707 (2) for the cobaltate. The gauche conformation places the terminal Cl atom at a tetrahedral face of the inorganic complex with a contact distance of 3.7576 (9) Å to the Co2+ center. The anti conformation places the terminal Cl atom at a contact distance to a neighboring anti conformation terminal Cl atom that is ∼1 Å less than the sum of the van der Waals radii. Thus, if the anti conformation is present at a site, then the nearest neighbor must be gauche. DFT geometry optimizations indicate the gauche conformation is more stable in vacuo by 0.226 eV, which reduces to 0.0584 eV when calculated in a uniform dielectric. DFT geometry optimizations for the unprotonated molecule indicate the anti conformation is stabilized by 0.0428 eV in vacuo, with no strongly preferred conformation in uniform dielectric, to provide support to the notion that this cation could function as a molecular switch via deprotonation. Full Article text
b Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
b Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one By journals.iucr.org Published On :: 2024-05-10 In the title compound, C6H4BrF3N4O2, the oxadiazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, molecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10overline{4}) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π interactions connect the molecules, forming a three-dimensional network. The F atoms of the trifluoromethyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The intermolecular interactions in the crystal structure were investigated and quantified using Hirshfeld surface analysis. Full Article text
b Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis[4-methyl-N-(pyridin-2-ylmethylidene)aniline]dicadmium(II)] By journals.iucr.org Published On :: 2024-05-21 The title coordination polymer with the 4-methyl-N-(pyridin-2-ylmethylidene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supramolecular sheet extending parallel to (01overline{1}) through π–π stacking interactions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supramolecular network through weak C—H⋯Cl hydrogen-bonding interactions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined. Full Article text
b Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) including an unknown solvate By journals.iucr.org Published On :: 2024-05-17 The title molecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the molecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) interactions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density. Full Article text
b Synthesis and crystal structure of 2,9-diamino-5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene By journals.iucr.org Published On :: 2024-05-21 The cis- form of diaminodibenzocyclooctane (DADBCO, C16H18N2) is of interest as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein. Full Article text
b Trifluoromethanesulfonate salt of 5,10,15,20-tetrakis(1-benzylpyridin-1-ium-4-yl)-21H,23H-porphyrin and its CaII complex By journals.iucr.org Published On :: 2024-05-21 The synthesis, crystallization and characterization of a trifluoromethanesulfonate salt of 5,10,15,20-tetrakis(1-benzylpyridin-1-ium-4-yl)-21H,23H-porphyrin, C68H54N84+·4CF3SO3−·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetrakis(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver trifluoromethanesulfonate (AgOTf) salt produced a red–brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin molecule, two trifluoromethanesulfonate anions and two water molecules of crystallization. The macrocycle of tetrapyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methylene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π interactions between the CaII atom and the π-system of the phenyl ring of neighboring molecules. Both trifluoromethanesulfonate anions are found at the periphery of 1, forming hydrogen bonds with water molecules. Full Article text
b Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives By journals.iucr.org Published On :: 2024-05-21 Three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives, namely, [4-methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cycloplatinated arylolefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hydroxyquinoline (C9H6NO) and quinoline-2-carboxylic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and π–π [for (I)] interactions. Full Article text
b Crystal structure and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thiophen-2-yl)cyclohex-3-ene-1,3-dicarboxylate By journals.iucr.org Published On :: 2024-05-24 In the title compound, C19H17NO5S, the cyclohexene ring adopts nearly an envelope conformation. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect the molecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) interactions are the most significant contributors to the crystal packing. Full Article text
b Crystal structure of 1-(1,3-benzothiazol-2-yl)-3-(4-bromobenzoyl)thiourea By journals.iucr.org Published On :: 2024-05-31 The chemical reaction of 4-bromobenzoylchloride and 2-aminothiazole in the presence of potassium thiocyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromobenzamido and 2-benzothiazolyl moieties connected by a thiourea group. The 4-bromobenzamido and 2-benzothiazolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromophenyl and the 2-benzothiazolyl units is 10.45 (11)°. The thiourea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromophenyl ring and is almost coplanar with the 2-benzothiazolyl moiety, with a dihedral angle of 1.94 (11)°. The molecular structure is stabilized by intramolecular N—H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent molecules interact via intermolecular hydrogen bonds of type C—H⋯N, C—H⋯S and N—H⋯S, resulting in molecular layers parallel to the ac plane. Full Article text
b Structural characterization of the supramolecular complex between a tetraquinoxaline-based cavitand and benzonitrile By journals.iucr.org Published On :: 2024-05-31 The structural characterization is reported of the supramolecular complex between the tetraquinoxaline-based cavitand 2,8,14,20-tetrahexyl-6,10:12,16:18,22:24,4-O,O'-tetrakis(quinoxaline-2,3-diyl)calix[4]resorcinarene (QxCav) with benzonitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent molecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzonitrile molecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly interact through weak C—H⋯π, C—H⋯N and dispersion interactions. These interactions help to consolidate the formation of supramolecular chains running along the crystallographic b-axis direction. Full Article text
b The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives By journals.iucr.org Published On :: 2024-05-31 Three new 1H-indole derivatives, namely, 2-(bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for intermolecular bonding involving sets of slipped π–π interactions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supramolecular columns with every pair of successive molecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π interactions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of interactions agree with the results of a Hirshfeld surface analysis and the calculated interaction energies. In particular, the largest interaction energies (up to −60.8 kJ mol−1) are associated with pairing of antiparallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π interactions are comparable and account for 13–34 kJ mol−1. Full Article text
b Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
b Crystal structure of Staudtienic acid, a diterpenoid from Staudtia kamerunensis Warb. (Myristicaceae) By journals.iucr.org Published On :: 2024-07-19 This title compound, C20H26O2, was isolated from the benzene fraction of the stem bark of Staudtia kamerunensis Warb. (Myristicaceae) using column chromatography techniques over silica gel. The compound was fully characterized by single-crystal X-ray diffraction, one and two-dimensional NMR spectroscopy, IR and MS spectrometry. The compound has two fused cyclohexane rings attached to a benzene ring, with a carboxylic acid on C-4. This cyclohexene ring has a chair conformation while the other adopts a half-chair conformation. The benzene ring is substituted with a propenyl moiety. The structure is characterized by intermolecular O—H⋯O hydrogen bonds, two C—H⋯O intramolecular hydrogen bonds and two C—H⋯π interactions. The molecular structure confirms previous studies carried out by spectroscopic techniques. Full Article text
b Syntheses and crystal structures of the five- and sixfold coordinated complexes diisoselenocyanatotris(2-methylpyridine N-oxide)cobalt(II) and diisoselenocyanatotetrakis(2-methylpyridine N- By journals.iucr.org Published On :: 2024-06-07 The reaction of CoBr2, KNCSe and 2-methylpyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− isoselenocyanate anions and three 2-methylpyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four isoselenocanate anions and eight 2-methylpyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methylpyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded isoselenocyanate anions and four 2-methylpyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octahedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase. Full Article text